Last modified by Bei Jinggeng on 2024/05/31 09:53

From version 65.6
edited by Xiaoling
on 2022/07/08 15:22
Change comment: There is no comment for this version
To version 45.1
edited by Xiaoling
on 2022/07/08 10:16
Change comment: Uploaded new attachment "image-20220708101605-2.png", version {1}

Summary

Details

Page properties
Content
... ... @@ -13,13 +13,11 @@
13 13  
14 14  **Table of Contents:**
15 15  
16 -{{toc/}}
17 17  
18 18  
19 19  
20 20  
21 21  
22 -
23 23  = 1.  Introduction =
24 24  
25 25  == 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
... ... @@ -45,8 +45,9 @@
45 45  
46 46  
47 47  
48 -== 1.2 ​ Features ==
46 +== 1.2 ​Features ==
49 49  
48 +
50 50  * NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
51 51  * Monitor Soil Moisture
52 52  * Monitor Soil Temperature
... ... @@ -81,7 +81,7 @@
81 81  * - B28 @H-FDD: 700MHz
82 82  
83 83  
84 -Probe(% style="color:#037691" %)** Specification:**
83 +(% style="color:#037691" %)**Probe Specification:**
85 85  
86 86  Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
87 87  
... ... @@ -103,710 +103,998 @@
103 103  
104 104  
105 105  
106 -= 2.  Use NSE01 to communicate with IoT Server =
105 += 2. Configure LSE01 to connect to LoRaWAN network =
107 107  
108 -== 2.1  How it works ==
107 +== 2.1 How it works ==
109 109  
110 -
111 111  (((
112 -The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
110 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
113 113  )))
114 114  
115 -
116 116  (((
117 -The diagram below shows the working flow in default firmware of NSE01:
114 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
118 118  )))
119 119  
120 -[[image:image-20220708101605-2.png]]
121 121  
122 -(((
123 -
124 -)))
125 125  
119 +== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
126 126  
121 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
127 127  
128 -== 2.2 ​ Configure the NSE01 ==
129 129  
124 +[[image:1654503992078-669.png]]
130 130  
131 -=== 2.2.1 Test Requirement ===
132 132  
127 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
133 133  
134 -To use NSE01 in your city, make sure meet below requirements:
135 135  
136 -* Your local operator has already distributed a NB-IoT Network there.
137 -* The local NB-IoT network used the band that NSE01 supports.
138 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
130 +(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
139 139  
132 +Each LSE01 is shipped with a sticker with the default device EUI as below:
133 +
134 +[[image:image-20220606163732-6.jpeg]]
135 +
136 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
137 +
138 +**Add APP EUI in the application**
139 +
140 +
141 +[[image:1654504596150-405.png]]
142 +
143 +
144 +
145 +**Add APP KEY and DEV EUI**
146 +
147 +[[image:1654504683289-357.png]]
148 +
149 +
150 +
151 +(% style="color:blue" %)**Step 2**(%%): Power on LSE01
152 +
153 +
154 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
155 +
156 +[[image:image-20220606163915-7.png]]
157 +
158 +
159 +(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
160 +
161 +[[image:1654504778294-788.png]]
162 +
163 +
164 +
165 +== 2.3 Uplink Payload ==
166 +
167 +
168 +=== 2.3.1 MOD~=0(Default Mode) ===
169 +
170 +LSE01 will uplink payload via LoRaWAN with below payload format: 
171 +
140 140  (((
141 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
173 +Uplink payload includes in total 11 bytes.
142 142  )))
143 143  
176 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
177 +|(((
178 +**Size**
144 144  
145 -[[image:1657249419225-449.png]]
180 +**(bytes)**
181 +)))|**2**|**2**|**2**|**2**|**2**|**1**
182 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
183 +Temperature
146 146  
185 +(Reserve, Ignore now)
186 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
187 +MOD & Digital Interrupt
147 147  
189 +(Optional)
190 +)))
148 148  
149 -=== 2.2.2 Insert SIM card ===
192 +=== 2.3.2 MOD~=1(Original value) ===
150 150  
151 -Insert the NB-IoT Card get from your provider.
194 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
152 152  
153 -User need to take out the NB-IoT module and insert the SIM card like below:
196 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
197 +|(((
198 +**Size**
154 154  
200 +**(bytes)**
201 +)))|**2**|**2**|**2**|**2**|**2**|**1**
202 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
203 +Temperature
155 155  
156 -[[image:1657249468462-536.png]]
205 +(Reserve, Ignore now)
206 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
207 +MOD & Digital Interrupt
157 157  
209 +(Optional)
210 +)))
158 158  
212 +=== 2.3.3 Battery Info ===
159 159  
160 -=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
214 +(((
215 +Check the battery voltage for LSE01.
