Changes for page NDDS75 -- NB-IoT Distance Detect Sensor User Manual
Last modified by Bei Jinggeng on 2024/05/31 09:53
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 24 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - NSE01NB-IoTSoil Moisture & EC Sensor User Manual1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -3,16 +3,8 @@ 3 3 4 4 5 5 6 +**Contents:** 6 6 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 -**Table of Contents:** 15 - 16 16 {{toc/}} 17 17 18 18 ... ... @@ -20,793 +20,1041 @@ 20 20 21 21 22 22 23 -= 1. 15 += 1. Introduction = 24 24 25 -== 1.1 17 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 26 26 27 27 ((( 28 - 20 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 21 +))) 29 29 30 -Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 23 +((( 24 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 25 +))) 31 31 32 -It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 27 +((( 28 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 29 +))) 33 33 34 -The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 31 +((( 32 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 33 +))) 35 35 36 -NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years. 37 - 38 - 35 +((( 36 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 39 39 ))) 40 40 39 + 41 41 [[image:1654503236291-817.png]] 42 42 43 43 44 -[[image:165 7245163077-232.png]]43 +[[image:1654503265560-120.png]] 45 45 46 46 47 47 48 -== 1.2 47 +== 1.2 Features == 49 49 50 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 49 +* LoRaWAN 1.0.3 Class A 50 +* Ultra low power consumption 51 51 * Monitor Soil Moisture 52 52 * Monitor Soil Temperature 53 53 * Monitor Soil Conductivity 54 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 54 54 * AT Commands to change parameters 55 55 * Uplink on periodically 56 56 * Downlink to change configure 57 57 * IP66 Waterproof Enclosure 58 -* Ultra-Low Power consumption 59 -* AT Commands to change parameters 60 -* Micro SIM card slot for NB-IoT SIM 61 -* 8500mAh Battery for long term use 59 +* 4000mAh or 8500mAh Battery for long term use 62 62 61 +== 1.3 Specification == 63 63 63 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 64 64 65 - == 1.3 Specification==65 +[[image:image-20220606162220-5.png]] 66 66 67 67 68 -(% style="color:#037691" %)**Common DC Characteristics:** 69 69 70 -* Supply Voltage: 2.1v ~~ 3.6v 71 -* Operating Temperature: -40 ~~ 85°C 69 +== 1.4 Applications == 72 72 71 +* Smart Agriculture 73 73 74 -(% style="color:#037691" %)**NB-IoT Spec:** 73 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 74 + 75 75 76 -* - B1 @H-FDD: 2100MHz 77 -* - B3 @H-FDD: 1800MHz 78 -* - B8 @H-FDD: 900MHz 79 -* - B5 @H-FDD: 850MHz 80 -* - B20 @H-FDD: 800MHz 81 -* - B28 @H-FDD: 700MHz 76 +== 1.5 Firmware Change log == 82 82 83 83 84 - Probe(% style="color:#037691"%)**Specification:**79 +**LSE01 v1.0 :** Release 85 85 86 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 87 87 88 -[[image:image-20220708101224-1.png]] 89 89 83 += 2. Configure LSE01 to connect to LoRaWAN network = 90 90 85 +== 2.1 How it works == 91 91 92 -== 1.4 Applications == 87 +((( 88 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 89 +))) 93 93 94 -* Smart Agriculture 91 +((( 92 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 93 +))) 95 95 96 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 97 - 98 98 99 -== 1.5 Pin Definitions == 100 100 97 +== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 101 101 102 - [[image:1657246476176-652.png]]99 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 103 103 104 104 102 +[[image:1654503992078-669.png]] 105 105 106 -= 2. Use NSE01 to communicate with IoT Server = 107 107 108 - ==2.1How it==105 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 109 109 110 110 111 -((( 112 -The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 113 -))) 108 +**Step 1**: Create a device in TTN with the OTAA keys from LSE01. 114 114 110 +Each LSE01 is shipped with a sticker with the default device EUI as below: 115 115 112 +[[image:image-20220606163732-6.jpeg]] 113 + 114 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 115 + 116 +**Add APP EUI in the application** 117 + 118 + 119 +[[image:1654504596150-405.png]] 120 + 121 + 122 + 123 +**Add APP KEY and DEV EUI** 124 + 125 +[[image:1654504683289-357.png]] 126 + 127 + 128 + 129 +**Step 2**: Power on LSE01 130 + 131 + 132 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 133 + 134 +[[image:image-20220606163915-7.png]] 135 + 136 + 137 +**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 138 + 139 +[[image:1654504778294-788.png]] 140 + 141 + 142 + 143 +== 2.3 Uplink Payload == 144 + 145 +(% class="wikigeneratedid" %) 146 +=== === 147 + 148 +=== 2.3.1 MOD~=0(Default Mode) === 149 + 150 +LSE01 will uplink payload via LoRaWAN with below payload format: 151 + 116 116 ((( 117 - The diagram below shows the workingflowinfaultfirmwareofNSE01:153 +Uplink payload includes in total 11 bytes. 