Last modified by Bei Jinggeng on 2024/05/31 09:53

From version 65.5
edited by Xiaoling
on 2022/07/08 15:14
Change comment: There is no comment for this version
To version 32.9
edited by Xiaoling
on 2022/06/07 11:38
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
Content
... ... @@ -3,16 +3,8 @@
3 3  
4 4  
5 5  
6 +**Contents:**
6 6  
7 -
8 -
9 -
10 -
11 -
12 -
13 -
14 -**Table of Contents:**
15 -
16 16  {{toc/}}
17 17  
18 18  
... ... @@ -20,793 +20,1018 @@
20 20  
21 21  
22 22  
23 -= 1.  Introduction =
15 += 1. Introduction =
24 24  
25 -== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
17 +== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
26 26  
27 27  (((
28 -
20 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
21 +)))
29 29  
30 -Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
23 +(((
24 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
25 +)))
31 31  
32 -It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
27 +(((
28 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 +)))
33 33  
34 -The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
31 +(((
32 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
33 +)))
35 35  
36 -NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
37 -
38 -
35 +(((
36 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
39 39  )))
40 40  
39 +
41 41  [[image:1654503236291-817.png]]
42 42  
43 43  
44 -[[image:1657245163077-232.png]]
43 +[[image:1654503265560-120.png]]
45 45  
46 46  
47 47  
48 -== 1.2 ​ Features ==
47 +== 1.2 ​Features ==
49 49  
50 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
49 +* LoRaWAN 1.0.3 Class A
50 +* Ultra low power consumption
51 51  * Monitor Soil Moisture
52 52  * Monitor Soil Temperature
53 53  * Monitor Soil Conductivity
54 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
54 54  * AT Commands to change parameters
55 55  * Uplink on periodically
56 56  * Downlink to change configure
57 57  * IP66 Waterproof Enclosure
58 -* Ultra-Low Power consumption
59 -* AT Commands to change parameters
60 -* Micro SIM card slot for NB-IoT SIM
61 -* 8500mAh Battery for long term use
59 +* 4000mAh or 8500mAh Battery for long term use
62 62  
61 +== 1.3 Specification ==
63 63  
63 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
64 64  
65 -== 1.3  Specification ==
65 +[[image:image-20220606162220-5.png]]
66 66  
67 67  
68 -(% style="color:#037691" %)**Common DC Characteristics:**
69 69  
70 -* Supply Voltage: 2.1v ~~ 3.6v
71 -* Operating Temperature: -40 ~~ 85°C
69 +== ​1.4 Applications ==
72 72  
71 +* Smart Agriculture
73 73  
74 -(% style="color:#037691" %)**NB-IoT Spec:**
73 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
74 +​
75 75  
76 -* - B1 @H-FDD: 2100MHz
77 -* - B3 @H-FDD: 1800MHz
78 -* - B8 @H-FDD: 900MHz
79 -* - B5 @H-FDD: 850MHz
80 -* - B20 @H-FDD: 800MHz
81 -* - B28 @H-FDD: 700MHz
76 +== 1.5 Firmware Change log ==
82 82  
83 83  
84 -Probe(% style="color:#037691" %)** Specification:**
79 +**LSE01 v1.0 :**  Release
85 85  
86 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
87 87  
88 -[[image:image-20220708101224-1.png]]
89 89  
83 += 2. Configure LSE01 to connect to LoRaWAN network =
90 90  
85 +== 2.1 How it works ==
91 91  
92 -== ​1.4  Applications ==
87 +(((
88 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
89 +)))
93 93  
94 -* Smart Agriculture
91 +(((
92 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
93 +)))
95 95  
96 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
97 -​
98 98  
99 -== 1.5  Pin Definitions ==
100 100  
97 +== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
101 101  
102 -[[image:1657246476176-652.png]]
99 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
103 103  
104 104  
102 +[[image:1654503992078-669.png]]
105 105  
106 -= 2.  Use NSE01 to communicate with IoT Server =
107 107  
108 -== 2.1  How it works ==
105 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
109 109  
110 110  
108 +**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
109 +
110 +Each LSE01 is shipped with a sticker with the default device EUI as below:
111 +
112 +[[image:image-20220606163732-6.jpeg]]
113 +
114 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
115 +
116 +**Add APP EUI in the application**
117 +
118 +
119 +[[image:1654504596150-405.png]]
120 +
121 +
122 +
123 +**Add APP KEY and DEV EUI**
124 +
125 +[[image:1654504683289-357.png]]
126 +
127 +
128 +
129 +**Step 2**: Power on LSE01
130 +
131 +
132 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
133 +
134 +[[image:image-20220606163915-7.png]]
135 +
136 +
137 +**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
138 +
139 +[[image:1654504778294-788.png]]
140 +
141 +
142 +
143 +== 2.3 Uplink Payload ==
144 +
145 +(% class="wikigeneratedid" %)
146 +=== ===
147 +
148 +=== 2.3.1 MOD~=0(Default Mode) ===
149 +
150 +LSE01 will uplink payload via LoRaWAN with below payload format: 
151 +
111 111  (((
112 -The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
153 +Uplink payload includes in total 11 bytes.