216 +)))
161 161  
162 162  (((
219 +Ex1: 0x0B45 = 2885mV
220 +)))
221 +
163 163  (((
164 -User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
223 +Ex2: 0x0B49 = 2889mV
165 165  )))
225 +
226 +
227 +
228 +=== 2.3.4 Soil Moisture ===
229 +
230 +(((
231 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
166 166  )))
167 167  
234 +(((
235 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
236 +)))
168 168  
169 -**Connection:**
238 +(((
239 +
240 +)))
170 170  
171 - (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
242 +(((
243 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
244 +)))
172 172  
173 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
174 174  
175 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
176 176  
248 +=== 2.3.5 Soil Temperature ===
177 177  
178 -In the PC, use below serial tool settings:
250 +(((
251 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
252 +)))
179 179  
180 -* Baud:  (% style="color:green" %)**9600**
181 -* Data bits:** (% style="color:green" %)8(%%)**
182 -* Stop bits: (% style="color:green" %)**1**
183 -* Parity:  (% style="color:green" %)**None**
184 -* Flow Control: (% style="color:green" %)**None**
254 +(((
255 +**Example**:
256 +)))
185 185  
186 186  (((
187 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
259 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
188 188  )))
189 189  
190 -[[image:image-20220708110657-3.png]]
262 +(((
263 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
264 +)))
191 191  
192 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
193 193  
194 194  
268 +=== 2.3.6 Soil Conductivity (EC) ===
195 195  
196 -=== 2.2.4 Use CoAP protocol to uplink data ===
270 +(((
271 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
272 +)))
197 197  
198 -(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
274 +(((
275 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
276 +)))
199 199  
278 +(((
279 +Generally, the EC value of irrigation water is less than 800uS / cm.
280 +)))
200 200  
201 -**Use below commands:**
282 +(((
283 +
284 +)))
202 202  
203 -* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
204 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
205 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
286 +(((
287 +
288 +)))
206 206  
207 -For parameter description, please refer to AT command set
290 +=== 2.3.7 MOD ===
208 208  
209 -[[image:1657249793983-486.png]]
292 +Firmware version at least v2.1 supports changing mode.
210 210  
294 +For example, bytes[10]=90
211 211  
212 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
296 +mod=(bytes[10]>>7)&0x01=1.
213 213  
214 -[[image:1657249831934-534.png]]
215 215  
299 +**Downlink Command:**
216 216  
301 +If payload = 0x0A00, workmode=0
217 217  
218 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
303 +If** **payload =** **0x0A01, workmode=1
219 219  
220 -This feature is supported since firmware version v1.0.1
221 221  
222 222  
223 -* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
224 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
225 -* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
307 +=== 2.3.8 ​Decode payload in The Things Network ===
226 226  
227 -[[image:1657249864775-321.png]]
309 +While using TTN network, you can add the payload format to decode the payload.
228 228  
229 229  
230 -[[image:1657249930215-289.png]]
312 +[[image:1654505570700-128.png]]
231 231  
314 +(((
315 +The payload decoder function for TTN is here:
316 +)))
232 232  
318 +(((
319 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
320 +)))
233 233  
234 -=== 2.2.6 Use MQTT protocol to uplink data ===
235 235  
236 -This feature is supported since firmware version v110
323 +== 2.4 Uplink Interval ==
237 237  
325 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
238 238  
239 -* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
240 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
241 -* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
242 -* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
243 -* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
244 -* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
245 -* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
246 246  
247 -[[image:1657249978444-674.png]]
248 248  
329 +== 2.5 Downlink Payload ==
249 249  
250 -[[image:1657249990869-686.png]]
331 +By default, LSE50 prints the downlink payload to console port.
251 251  
333 +[[image:image-20220606165544-8.png]]
252 252  
335 +
253 253  (((
254 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
337 +(% style="color:blue" %)**Examples:**
255 255  )))
256 256  
340 +(((
341 +
342 +)))
257 257  
344 +* (((
345 +(% style="color:blue" %)**Set TDC**
346 +)))
258 258  
259 -=== 2.2.7 Use TCP protocol to uplink data ===
348 +(((
349 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
350 +)))
260 260  
261 -This feature is supported since firmware version v110
352 +(((
353 +Payload:    01 00 00 1E    TDC=30S
354 +)))
262 262  
356 +(((
357 +Payload:    01 00 00 3C    TDC=60S
358 +)))
263 263  
264 -* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
265 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
360 +(((
361 +
362 +)))
266 266  
267 -[[image:1657250217799-140.png]]
364 +* (((
365 +(% style="color:blue" %)**Reset**
366 +)))
268 268  
368 +(((
369 +If payload = 0x04FF, it will reset the LSE01
370 +)))
269 269  
270 -[[image:1657250255956-604.png]]
271 271  
373 +* (% style="color:blue" %)**CFM**
272 272  
375 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
273 273  
274 -=== 2.2.8 Change Update Interval ===
275 275  
276 -User can use below command to change the (% style="color:green" %)**uplink interval**.