118 118 ))) 119 119 120 -[[image:image-20220708101605-2.png]] 156 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 157 +|((( 158 +**Size** 121 121 122 -((( 123 - 160 +**(bytes)** 161 +)))|**2**|**2**|**2**|**2**|**2**|**1** 162 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 163 +Temperature 164 + 165 +(Reserve, Ignore now) 166 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 167 +MOD & Digital Interrupt 168 + 169 +(Optional) 124 124 ))) 125 125 126 126 127 127 128 -== 2.2 Configurethe NSE01==174 +=== 2.3.2 MOD~=1(Original value) === 129 129 176 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 130 130 131 -=== 2.2.1 Test Requirement === 178 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 179 +|((( 180 +**Size** 132 132 182 +**(bytes)** 183 +)))|**2**|**2**|**2**|**2**|**2**|**1** 184 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 185 +Temperature 133 133 134 -To use NSE01 in your city, make sure meet below requirements: 187 +(Reserve, Ignore now) 188 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 189 +MOD & Digital Interrupt 135 135 136 -* Your local operator has already distributed a NB-IoT Network there. 137 -* The local NB-IoT network used the band that NSE01 supports. 138 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 191 +(Optional) 192 +))) 139 139 194 + 195 + 196 +=== 2.3.3 Battery Info === 197 + 140 140 ((( 141 - Below figure shows our testing structure. Here we have NB-IoT networkcoverage by China Mobile,the bandthey use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red"%)120.24.4.116:5601)(%%)or MQTT((% style="color:red"%)120.24.4.116:1883)(%%)orTCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server199 +Check the battery voltage for LSE01. 142 142 ))) 143 143 202 +((( 203 +Ex1: 0x0B45 = 2885mV 204 +))) 144 144 145 -[[image:1657249419225-449.png]] 206 +((( 207 +Ex2: 0x0B49 = 2889mV 208 +))) 146 146 147 147 148 148 149 -=== 2. 2.2InsertSIM card===212 +=== 2.3.4 Soil Moisture === 150 150 151 -Insert the NB-IoT Card get from your provider. 214 +((( 215 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 216 +))) 152 152 153 -User need to take out the NB-IoT module and insert the SIM card like below: 218 +((( 219 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 220 +))) 154 154 222 +((( 223 + 224 +))) 155 155 156 -[[image:1657249468462-536.png]] 226 +((( 227 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 228 +))) 157 157 158 158 159 159 160 -=== 2. 2.3ConnectUSB –TTLto NSE01 to configureit===232 +=== 2.3.5 Soil Temperature === 161 161 162 162 ((( 235 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 236 +))) 237 + 163 163 ((( 164 - User need to configure NSE01 viaserialport to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.239 +**Example**: 165 165 ))) 241 + 242 +((( 243 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 166 166 ))) 167 167 246 +((( 247 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 248 +))) 168 168 169 -**Connection:** 170 170 171 - (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 172 172 173 - (%style="background-color:yellow"%)USBTTL TXD <~-~-~-~-> UART_RXD252 +=== 2.3.6 Soil Conductivity (EC) === 174 174 175 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 254 +((( 255 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 256 +))) 176 176 258 +((( 259 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 260 +))) 177 177 178 -In the PC, use below serial tool settings: 262 +((( 263 +Generally, the EC value of irrigation water is less than 800uS / cm. 264 +))) 179 179 180 -* Baud: (% style="color:green" %)**9600** 181 -* Data bits:** (% style="color:green" %)8(%%)** 182 -* Stop bits: (% style="color:green" %)**1** 183 -* Parity: (% style="color:green" %)**None** 184 -* Flow Control: (% style="color:green" %)**None** 266 +((( 267 + 268 +))) 185 185 186 186 ((( 187 - Makesure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.271 + 188 188 ))) 189 189 190 - [[image:image-20220708110657-3.png]]274 +=== 2.3.7 MOD === 191 191 192 - (% style="color:red"%)Note: thevalid AT Commandscanbefoundat:(%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]276 +Firmware version at least v2.1 supports changing mode. 193 193 278 +For example, bytes[10]=90 194 194 280 +mod=(bytes[10]>>7)&0x01=1. 195 195 196 -=== 2.2.4 Use CoAP protocol to uplink data === 197 197 198 - (% style="color:red" %)Note: if you don't have CoAP server, you can refer thislinkto set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]283 +**Downlink Command:** 199 199 285 +If payload = 0x0A00, workmode=0 200 200 201 -** Usebelow commands:**287 +If** **payload =** **0x0A01, workmode=1 202 202 203 -* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 204 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 205 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 206 206 207 -For parameter description, please refer to AT command set 208 208 209 - [[image:1657249793983-486.png]]291 +=== 2.3.8 Decode payload in The Things Network === 210 210 293 +While using TTN network, you can add the payload format to decode the payload. 