113 113  )))
114 114  
156 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
157 +|(((
158 +**Size**
115 115  
116 -(((
117 -The diagram below shows the working flow in default firmware of NSE01:
160 +**(bytes)**
161 +)))|**2**|**2**|**2**|**2**|**2**|**1**
162 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
163 +Temperature
164 +
165 +(Reserve, Ignore now)
166 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
167 +MOD & Digital Interrupt
168 +
169 +(Optional)
118 118  )))
119 119  
120 -[[image:image-20220708101605-2.png]]
121 121  
122 -(((
123 -
173 +
174 +=== 2.3.2 MOD~=1(Original value) ===
175 +
176 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
177 +
178 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
179 +|(((
180 +**Size**
181 +
182 +**(bytes)**
183 +)))|**2**|**2**|**2**|**2**|**2**|**1**
184 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
185 +Temperature
186 +
187 +(Reserve, Ignore now)
188 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
189 +MOD & Digital Interrupt
190 +
191 +(Optional)
124 124  )))
125 125  
126 126  
127 127  
128 -== 2.2 Configure the NSE01 ==
196 +=== 2.3.3 Battery Info ===
129 129  
198 +Check the battery voltage for LSE01.
130 130  
131 -=== 2.2.1 Test Requirement ===
200 +Ex1: 0x0B45 = 2885mV
132 132  
202 +Ex2: 0x0B49 = 2889mV
133 133  
134 -To use NSE01 in your city, make sure meet below requirements:
135 135  
136 -* Your local operator has already distributed a NB-IoT Network there.
137 -* The local NB-IoT network used the band that NSE01 supports.
138 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
139 139  
140 -(((
141 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
142 -)))
206 +=== 2.3.4 Soil Moisture ===
143 143  
208 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
144 144  
145 -[[image:1657249419225-449.png]]
210 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
146 146  
147 147  
213 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
148 148  
149 -=== 2.2.2 Insert SIM card ===
150 150  
151 -Insert the NB-IoT Card get from your provider.
152 152  
153 -User need to take out the NB-IoT module and insert the SIM card like below:
217 +=== 2.3.5 Soil Temperature ===
154 154  
219 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
155 155  
156 -[[image:1657249468462-536.png]]
221 +**Example**:
157 157  
223 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
158 158  
225 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
159 159  
160 -=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
161 161  
228 +
229 +=== 2.3.6 Soil Conductivity (EC) ===
230 +
162 162  (((
232 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
233 +)))
234 +
163 163  (((
164 -User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
236 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
165 165  )))
238 +
239 +(((
240 +Generally, the EC value of irrigation water is less than 800uS / cm.
166 166  )))
167 167  
243 +(((
244 +
245 +)))
168 168  
169 -**Connection:**
247 +(((
248 +
249 +)))
170 170  
171 - (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
251 +=== 2.3.7 MOD ===
172 172  
173 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
253 +Firmware version at least v2.1 supports changing mode.
174 174  
175 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
255 +For example, bytes[10]=90
176 176  
257 +mod=(bytes[10]>>7)&0x01=1.