277 277  
278 -* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
379 +== 2.6 Show Data in DataCake IoT Server ==
279 279  
280 280  (((
281 -(% style="color:red" %)**NOTE:**
382 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
282 282  )))
283 283  
284 284  (((
285 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
386 +
286 286  )))
287 287  
389 +(((
390 +(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
391 +)))
288 288  
393 +(((
394 +(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
395 +)))
289 289  
290 -== 2.3  Uplink Payload ==
291 291  
292 -In this mode, uplink payload includes in total 18 bytes
398 +[[image:1654505857935-743.png]]
293 293  
294 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
295 -|=(% style="width: 50px;" %)(((
296 -**Size(bytes)**
297 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
298 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
299 299  
300 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
401 +[[image:1654505874829-548.png]]
301 301  
302 302  
303 -[[image:image-20220708111918-4.png]]
404 +(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
304 304  
406 +(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
305 305  
306 -The payload is ASCII string, representative same HEX:
307 307  
308 -0x72403155615900640c7817075e0a8c02f900 where:
409 +[[image:1654505905236-553.png]]
309 309  
310 -* Device ID: 0x 724031556159 = 724031556159
311 -* Version: 0x0064=100=1.0.0
312 312  
313 -* BAT: 0x0c78 = 3192 mV = 3.192V
314 -* Singal: 0x17 = 23
315 -* Soil Moisture: 0x075e= 1886 = 18.86  %
316 -* Soil Temperature:0x0a8c =2700=27 °C
317 -* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
318 -* Interrupt: 0x00 = 0
412 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
319 319  
414 +[[image:1654505925508-181.png]]
320 320  
321 321  
322 -== 2.4  Payload Explanation and Sensor Interface ==
323 323  
418 +== 2.7 Frequency Plans ==
324 324  
325 -=== 2.4.1  Device ID ===
420 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
326 326  
327 -By default, the Device ID equal to the last 6 bytes of IMEI.
328 328  
329 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
423 +=== 2.7.1 EU863-870 (EU868) ===
330 330  
331 -**Example:**
425 +(% style="color:#037691" %)** Uplink:**
332 332  
333 -AT+DEUI=A84041F15612
427 +868.1 - SF7BW125 to SF12BW125
334 334  
335 -The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
429 +868.3 - SF7BW125 to SF12BW125 and SF7BW250
336 336  
431 +868.5 - SF7BW125 to SF12BW125
337 337  
433 +867.1 - SF7BW125 to SF12BW125
338 338  
339 -=== 2.4.2  Version Info ===
435 +867.3 - SF7BW125 to SF12BW125
340 340  
341 -Specify the software version: 0x64=100, means firmware version 1.00.
437 +867.5 - SF7BW125 to SF12BW125
342 342  
343 -For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
439 +867.7 - SF7BW125 to SF12BW125
344 344  
441 +867.9 - SF7BW125 to SF12BW125
345 345  
443 +868.8 - FSK
346 346  
347 -=== 2.4.3  Battery Info ===
348 348  
349 -(((
350 -Check the battery voltage for LSE01.
351 -)))
446 +(% style="color:#037691" %)** Downlink:**
352 352  
353 -(((
354 -Ex1: 0x0B45 = 2885mV
355 -)))
448 +Uplink channels 1-9 (RX1)
356 356  
357 -(((
358 -Ex2: 0x0B49 = 2889mV
359 -)))
450 +869.525 - SF9BW125 (RX2 downlink only)
360 360  
361 361  
362 362  
363 -=== 2.4. Signal Strength ===
454 +=== 2.7.2 US902-928(US915) ===
364 364  
365 -NB-IoT Network signal Strength.