211 211 212 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 213 213 214 -[[image:16572 49831934-534.png]]296 +[[image:1654505570700-128.png]] 215 215 298 +The payload decoder function for TTN is here: 216 216 300 +LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 217 217 218 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 219 219 220 -This feature is supported since firmware version v1.0.1 221 221 304 +== 2.4 Uplink Interval == 222 222 223 -* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 224 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 225 -* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 306 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 226 226 227 -[[image:1657249864775-321.png]] 228 228 229 229 230 - [[image:1657249930215-289.png]]310 +== 2.5 Downlink Payload == 231 231 312 +By default, LSE50 prints the downlink payload to console port. 232 232 314 +[[image:image-20220606165544-8.png]] 233 233 234 -=== 2.2.6 Use MQTT protocol to uplink data === 235 235 236 - This feature is supportedsince firmware version v110317 +**Examples:** 237 237 238 238 239 -* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 240 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 241 -* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 242 -* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 243 -* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 244 -* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 245 -* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 320 +* **Set TDC** 246 246 247 - [[image:1657249978444-674.png]]322 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 248 248 324 +Payload: 01 00 00 1E TDC=30S 249 249 250 - [[image:1657249990869-686.png]]326 +Payload: 01 00 00 3C TDC=60S 251 251 252 252 253 -((( 254 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 255 -))) 329 +* **Reset** 256 256 331 +If payload = 0x04FF, it will reset the LSE01 257 257 258 258 259 - ===2.2.7 Use TCP protocol to uplink data ===334 +* **CFM** 260 260 261 - Thisfeatureissupportedsincefirmwareversionv110336 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 262 262 263 263 264 -* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 265 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 266 266 267 - [[image:1657250217799-140.png]]340 +== 2.6 Show Data in DataCake IoT Server == 268 268 342 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 269 269 270 -[[image:1657250255956-604.png]] 271 271 345 +**Step 1**: Be sure that your device is programmed and properly connected to the network at this time. 272 272 347 +**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 273 273 274 -=== 2.2.8 Change Update Interval === 275 275 276 - User can use below command to changethe (% style="color:green" %)**uplink interval**.350 +[[image:1654505857935-743.png]] 277 277 278 -* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 279 279 280 -((( 281 -(% style="color:red" %)**NOTE:** 282 -))) 353 +[[image:1654505874829-548.png]] 283 283 284 -((( 285 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 286 -))) 355 +Step 3: Create an account or log in Datacake. 287 287 357 +Step 4: Search the LSE01 and add DevEUI. 288 288 289 289 290 - ==2.3Uplink Payload ==360 +[[image:1654505905236-553.png]] 291 291 292 -In this mode, uplink payload includes in total 18 bytes 293 293 294 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 295 -|=(% style="width: 50px;" %)((( 296 -**Size(bytes)** 297 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1** 298 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 363 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 299 299 300 - If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01uplink data.365 +[[image:1654505925508-181.png]] 301 301 302 302 303 -[[image:image-20220708111918-4.png]] 304 304 369 +== 2.7 Frequency Plans == 305 305 306 -The payloadisASCIIstring,representativesameHEX:371 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 307 307 308 -0x72403155615900640c7817075e0a8c02f900 where: 309 309 310 -* Device ID: 0x 724031556159 = 724031556159 311 -* Version: 0x0064=100=1.0.0 374 +=== 2.7.1 EU863-870 (EU868) === 312 312 313 -* BAT: 0x0c78 = 3192 mV = 3.192V 314 -* Singal: 0x17 = 23 315 -* Soil Moisture: 0x075e= 1886 = 18.86 % 316 -* Soil Temperature:0x0a8c =2700=27 °C 317 -* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 318 -* Interrupt: 0x00 = 0 376 +(% style="color:#037691" %)** Uplink:** 319 319 378 +868.1 - SF7BW125 to SF12BW125 320 320 380 +868.3 - SF7BW125 to SF12BW125 and SF7BW250 321 321 322 - == 2.4PayloadExplanation andSensorInterface==382 +868.5 - SF7BW125 to SF12BW125 323 323 384 +867.1 - SF7BW125 to SF12BW125 324 324 325 - === 2.4.1DeviceID===386 +867.3 - SF7BW125 to SF12BW125 326 326 327 - Bydefault,theDevice ID equaltothe last 6 bytes of IMEI.388 +867.5 - SF7BW125 to SF12BW125 328 328 329 - Usercanuse(% style="color:blue"%)**AT+DEUI**(%%) to set Device ID390 +867.7 - SF7BW125 to SF12BW125 330 330 331 - **Example:**392 +867.9 - SF7BW125 to SF12BW125 332 332 333 - AT+DEUI=A84041F15612394 +868.8 - FSK 334 334 335 -The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 336 336 397 +(% style="color:#037691" %)** Downlink:** 337 337 399 +Uplink channels 1-9 (RX1) 338 338 339 - ===2.4.2VersionInfo===401 +869.525 - SF9BW125 (RX2 downlink only) 340 340 341 -Specify the software version: 0x64=100, means firmware version 1.00. 