177 177  
178 -In the PC, use below serial tool settings:
179 179  
180 -* Baud:  (% style="color:green" %)**9600**
181 -* Data bits:** (% style="color:green" %)8(%%)**
182 -* Stop bits: (% style="color:green" %)**1**
183 -* Parity:  (% style="color:green" %)**None**
184 -* Flow Control: (% style="color:green" %)**None**
260 +**Downlink Command:**
185 185  
186 -(((
187 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
188 -)))
262 +If payload = 0x0A00, workmode=0
189 189  
190 -[[image:image-20220708110657-3.png]]
264 +If** **payload =** **0x0A01, workmode=1
191 191  
192 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
193 193  
194 194  
268 +=== 2.3.8 ​Decode payload in The Things Network ===
195 195  
196 -=== 2.2.4 Use CoAP protocol to uplink data ===
270 +While using TTN network, you can add the payload format to decode the payload.
197 197  
198 -(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
199 199  
273 +[[image:1654505570700-128.png]]
200 200  
201 -**Use below commands:**
275 +The payload decoder function for TTN is here:
202 202  
203 -* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
204 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
205 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
277 +LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
206 206  
207 -For parameter description, please refer to AT command set
208 208  
209 -[[image:1657249793983-486.png]]
210 210  
281 +== 2.4 Uplink Interval ==
211 211  
212 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
283 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
213 213  
214 -[[image:1657249831934-534.png]]
215 215  
216 216  
287 +== 2.5 Downlink Payload ==
217 217  
218 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
289 +By default, LSE50 prints the downlink payload to console port.
219 219  
220 -This feature is supported since firmware version v1.0.1
291 +[[image:image-20220606165544-8.png]]
221 221  
222 222  
223 -* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
224 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
225 -* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
294 +**Examples:**
226 226  
227 -[[image:1657249864775-321.png]]
228 228  
297 +* **Set TDC**
229 229  
230 -[[image:1657249930215-289.png]]
299 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
231 231  
301 +Payload:    01 00 00 1E    TDC=30S
232 232  
303 +Payload:    01 00 00 3C    TDC=60S
233 233  
234 -=== 2.2.6 Use MQTT protocol to uplink data ===
235 235  
236 -This feature is supported since firmware version v110
306 +* **Reset**
237 237  
308 +If payload = 0x04FF, it will reset the LSE01
238 238  
239 -* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
240 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
241 -* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
242 -* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
243 -* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
244 -* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
245 -* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
246 246  
247 -[[image:1657249978444-674.png]]
311 +* **CFM**
248 248  
313 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
249 249  
250 -[[image:1657249990869-686.png]]
251 251  
252 252  
253 -(((
254 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
255 -)))
317 +== 2.6 ​Show Data in DataCake IoT Server ==
256 256  
319 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
257 257  
258 258  
259 -=== 2.2.7 Use TCP protocol to uplink data ===
322 +**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
260 260  
261 -This feature is supported since firmware version v110
324 +**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
262 262  
263 263  
264 -* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
265 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
327 +[[image:1654505857935-743.png]]
266 266  
267 -[[image:1657250217799-140.png]]
268 268  
330 +[[image:1654505874829-548.png]]
269 269  
270 -[[image:1657250255956-604.png]]
332 +Step 3: Create an account or log in Datacake.
271 271  
334 +Step 4: Search the LSE01 and add DevEUI.
272 272  
273 273  
274 -=== 2.2.8 Change Update Interval ===
337 +[[image:1654505905236-553.png]]
275 275  
276 -User can use below command to change the (% style="color:green" %)**uplink interval**.