456 +Used in USA, Canada and South America. Default use CHE=2
366 366  
367 -**Ex1: 0x1d = 29**
458 +(% style="color:#037691" %)**Uplink:**
368 368  
369 -(% style="color:blue" %)**0**(%%)  -113dBm or less
460 +903.9 - SF7BW125 to SF10BW125
370 370  
371 -(% style="color:blue" %)**1**(%%)  -111dBm
462 +904.1 - SF7BW125 to SF10BW125
372 372  
373 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
464 +904.3 - SF7BW125 to SF10BW125
374 374  
375 -(% style="color:blue" %)**31**  (%%) -51dBm or greater
466 +904.5 - SF7BW125 to SF10BW125
376 376  
377 -(% style="color:blue" %)**99**   (%%) Not known or not detectable
468 +904.7 - SF7BW125 to SF10BW125
378 378  
470 +904.9 - SF7BW125 to SF10BW125
379 379  
472 +905.1 - SF7BW125 to SF10BW125
380 380  
381 -=== 2.4.5  Soil Moisture ===
474 +905.3 - SF7BW125 to SF10BW125
382 382  
383 -(((
384 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
385 -)))
386 386  
387 -(((
388 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
389 -)))
477 +(% style="color:#037691" %)**Downlink:**
390 390  
391 -(((
392 -
393 -)))
479 +923.3 - SF7BW500 to SF12BW500
394 394  
395 -(((
396 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
397 -)))
481 +923.9 - SF7BW500 to SF12BW500
398 398  
483 +924.5 - SF7BW500 to SF12BW500
399 399  
485 +925.1 - SF7BW500 to SF12BW500
400 400  
401 -=== 2.4.6  Soil Temperature ===
487 +925.7 - SF7BW500 to SF12BW500
402 402  
403 -(((
404 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
405 -)))
489 +926.3 - SF7BW500 to SF12BW500
406 406  
407 -(((
408 -**Example**:
409 -)))
491 +926.9 - SF7BW500 to SF12BW500
410 410  
411 -(((
412 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
413 -)))
493 +927.5 - SF7BW500 to SF12BW500
414 414  
415 -(((
416 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
417 -)))
495 +923.3 - SF12BW500(RX2 downlink only)
418 418  
419 419  
420 420  
421 -=== 2.4.7  Soil Conductivity (EC) ===
499 +=== 2.7.3 CN470-510 (CN470) ===
422 422  
423 -(((
424 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
425 -)))
501 +Used in China, Default use CHE=1
426 426  
427 -(((
428 -For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
429 -)))
503 +(% style="color:#037691" %)**Uplink:**
430 430  
431 -(((
432 -Generally, the EC value of irrigation water is less than 800uS / cm.
433 -)))
505 +486.3 - SF7BW125 to SF12BW125
434 434  
435 -(((
436 -
437 -)))
507 +486.5 - SF7BW125 to SF12BW125
438 438  
439 -(((
440 -
441 -)))
509 +486.7 - SF7BW125 to SF12BW125
442 442  
443 -=== 2.4.8  Digital Interrupt ===
511 +486.9 - SF7BW125 to SF12BW125
444 444  
445 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
513 +487.1 - SF7BW125 to SF12BW125
446 446  
447 -The command is:
515 +487.3 - SF7BW125 to SF12BW125
448 448  
449 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
517 +487.5 - SF7BW125 to SF12BW125
450 450  
519 +487.7 - SF7BW125 to SF12BW125
451 451  
452 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
453 453  
522 +(% style="color:#037691" %)**Downlink:**
454 454  
455 -Example:
524 +506.7 - SF7BW125 to SF12BW125
456 456  
457 -0x(00): Normal uplink packet.
526 +506.9 - SF7BW125 to SF12BW125
458 458  
459 -0x(01): Interrupt Uplink Packet.
528 +507.1 - SF7BW125 to SF12BW125
460 460  
530 +507.3 - SF7BW125 to SF12BW125
461 461  
532 +507.5 - SF7BW125 to SF12BW125
462 462  
463 -=== 2.4.9  ​+5V Output ===
534 +507.7 - SF7BW125 to SF12BW125
464 464  
465 -NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
536 +507.9 - SF7BW125 to SF12BW125
466 466  
538 +508.1 - SF7BW125 to SF12BW125
467 467  
468 -The 5V output time can be controlled by AT Command.
540 +505.3 - SF12BW125 (RX2 downlink only)
469 469  
470 -(% style="color:blue" %)**AT+5VT=1000**
471 471  
472 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
473 473  
544 +=== 2.7.4 AU915-928(AU915) ===
474 474  
546 +Default use CHE=2
475 475  
476 -== 2.5  Downlink Payload ==
548 +(% style="color:#037691" %)**Uplink:**
477 477  
478 -By default, NSE01 prints the downlink payload to console port.