342 342 343 -For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 344 344 405 +=== 2.7.2 US902-928(US915) === 345 345 407 +Used in USA, Canada and South America. Default use CHE=2 346 346 347 - ===2.4.3 BatteryInfo ===409 +(% style="color:#037691" %)**Uplink:** 348 348 349 -((( 350 -Check the battery voltage for LSE01. 351 -))) 411 +903.9 - SF7BW125 to SF10BW125 352 352 353 -((( 354 -Ex1: 0x0B45 = 2885mV 355 -))) 413 +904.1 - SF7BW125 to SF10BW125 356 356 357 -((( 358 -Ex2: 0x0B49 = 2889mV 359 -))) 415 +904.3 - SF7BW125 to SF10BW125 360 360 417 +904.5 - SF7BW125 to SF10BW125 361 361 419 +904.7 - SF7BW125 to SF10BW125 362 362 363 - === 2.4.4SignalStrength===421 +904.9 - SF7BW125 to SF10BW125 364 364 365 - NB-IoTNetworksignalStrength.423 +905.1 - SF7BW125 to SF10BW125 366 366 367 - **Ex1:0x1d=29**425 +905.3 - SF7BW125 to SF10BW125 368 368 369 -(% style="color:blue" %)**0**(%%) -113dBm or less 370 370 371 -(% style="color: blue" %)**1**(%%) -111dBm428 +(% style="color:#037691" %)**Downlink:** 372 372 373 - (% style="color:blue" %)**2...30**(%%)-109dBm...-53dBm430 +923.3 - SF7BW500 to SF12BW500 374 374 375 - (% style="color:blue" %)**31**(%%)-51dBmorgreater432 +923.9 - SF7BW500 to SF12BW500 376 376 377 - (% style="color:blue" %)**99**(%%)Notknownor not detectable434 +924.5 - SF7BW500 to SF12BW500 378 378 436 +925.1 - SF7BW500 to SF12BW500 379 379 438 +925.7 - SF7BW500 to SF12BW500 380 380 381 - ===2.4.5SoilMoisture===440 +926.3 - SF7BW500 to SF12BW500 382 382 383 -((( 384 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 385 -))) 442 +926.9 - SF7BW500 to SF12BW500 386 386 387 -((( 388 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 389 -))) 444 +927.5 - SF7BW500 to SF12BW500 390 390 391 -((( 392 - 393 -))) 446 +923.3 - SF12BW500(RX2 downlink only) 394 394 395 -((( 396 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 397 -))) 398 398 399 399 450 +=== 2.7.3 CN470-510 (CN470) === 400 400 401 - ===2.4.6SoilTemperature ===452 +Used in China, Default use CHE=1 402 402 403 -((( 404 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 405 -))) 454 +(% style="color:#037691" %)**Uplink:** 406 406 407 -((( 408 -**Example**: 409 -))) 456 +486.3 - SF7BW125 to SF12BW125 410 410 411 -((( 412 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 413 -))) 458 +486.5 - SF7BW125 to SF12BW125 414 414 415 -((( 416 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 417 -))) 460 +486.7 - SF7BW125 to SF12BW125 418 418 462 +486.9 - SF7BW125 to SF12BW125 419 419 464 +487.1 - SF7BW125 to SF12BW125 420 420 421 - === 2.4.7oilConductivity(EC) ===466 +487.3 - SF7BW125 to SF12BW125 422 422 423 -((( 424 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 425 -))) 468 +487.5 - SF7BW125 to SF12BW125 426 426 427 -((( 428 -For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 429 -))) 470 +487.7 - SF7BW125 to SF12BW125 430 430 431 -((( 432 -Generally, the EC value of irrigation water is less than 800uS / cm. 433 -))) 434 434 435 -((( 436 - 437 -))) 473 +(% style="color:#037691" %)**Downlink:** 438 438 439 -((( 440 - 441 -))) 475 +506.7 - SF7BW125 to SF12BW125 442 442 443 - ===2.4.8DigitalInterrupt ===477 +506.9 - SF7BW125 to SF12BW125 444 444 445 - Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods.Whenthere is a trigger, the NSE01will send a packettothe server.479 +507.1 - SF7BW125 to SF12BW125 446 446 447 - Thecommandis:481 +507.3 - SF7BW125 to SF12BW125 448 448 449 - (%style="color:blue"%)**AT+INTMOD=3**(%%) ~/~/(more info aboutINMOD please refer [[**AT CommandManual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**483 +507.5 - SF7BW125 to SF12BW125 450 450 485 +507.7 - SF7BW125 to SF12BW125 451 451 452 - The lower four bits of this data field shows if this packet is generated by interrupt or not.Clickhereforthe hardware and softwareset up.487 +507.9 - SF7BW125 to SF12BW125 453 453 489 +508.1 - SF7BW125 to SF12BW125 454 454 455 - Example:491 +505.3 - SF12BW125 (RX2 downlink only) 456 456 457 -0x(00): Normal uplink packet. 458 458 459 -0x(01): Interrupt Uplink Packet. 