550 +916.8 - SF7BW125 to SF12BW125
479 479  
480 -[[image:image-20220708133731-5.png]]
552 +917.0 - SF7BW125 to SF12BW125
481 481  
554 +917.2 - SF7BW125 to SF12BW125
482 482  
483 -(((
484 -(% style="color:blue" %)**Examples:**
485 -)))
556 +917.4 - SF7BW125 to SF12BW125
486 486  
487 -(((
488 -
489 -)))
558 +917.6 - SF7BW125 to SF12BW125
490 490  
491 -* (((
492 -(% style="color:blue" %)**Set TDC**
493 -)))
560 +917.8 - SF7BW125 to SF12BW125
494 494  
495 -(((
496 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
497 -)))
562 +918.0 - SF7BW125 to SF12BW125
498 498  
499 -(((
500 -Payload:    01 00 00 1E    TDC=30S
501 -)))
564 +918.2 - SF7BW125 to SF12BW125
502 502  
503 -(((
504 -Payload:    01 00 00 3C    TDC=60S
505 -)))
506 506  
507 -(((
508 -
509 -)))
567 +(% style="color:#037691" %)**Downlink:**
510 510  
511 -* (((
512 -(% style="color:blue" %)**Reset**
513 -)))
569 +923.3 - SF7BW500 to SF12BW500
514 514  
515 -(((
516 -If payload = 0x04FF, it will reset the NSE01
517 -)))
571 +923.9 - SF7BW500 to SF12BW500
518 518  
573 +924.5 - SF7BW500 to SF12BW500
519 519  
520 -* (% style="color:blue" %)**INTMOD**
575 +925.1 - SF7BW500 to SF12BW500
521 521  
522 -Downlink Payload: 06000003, Set AT+INTMOD=3
577 +925.7 - SF7BW500 to SF12BW500
523 523  
579 +926.3 - SF7BW500 to SF12BW500
524 524  
581 +926.9 - SF7BW500 to SF12BW500
525 525  
526 -== 2. ​LED Indicator ==
583 +927.5 - SF7BW500 to SF12BW500
527 527  
528 -(((
529 -The NSE01 has an internal LED which is to show the status of different state.
585 +923.3 - SF12BW500(RX2 downlink only)
530 530  
531 531  
532 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
533 -* Then the LED will be on for 1 second means device is boot normally.
534 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
535 -* For each uplink probe, LED will be on for 500ms.
536 -)))
537 537  
589 +=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
538 538  
591 +(% style="color:#037691" %)**Default Uplink channel:**
539 539  
593 +923.2 - SF7BW125 to SF10BW125
540 540  
541 -== 2.7  Installation in Soil ==
595 +923.4 - SF7BW125 to SF10BW125
542 542  
543 -__**Measurement the soil surface**__
544 544  
545 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
598 +(% style="color:#037691" %)**Additional Uplink Channel**:
546 546  
547 -[[image:1657259653666-883.png]]
600 +(OTAA mode, channel added by JoinAccept message)
548 548  
602 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
549 549  
550 -(((
551 -
604 +922.2 - SF7BW125 to SF10BW125
552 552  
553 -(((
554 -Dig a hole with diameter > 20CM.
555 -)))
606 +922.4 - SF7BW125 to SF10BW125
556 556  
557 -(((
558 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
559 -)))
560 -)))
608 +922.6 - SF7BW125 to SF10BW125
561 561  
562 -[[image:1654506665940-119.png]]
610 +922.8 - SF7BW125 to SF10BW125
563 563  
564 -(((
565 -
566 -)))
612 +923.0 - SF7BW125 to SF10BW125
567 567  
614 +922.0 - SF7BW125 to SF10BW125
568 568  
569 -== 2.8  ​Firmware Change Log ==
570 570  
617 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
571 571  
572 -Download URL & Firmware Change log
619 +923.6 - SF7BW125 to SF10BW125
573 573  
574 -[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
621 +923.8 - SF7BW125 to SF10BW125
575 575  
623 +924.0 - SF7BW125 to SF10BW125
576 576  
577 -Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
625 +924.2 - SF7BW125 to SF10BW125
578 578  
627 +924.4 - SF7BW125 to SF10BW125
579 579  
629 +924.6 - SF7BW125 to SF10BW125
580 580  
581 -== 2.9  ​Battery Analysis ==
582 582  
583 -=== 2.9.1  ​Battery Type ===
632 +(% style="color:#037691" %)** Downlink:**
584 584  
634 +Uplink channels 1-8 (RX1)
585 585  
586 -The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
636 +923.2 - SF10BW125 (RX2)
587 587  
588 588  
589 -The battery is designed to last for several years depends on the actually use environment and update interval. 
590 590  
640 +=== 2.7.6 KR920-923 (KR920) ===
591 591  
592 -The battery related documents as below:
642 +Default channel:
593 593  
594 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
595 -* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
596 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
644 +922.1 - SF7BW125 to SF12BW125
597 597  
646 +922.3 - SF7BW125 to SF12BW125
647 +
648 +922.5 - SF7BW125 to SF12BW125
649 +
650 +
651 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
652 +
653 +922.1 - SF7BW125 to SF12BW125
654 +
655 +922.3 - SF7BW125 to SF12BW125
656 +
657 +922.5 - SF7BW125 to SF12BW125
658 +
659 +922.7 - SF7BW125 to SF12BW125
660 +
661 +922.9 - SF7BW125 to SF12BW125
662 +
663 +923.1 - SF7BW125 to SF12BW125
664 +
665 +923.3 - SF7BW125 to SF12BW125
666 +
667 +
668 +(% style="color:#037691" %)**Downlink:**
669 +
670 +Uplink channels 1-7(RX1)
671 +
672 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
673 +
674 +
675 +
676 +=== 2.7.7 IN865-867 (IN865) ===
677 +
678 +(% style="color:#037691" %)** Uplink:**
679 +
680 +865.0625 - SF7BW125 to SF12BW125
681 +
682 +865.4025 - SF7BW125 to SF12BW125
683 +
684 +865.9850 - SF7BW125 to SF12BW125
685 +
686 +
687 +(% style="color:#037691" %) **Downlink:**
688 +
689 +Uplink channels 1-3 (RX1)
690 +
691 +866.550 - SF10BW125 (RX2)
692 +
693 +
694 +
695 +
696 +== 2.8 LED Indicator ==
697 +
698 +The LSE01 has an internal LED which is to show the status of different state.
699 +
700 +* Blink once when device power on.
701 +* Solid ON for 5 seconds once device successful Join the network.
702 +* Blink once when device transmit a packet.
703 +
704 +== 2.9 Installation in Soil ==
705 +
706 +**Measurement the soil surface**
707 +
708 +
709 +[[image:1654506634463-199.png]] ​
710 +
598 598  (((
599 -[[image:image-20220708140453-6.png]]
712 +(((
713 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
600 600  )))
715 +)))
601 601  
602 602  
603 603  
604 -=== 2.9.2  Power consumption Analyze ===
719 +[[image:1654506665940-119.png]]
605 605  
606 606  (((
607 -Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
722 +Dig a hole with diameter > 20CM.
608 608  )))
609 609  
725 +(((
726 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
727 +)))
610 610  
729 +
730 +== 2.10 ​Firmware Change Log ==
731 +
611 611  (((
612 -Instruction to use as below:
733 +**Firmware download link:**
613 613  )))
614 614  
615 615  (((
616 -(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
737 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
617 617  )))
618 618  
740 +(((
741 +
742 +)))
619 619  
620 620  (((
621 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose
745 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
622 622  )))
623 623  
624 -* (((
625 -Product Model
748 +(((
749 +
626 626  )))
627 -* (((
628 -Uplink Interval
751 +
752 +(((
753 +**V1.0.**
629 629  )))
630 -* (((
631 -Working Mode
632 -)))
633 633  
634 634  (((
635 -And the Life expectation in difference case will be shown on the right.
757 +Release
636 636  )))
637 637  
638 -[[image:image-20220708141352-7.jpeg]]
639 639  
761 +== 2.11 ​Battery Analysis ==
640 640  
763 +=== 2.11.1 ​Battery Type ===
641 641  
642 -=== 2.9.3  ​Battery Note ===
765 +(((
766 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
767 +)))
643 643  
644 644  (((
645 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
770 +The battery is designed to last for more than 5 years for the LSN50.
646 646  )))
647 647  
773 +(((
774 +(((
775 +The battery-related documents are as below:
776 +)))
777 +)))
648 648  
779 +* (((
780 +[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
781 +)))
782 +* (((
783 +[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
784 +)))
785 +* (((
786 +[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
787 +)))
649 649  
650 -=== 2.9.4  Replace the battery ===
789 + [[image:image-20220610172436-1.png]]
651 651  
791 +
792 +
793 +=== 2.11.2 ​Battery Note ===
794 +
652 652  (((
653 -The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
796 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
654 654  )))
655 655  
656 656  
657 657  
658 -= 3. ​ Access NB-IoT Module =
801 +=== 2.11.3 Replace the battery ===
659 659  
660 660  (((
661 -Users can directly access the AT command set of the NB-IoT module.