460 460 495 +=== 2.7.4 AU915-928(AU915) === 461 461 497 +Default use CHE=2 462 462 463 - ===2.4.9+5V Output ===499 +(% style="color:#037691" %)**Uplink:** 464 464 465 - NSE01willenable +5Voutput beforeall sampling and disable the +5v after all sampling.501 +916.8 - SF7BW125 to SF12BW125 466 466 503 +917.0 - SF7BW125 to SF12BW125 467 467 468 - The5Voutput time can be controlledby AT Command.505 +917.2 - SF7BW125 to SF12BW125 469 469 470 - (%style="color:blue"%)**AT+5VT=1000**507 +917.4 - SF7BW125 to SF12BW125 471 471 472 - Means set 5V valid time to have1000ms.Sothe real5Voutput will actually have 1000ms + sampling time forother sensors.509 +917.6 - SF7BW125 to SF12BW125 473 473 511 +917.8 - SF7BW125 to SF12BW125 474 474 513 +918.0 - SF7BW125 to SF12BW125 475 475 476 - ==2.5DownlinkPayload ==515 +918.2 - SF7BW125 to SF12BW125 477 477 478 -By default, NSE01 prints the downlink payload to console port. 479 479 480 - [[image:image-20220708133731-5.png]]518 +(% style="color:#037691" %)**Downlink:** 481 481 520 +923.3 - SF7BW500 to SF12BW500 482 482 483 -((( 484 -(% style="color:blue" %)**Examples:** 485 -))) 522 +923.9 - SF7BW500 to SF12BW500 486 486 487 -((( 488 - 489 -))) 524 +924.5 - SF7BW500 to SF12BW500 490 490 491 -* ((( 492 -(% style="color:blue" %)**Set TDC** 493 -))) 526 +925.1 - SF7BW500 to SF12BW500 494 494 495 -((( 496 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 497 -))) 528 +925.7 - SF7BW500 to SF12BW500 498 498 499 -((( 500 -Payload: 01 00 00 1E TDC=30S 501 -))) 530 +926.3 - SF7BW500 to SF12BW500 502 502 503 -((( 504 -Payload: 01 00 00 3C TDC=60S 505 -))) 532 +926.9 - SF7BW500 to SF12BW500 506 506 507 -((( 508 - 509 -))) 534 +927.5 - SF7BW500 to SF12BW500 510 510 511 -* ((( 512 -(% style="color:blue" %)**Reset** 513 -))) 536 +923.3 - SF12BW500(RX2 downlink only) 514 514 515 -((( 516 -If payload = 0x04FF, it will reset the NSE01 517 -))) 518 518 519 519 520 - *(%style="color:blue"%)**INTMOD**540 +=== 2.7.5 AS920-923 & AS923-925 (AS923) === 521 521 522 - DownlinkPayload:6000003,SetAT+INTMOD=3542 +(% style="color:#037691" %)**Default Uplink channel:** 523 523 544 +923.2 - SF7BW125 to SF10BW125 524 524 546 +923.4 - SF7BW125 to SF10BW125 525 525 526 -== 2.6 LED Indicator == 527 527 528 -((( 529 -The NSE01 has an internal LED which is to show the status of different state. 549 +(% style="color:#037691" %)**Additional Uplink Channel**: 530 530 551 +(OTAA mode, channel added by JoinAccept message) 531 531 532 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 533 -* Then the LED will be on for 1 second means device is boot normally. 534 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 535 -* For each uplink probe, LED will be on for 500ms. 536 -))) 553 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 537 537 555 +922.2 - SF7BW125 to SF10BW125 538 538 557 +922.4 - SF7BW125 to SF10BW125 539 539 559 +922.6 - SF7BW125 to SF10BW125 540 540 541 - ==2.7InstallationinSoil ==561 +922.8 - SF7BW125 to SF10BW125 542 542 543 - __**Measurementthesoilsurface**__563 +923.0 - SF7BW125 to SF10BW125 544 544 545 - Choose the proper measuring position.Avoidthe probe to touch rocks or hard things.Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]565 +922.0 - SF7BW125 to SF10BW125 546 546 547 -[[image:1657259653666-883.png]] 548 548 568 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 549 549 550 -((( 551 - 570 +923.6 - SF7BW125 to SF10BW125 552 552 553 -((( 554 -Dig a hole with diameter > 20CM. 555 -))) 572 +923.8 - SF7BW125 to SF10BW125 556 556 557 -((( 558 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 559 -))) 560 -))) 574 +924.0 - SF7BW125 to SF10BW125 561 561 562 - [[image:1654506665940-119.png]]576 +924.2 - SF7BW125 to SF10BW125 563 563 564 -((( 565 - 566 -))) 578 +924.4 - SF7BW125 to SF10BW125 567 567 580 +924.6 - SF7BW125 to SF10BW125 568 568 569 -== 2.8 Firmware Change Log == 570 570 583 +(% style="color:#037691" %)** Downlink:** 571 571 572 - DownloadURL & FirmwareChangeog585 +Uplink channels 1-8 (RX1) 573 573 574 - [[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]587 +923.2 - SF10BW125 (RX2) 575 575 576 576 577 -Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]] 578 578 591 +=== 2.7.6 KR920-923 (KR920) === 579 579 593 +Default channel: 580 580 581 - ==2.9BatteryAnalysis ==595 +922.1 - SF7BW125 to SF12BW125 582 582 583 - ===2.9.1BatteryType ===597 +922.3 - SF7BW125 to SF12BW125 584 584 599 +922.5 - SF7BW125 to SF12BW125 585 585 586 -The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 587 587 602 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 588 588 589 - Thebatteryisdesignedtolast for several years depends on the actually use environment and update interval.604 +922.1 - SF7BW125 to SF12BW125 590 590 606 +922.3 - SF7BW125 to SF12BW125 591 591 592 - Thebatteryrelateddocuments as below:608 +922.5 - SF7BW125 to SF12BW125 593 593 594 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 595 -* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 596 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 610 +922.7 - SF7BW125 to SF12BW125 597 597 612 +922.9 - SF7BW125 to SF12BW125 613 + 614 +923.1 - SF7BW125 to SF12BW125 615 + 616 +923.3 - SF7BW125 to SF12BW125 617 + 618 + 619 +(% style="color:#037691" %)**Downlink:** 620 + 621 +Uplink channels 1-7(RX1) 622 + 623 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 624 + 625 + 626 + 627 +=== 2.7.7 IN865-867 (IN865) === 628 + 629 +(% style="color:#037691" %)** Uplink:** 630 + 631 +865.0625 - SF7BW125 to SF12BW125 632 + 633 +865.4025 - SF7BW125 to SF12BW125 634 + 635 +865.9850 - SF7BW125 to SF12BW125 636 + 637 + 638 +(% style="color:#037691" %) **Downlink:** 639 + 640 +Uplink channels 1-3 (RX1) 641 + 642 +866.550 - SF10BW125 (RX2) 643 + 644 + 645 + 646 + 647 +== 2.8 LED Indicator == 648 + 649 +The LSE01 has an internal LED which is to show the status of different state. 