804 +If Battery is lower than 2.7v, user should replace the battery of LSE01.
662 662  )))
663 663  
664 664  (((
665 -The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
808 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
666 666  )))
667 667  
668 -[[image:1657261278785-153.png]]
811 +(((
812 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
813 +)))
669 669  
670 670  
671 671  
672 -= 4.  Using the AT Commands =
817 += 3. Using the AT Commands =
673 673  
674 -== 4.1  Access AT Commands ==
819 +== 3.1 Access AT Commands ==
675 675  
676 -See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
677 677  
822 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
678 678  
679 -AT+<CMD>?  : Help on <CMD>
824 +[[image:1654501986557-872.png||height="391" width="800"]]
680 680  
681 -AT+<CMD>         : Run <CMD>
682 682  
683 -AT+<CMD>=<value> : Set the value
827 +Or if you have below board, use below connection:
684 684  
685 -AT+<CMD>=?  : Get the value
686 686  
830 +[[image:1654502005655-729.png||height="503" width="801"]]
687 687  
832 +
833 +
834 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
835 +
836 +
837 + [[image:1654502050864-459.png||height="564" width="806"]]
838 +
839 +
840 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
841 +
842 +
843 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
844 +
845 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
846 +
847 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
848 +
849 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
850 +
851 +
688 688  (% style="color:#037691" %)**General Commands**(%%)      
689 689  
690 -AT  : Attention       
854 +(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
691 691  
692 -AT?  : Short Help     
856 +(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
693 693  
694 -ATZ  : MCU Reset    
858 +(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
695 695  
696 -AT+TDC  : Application Data Transmission Interval
860 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
697 697  
698 -AT+CFG  : Print all configurations
699 699  
700 -AT+CFGMOD           : Working mode selection
863 +(% style="color:#037691" %)**Keys, IDs and EUIs management**
701 701  
702 -AT+INTMOD            : Set the trigger interrupt mode
865 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
703 703  
704 -AT+5VT  : Set extend the time of 5V power  
867 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
705 705  
706 -AT+PRO  : Choose agreement
869 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
707 707  
708 -AT+WEIGRE  : Get weight or set weight to 0
871 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
709 709  
710 -AT+WEIGAP  : Get or Set the GapValue of weight
873 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
711 711  
712 -AT+RXDL  : Extend the sending and receiving time
875 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
713 713  
714 -AT+CNTFAC  : Get or set counting parameters
877 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
715 715  
716 -AT+SERVADDR  : Server Address
879 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
717 717  
881 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
718 718  
719 -(% style="color:#037691" %)**COAP Management**      
883 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
720 720  
721 -AT+URI            : Resource parameters
885 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
722 722  
887 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
723 723  
724 -(% style="color:#037691" %)**UDP Management**
889 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
725 725  
726 -AT+CFM          : Upload confirmation mode (only valid for UDP)
891 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
727 727  
893 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
728 728  
729 -(% style="color:#037691" %)**MQTT Management**
895 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
730 730  
731 -AT+CLIENT               : Get or Set MQTT client
732 732  
733 -AT+UNAME  : Get or Set MQTT Username
898 +(% style="color:#037691" %)**LoRa Network Management**
734 734  
735 -AT+PWD                  : Get or Set MQTT password
900 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
736 736  
737 -AT+PUBTOPI : Get or Set MQTT publish topic
902 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
738 738  
739 -AT+SUBTOPIC  : Get or Set MQTT subscription topic
904 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
740 740  
906 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
741 741  
742 -(% style="color:#037691" %)**Information**          
908 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
743 743  
744 -AT+FDR  : Factory Data Reset
910 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
745 745  
746 -AT+PWOR : Serial Access Password
912 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
747 747  
914 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
748 748  
916 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
749 749  
750 -= ​5.  FAQ =
918 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
751 751  
752 -== 5.1 How to Upgrade Firmware ==
920 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
753 753  
922 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
754 754  
924 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
925 +
926 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
927 +
928 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
929 +
930 +
931 +(% style="color:#037691" %)**Information** 
932 +
933 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
934 +
935 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
936 +
937 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
938 +
939 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
940 +
941 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
942 +
943 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
944 +
945 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
946 +
947 +
948 += ​4. FAQ =
949 +
950 +== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
951 +
755 755  (((
756 -User can upgrade the firmware for 1) bug fix, 2) new feature release.