650 + 651 +* Blink once when device power on. 652 +* Solid ON for 5 seconds once device successful Join the network. 653 +* Blink once when device transmit a packet. 654 + 655 + 656 + 657 +== 2.9 Installation in Soil == 658 + 659 +**Measurement the soil surface** 660 + 661 + 662 +[[image:1654506634463-199.png]] 663 + 598 598 ((( 599 -[[image:image-20220708140453-6.png]] 665 +((( 666 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 600 600 ))) 668 +))) 601 601 602 602 671 +[[image:1654506665940-119.png]] 603 603 604 -=== 2.9.2 Power consumption Analyze === 673 +((( 674 +Dig a hole with diameter > 20CM. 675 +))) 605 605 606 606 ((( 607 - Draginobattery powered productare allrunsinLow Powermode. Wehavean update battery calculator whichbase onthemeasurementof the realdevice. User canuse this calculatorto checkthebatterylife andcalculatethe batterylifeif want to use different transmit interval.678 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 608 608 ))) 609 609 610 610 682 +== 2.10 Firmware Change Log == 683 + 611 611 ((( 612 - Instructiontouseasbelow:685 +**Firmware download link:** 613 613 ))) 614 614 615 615 ((( 616 - (% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:[[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]689 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 617 617 ))) 618 618 692 +((( 693 + 694 +))) 619 619 620 620 ((( 621 - (% style="color:blue" %)**Step2: **(%%)Openithoose697 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 622 622 ))) 623 623 624 - *(((625 - ProductModel700 +((( 701 + 626 626 ))) 627 -* ((( 628 -Uplink Interval 703 + 704 +((( 705 +**V1.0.** 629 629 ))) 630 -* ((( 631 -Working Mode 632 -))) 633 633 634 634 ((( 635 - And theLifeexpectation in difference casewill be shown on the right.709 +Release 636 636 ))) 637 637 638 -[[image:image-20220708141352-7.jpeg]] 639 639 713 +== 2.11 Battery Analysis == 640 640 715 +=== 2.11.1 Battery Type === 641 641 642 -=== 2.9.3 Battery Note === 717 +((( 718 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 719 +))) 643 643 644 644 ((( 645 -The Li-SICObattery is designedfor small current/ longperiod application. It isnotgood to use a high current,short period transmit method. Therecommendedminimum period for use ofthis batteryis5minutes. Ifyou useshorterperiod time to transmitLoRa,thenthe battery life may be decreased.722 +The battery is designed to last for more than 5 years for the LSN50. 646 646 ))) 647 647 725 +((( 726 +((( 727 +The battery-related documents are as below: 728 +))) 729 +))) 648 648 731 +* ((( 732 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 733 +))) 734 +* ((( 735 +[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 736 +))) 737 +* ((( 738 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 739 +))) 649 649 650 - ===2.9.4 Replacethe battery ===741 + [[image:image-20220606171726-9.png]] 651 651 743 + 744 + 745 +=== 2.11.2 Battery Note === 746 + 652 652 ((( 653 -The defaultbatterypackofNSE01includesaER26500 plussupercapacitor. Ifusercan'tfind this pack locally,theycanfindER26500 orquivalence withoutthe SPC1520 capacitor, which will alsowork inmostcase. TheSPCcanlarge thebatterylifeforhigh frequency use(update periodbelow5minutes).748 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 654 654 ))) 655 655 656 656 657 657 658 -= 3. AccessNB-IoTModule =753 +=== 2.11.3 Replace the battery === 659 659 660 660 ((( 661 - Userscan directlyaccesstheAT command setoftheNB-IoTmodule.756 +If Battery is lower than 2.7v, user should replace the battery of LSE01. 662 662 ))) 663 663 664 664 ((( 665 - The AT Commandsetcanrefer theBC35-G NB-IoTModuleATCommand: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]]760 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 666 666 ))) 667 667 668 -[[image:1657261278785-153.png]] 763 +((( 764 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 765 +))) 669 669 670 670 671 671 672 -= 4.769 += 3. Using the AT Commands = 673 673 674 -== 4.1771 +== 3.1 Access AT Commands == 675 675 676 -See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 677 677 774 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 678 678 679 - AT+<CMD>? : Helpon<CMD>776 +[[image:1654501986557-872.png||height="391" width="800"]] 680 680 681 -AT+<CMD> : Run <CMD> 682 682 683 - AT+<CMD>=<value>: Setthevalue779 +Or if you have below board, use below connection: 684 684 685 -AT+<CMD>=? : Get the value 686 686 782 +[[image:1654502005655-729.png||height="503" width="801"]] 687 687 784 + 785 + 786 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 787 + 788 + 789 + [[image:1654502050864-459.png||height="564" width="806"]] 790 + 791 + 792 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]] 793 + 794 + 795 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 796 + 797 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 798 + 799 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 800 + 801 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 802 + 803 + 688 688 (% style="color:#037691" %)**General Commands**(%%) 689 689 690 -AT 806 +(% style="background-color:#dcdcdc" %)**AT**(%%) : Attention 691 691 692 -AT? 808 +(% style="background-color:#dcdcdc" %)**AT?**(%%) : Short Help 693 693 694 -ATZ 810 +(% style="background-color:#dcdcdc" %)**ATZ**(%%) : MCU Reset 695 695 696 -AT+TDC 812 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%) : Application Data Transmission Interval 697 697 698 -AT+CFG : Print all configurations 699 699 700 - AT+CFGMOD: Workingmode selection815 +(% style="color:#037691" %)**Keys, IDs and EUIs management** 701 701 702 -AT+I NTMOD:Setthe trigger interruptmode817 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%) : Application EUI 703 703 704 -AT+ 5VTSetextend the timeof5V power819 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%) : Application Key 705 705 706 -AT+P ROChooseagreement821 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%) : Application Session Key 707 707 708 -AT+ WEIGREGet weightorsetweight to 0823 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%) : Device Address 709 709 710 -AT+ WEIGAPGet or SettheGapValue of weight825 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%) : Device EUI 711 711 712 -AT+ RXDL: Extendthe sendingandreceivingtime827 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%) : Network ID (You can enter this command change only after successful network connection) 713 713 714 -AT+ CNTFACGettcountingparameters829 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%) : Network Session Key Joining and sending date on LoRa network 715 715 716 -AT+ SERVADDR:ServerAddress831 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%) : Confirm Mode 717 717 833 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 718 718 719 -(% style="color:# 037691" %)**COAPManagement**835 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%) : Join LoRa? Network 720 720 721 -AT+ URIsourceparameters837 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%) : LoRa? Network Join Mode 722 722 839 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 723 723 724 -(% style="color:# 037691" %)**UDPManagement**841 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%) : Print Last Received Data in Raw Format 725 725 726 -AT+C FM:Uploadconfirmationmode (onlyvalid forUDP)843 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%) : Print Last Received Data in Binary Format 727 727 845 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 728 728 729 -(% style="color:# 037691" %)**MQTTManagement**847 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%) : Send Hexadecimal Data 730 730 731 -AT+CLIENT : Get or Set MQTT client 732 732 733 - AT+UNAMEGetSetMQTT Username850 +(% style="color:#037691" %)**LoRa Network Management** 734 734 735 -AT+ PWDGetor SetMQTT password852 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%) : Adaptive Rate 736 736 737 -AT+ PUBTOPICGetorSetMQTTpublishtopic854 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%) : LoRa Class(Currently only support class A 738 738 739 -AT+ SUBTOPIC :GetorSetMQTT subscriptiontopic856 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%) : Duty Cycle Setting 740 740 858 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 741 741 742 -(% style="color:# 037691" %)**Information**860 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink 743 743 744 -AT+F DRctoryDataReset862 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%) : Frame Counter Uplink 745 745 746 -AT+ PWORDSerialAccessPassword864 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%) : Join Accept Delay1 747 747 866 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 748 748 868 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 749 749 750 -= 5.FAQ=870 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%) : Receive Delay1 751 751 752 -= =5.1HowtoUpgradeFirmware==872 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%) : Receive Delay2 753 753 874 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 754 754 876 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 877 + 878 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 879 + 880 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 881 + 882 + 883 +(% style="color:#037691" %)**Information** 884 + 885 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 886 + 887 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 888 + 889 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 890 + 891 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 892 + 893 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 894 + 895 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 896 + 897 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 898 + 899 + 900 += 4. FAQ = 901 + 902 +== 4.1 How to change the LoRa Frequency Bands/Region? == 903 + 755 755 ((( 756 -User can upgrade the firmware for 1) bug fix, 2) new feature release. 