953 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
954 +When downloading the images, choose the required image file for download. ​
757 757  )))
758 758  
759 759  (((
760 -Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
958 +
761 761  )))
762 762  
763 763  (((
764 -(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
962 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
765 765  )))
766 766  
965 +(((
966 +
967 +)))
767 767  
969 +(((
970 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
971 +)))
768 768  
769 -= 6.  Trouble Shooting =
973 +(((
974 +
975 +)))
770 770  
771 -== 6.1  ​Connection problem when uploading firmware ==
977 +(((
978 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
979 +)))
772 772  
981 +[[image:image-20220606154726-3.png]]
773 773  
774 -(% class="wikigeneratedid" %)
983 +
984 +When you use the TTN network, the US915 frequency bands use are:
985 +
986 +* 903.9 - SF7BW125 to SF10BW125
987 +* 904.1 - SF7BW125 to SF10BW125
988 +* 904.3 - SF7BW125 to SF10BW125
989 +* 904.5 - SF7BW125 to SF10BW125
990 +* 904.7 - SF7BW125 to SF10BW125
991 +* 904.9 - SF7BW125 to SF10BW125
992 +* 905.1 - SF7BW125 to SF10BW125
993 +* 905.3 - SF7BW125 to SF10BW125
994 +* 904.6 - SF8BW500
995 +
775 775  (((
776 -(% style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]]
997 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
998 +
999 +* (% style="color:#037691" %)**AT+CHE=2**
1000 +* (% style="color:#037691" %)**ATZ**
777 777  )))
778 778  
1003 +(((
1004 +
779 779  
1006 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
1007 +)))
780 780  
781 -== 6.2  AT Command input doesn't work ==
1009 +(((
1010 +
1011 +)))
782 782  
783 783  (((
1014 +The **AU915** band is similar. Below are the AU915 Uplink Channels.
1015 +)))
1016 +
1017 +[[image:image-20220606154825-4.png]]
1018 +
1019 +
1020 +== 4.2 ​Can I calibrate LSE01 to different soil types? ==
1021 +
1022 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1023 +
1024 +
1025 += 5. Trouble Shooting =
1026 +
1027 +== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
1028 +
1029 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
1030 +
1031 +
1032 +== 5.2 AT Command input doesn't work ==
1033 +
1034 +(((
784 784  In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
785 785  )))
786 786  
787 787  
1039 +== 5.3 Device rejoin in at the second uplink packet ==
788 788  
789 -= 7. ​ Order Info =
1041 +(% style="color:#4f81bd" %)**Issue describe as below:**
790 790  
1043 +[[image:1654500909990-784.png]]
791 791  
792 -Part Number**:** (% style="color:#4f81bd" %)**NSE01**
793 793  
1046 +(% style="color:#4f81bd" %)**Cause for this issue:**
794 794  
1048 +(((
1049 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
1050 +)))
1051 +
1052 +
1053 +(% style="color:#4f81bd" %)**Solution: **
1054 +
1055 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1056 +
1057 +[[image:1654500929571-736.png||height="458" width="832"]]
1058 +
1059 +
1060 += 6. ​Order Info =
1061 +
1062 +
1063 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1064 +
1065 +
1066 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1067 +
1068 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1069 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1070 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1071 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1072 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1073 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1074 +* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1075 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1076 +
1077 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1078 +
1079 +* (% style="color:red" %)**4**(%%): 4000mAh battery
1080 +* (% style="color:red" %)**8**(%%): 8500mAh battery
1081 +
795 795  (% class="wikigeneratedid" %)
796 796  (((
797 797  
798 798  )))
799 799  
800 -= 8.  Packing Info =
1087 += 7. Packing Info =
801 801  
802 802  (((
803 803  
804 804  
805 805  (% style="color:#037691" %)**Package Includes**:
1093 +)))
806 806  
807 -
808 -* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
809 -* External antenna x 1
1095 +* (((
1096 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
810 810  )))
811 811  
812 812  (((
... ... @@ -813,20 +813,24 @@
813 813  
814 814  
815 815  (% style="color:#037691" %)**Dimension and weight**:
1103 +)))
816 816  
817 -
818 -* Size: 195 x 125 x 55 mm
819 -* Weight:   420g
1105 +* (((
1106 +Device Size: cm
820 820  )))
1108 +* (((
1109 +Device Weight: g
1110 +)))
1111 +* (((
1112 +Package Size / pcs : cm
1113 +)))
1114 +* (((
1115 +Weight / pcs : g
821 821  
822 -(((
823 823  
824 -
825 -
826 -
827 827  )))
828 828  
829 -= 9.  Support =
1120 += 8. Support =
830 830  
831 831  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
832 832  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657249419225-449.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -102.7 KB
Content