905 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 906 +When downloading the images, choose the required image file for download. 757 757 ))) 758 758 759 759 ((( 760 - Pleasesee this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]910 + 761 761 ))) 762 762 763 763 ((( 764 - (%style="color:red"%)Notice,NSE01andLSE01share thememotherboard.Theyuse thesameconnection andmethodto update.914 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 765 765 ))) 766 766 917 +((( 918 + 919 +))) 767 767 921 +((( 922 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 923 +))) 768 768 769 -= 6. Trouble Shooting = 925 +((( 926 + 927 +))) 770 770 771 -== 6.1 Connection problem when uploading firmware == 929 +((( 930 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 931 +))) 772 772 933 +[[image:image-20220606154726-3.png]] 773 773 774 -(% class="wikigeneratedid" %) 935 + 936 +When you use the TTN network, the US915 frequency bands use are: 937 + 938 +* 903.9 - SF7BW125 to SF10BW125 939 +* 904.1 - SF7BW125 to SF10BW125 940 +* 904.3 - SF7BW125 to SF10BW125 941 +* 904.5 - SF7BW125 to SF10BW125 942 +* 904.7 - SF7BW125 to SF10BW125 943 +* 904.9 - SF7BW125 to SF10BW125 944 +* 905.1 - SF7BW125 to SF10BW125 945 +* 905.3 - SF7BW125 to SF10BW125 946 +* 904.6 - SF8BW500 947 + 775 775 ((( 776 - (%style="font-size:14px"%)**Pleasesee:**(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color:rgb(255,255,255);font-size:14px;"]]949 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 777 777 ))) 778 778 952 +(% class="box infomessage" %) 953 +((( 954 +**AT+CHE=2** 955 +))) 779 779 957 +(% class="box infomessage" %) 958 +((( 959 +**ATZ** 960 +))) 780 780 781 -== 6.2 AT Command input doesn't work == 962 +((( 963 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 964 +))) 782 782 783 783 ((( 784 - Inthe case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.967 + 785 785 ))) 786 786 970 +((( 971 +The **AU915** band is similar. Below are the AU915 Uplink Channels. 972 +))) 787 787 974 +[[image:image-20220606154825-4.png]] 788 788 789 -= 7. Order Info = 790 790 791 791 792 - PartNumber**:** (% style="color:#4f81bd"%)**NSE01**978 += 5. Trouble Shooting = 793 793 980 +== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 794 794 982 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 983 + 984 + 985 +== 5.2 AT Command input doesn’t work == 986 + 987 +((( 988 +In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 989 +))) 990 + 991 + 992 +== 5.3 Device rejoin in at the second uplink packet == 993 + 994 +(% style="color:#4f81bd" %)**Issue describe as below:** 995 + 996 +[[image:1654500909990-784.png]] 997 + 998 + 999 +(% style="color:#4f81bd" %)**Cause for this issue:** 1000 + 1001 +((( 1002 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 1003 +))) 1004 + 1005 + 1006 +(% style="color:#4f81bd" %)**Solution: ** 1007 + 1008 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 1009 + 1010 +[[image:1654500929571-736.png||height="458" width="832"]] 1011 + 1012 + 1013 += 6. Order Info = 1014 + 1015 + 1016 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 1017 + 1018 + 1019 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 1020 + 1021 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 1022 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 1023 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 1024 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 1025 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1026 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1027 +* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1028 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1029 + 1030 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1031 + 1032 +* (% style="color:red" %)**4**(%%): 4000mAh battery 1033 +* (% style="color:red" %)**8**(%%): 8500mAh battery 1034 + 795 795 (% class="wikigeneratedid" %) 796 796 ((( 797 797 798 798 ))) 799 799 800 -= 8.1040 += 7. Packing Info = 801 801 802 802 ((( 803 803 804 804 805 805 (% style="color:#037691" %)**Package Includes**: 1046 +))) 806 806 807 - 808 -* NSE01 NB-IoT Soil Moisture & EC Sensor x 1 809 -* External antenna x 1 1048 +* ((( 1049 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 810 810 ))) 811 811 812 812 ((( ... ... @@ -813,20 +813,30 @@ 813 813 814 814 815 815 (% style="color:#037691" %)**Dimension and weight**: 1056 +))) 816 816 817 - 818 -* Size: 195 x 125 x 55 mm 819 -* Weight: 420g 1058 +* ((( 1059 +Device Size: cm 820 820 ))) 1061 +* ((( 1062 +Device Weight: g 1063 +))) 1064 +* ((( 1065 +Package Size / pcs : cm 1066 +))) 1067 +* ((( 1068 +Weight / pcs : g 821 821 822 -((( 823 - 824 824 825 - 826 826 827 827 ))) 828 828 829 -= 9.1074 += 8. Support = 830 830 831 831 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 832 832 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1078 + 1079 + 1080 +~)~)~) 1081 +~)~)~) 1082 +~)~)~)
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -102.7 KB - Content