277 277  
278 -* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
340 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
279 279  
280 -(((
281 -(% style="color:red" %)**NOTE:**
282 -)))
342 +[[image:1654505925508-181.png]]
283 283  
284 -(((
285 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
286 -)))
287 287  
288 288  
346 +== 2.7 Frequency Plans ==
289 289  
290 -== 2.3  Uplink Payload ==
348 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
291 291  
292 -In this mode, uplink payload includes in total 18 bytes
293 293  
294 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
295 -|=(% style="width: 50px;" %)(((
296 -**Size(bytes)**
297 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
298 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
351 +=== 2.7.1 EU863-870 (EU868) ===
299 299  
300 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
353 +(% style="color:#037691" %)** Uplink:**
301 301  
355 +868.1 - SF7BW125 to SF12BW125
302 302  
303 -[[image:image-20220708111918-4.png]]
357 +868.3 - SF7BW125 to SF12BW125 and SF7BW250
304 304  
359 +868.5 - SF7BW125 to SF12BW125
305 305  
306 -The payload is ASCII string, representative same HEX:
361 +867.1 - SF7BW125 to SF12BW125
307 307  
308 -0x72403155615900640c7817075e0a8c02f900 where:
363 +867.3 - SF7BW125 to SF12BW125
309 309  
310 -* Device ID: 0x 724031556159 = 724031556159
311 -* Version: 0x0064=100=1.0.0
365 +867.5 - SF7BW125 to SF12BW125
312 312  
313 -* BAT: 0x0c78 = 3192 mV = 3.192V
314 -* Singal: 0x17 = 23
315 -* Soil Moisture: 0x075e= 1886 = 18.86  %
316 -* Soil Temperature:0x0a8c =2700=27 °C
317 -* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
318 -* Interrupt: 0x00 = 0
367 +867.7 - SF7BW125 to SF12BW125
319 319  
369 +867.9 - SF7BW125 to SF12BW125
320 320  
371 +868.8 - FSK
321 321  
322 -== 2.4  Payload Explanation and Sensor Interface ==
323 323  
374 +(% style="color:#037691" %)** Downlink:**
324 324  
325 -=== 2.4.1  Device ID ===
376 +Uplink channels 1-9 (RX1)
326 326  
327 -By default, the Device ID equal to the last 6 bytes of IMEI.
378 +869.525 - SF9BW125 (RX2 downlink only)
328 328  
329 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
330 330  
331 -**Example:**
332 332  
333 -AT+DEUI=A84041F15612
382 +=== 2.7.2 US902-928(US915) ===
334 334  
335 -The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
384 +Used in USA, Canada and South America. Default use CHE=2
336 336  
386 +(% style="color:#037691" %)**Uplink:**
337 337  
388 +903.9 - SF7BW125 to SF10BW125
338 338  
339 -=== 2.4.2  Version Info ===
390 +904.1 - SF7BW125 to SF10BW125
340 340  
341 -Specify the software version: 0x64=100, means firmware version 1.00.
392 +904.3 - SF7BW125 to SF10BW125
342 342  
343 -For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
394 +904.5 - SF7BW125 to SF10BW125
344 344  
396 +904.7 - SF7BW125 to SF10BW125
345 345  
398 +904.9 - SF7BW125 to SF10BW125
346 346  
347 -=== 2.4.3  Battery Info ===
400 +905.1 - SF7BW125 to SF10BW125
348 348  
349 -(((
350 -Check the battery voltage for LSE01.
351 -)))
402 +905.3 - SF7BW125 to SF10BW125
352 352  
353 -(((
354 -Ex1: 0x0B45 = 2885mV
355 -)))
356 356  
357 -(((
358 -Ex2: 0x0B49 = 2889mV
359 -)))
405 +(% style="color:#037691" %)**Downlink:**
360 360  
407 +923.3 - SF7BW500 to SF12BW500
361 361  
409 +923.9 - SF7BW500 to SF12BW500
362 362  
363 -=== 2.4. Signal Strength ===
411 +924.5 - SF7BW500 to SF12BW500
364 364  
365 -NB-IoT Network signal Strength.
413 +925.1 - SF7BW500 to SF12BW500
366 366  
367 -**Ex1: 0x1d = 29**
415 +925.7 - SF7BW500 to SF12BW500
368 368  
369 -(% style="color:blue" %)**0**(%%)  -113dBm or less
417 +926.3 - SF7BW500 to SF12BW500
370 370  
371 -(% style="color:blue" %)**1**(%%)  -111dBm
419 +926.9 - SF7BW500 to SF12BW500
372 372  
373 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
421 +927.5 - SF7BW500 to SF12BW500
374 374  
375 -(% style="color:blue" %)**31**  (%%) -51dBm or greater
423 +923.3 - SF12BW500(RX2 downlink only)
376 376  
377 -(% style="color:blue" %)**99**   (%%) Not known or not detectable
378 378  
379 379  
427 +=== 2.7.3 CN470-510 (CN470) ===
380 380  
381 -=== 2.4.5  Soil Moisture ===
429 +Used in China, Default use CHE=1
382 382  
383 -(((
384 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
385 -)))
431 +(% style="color:#037691" %)**Uplink:**
386 386  
387 -(((
388 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
389 -)))
433 +486.3 - SF7BW125 to SF12BW125
390 390  
391 -(((
392 -
393 -)))
435 +486.5 - SF7BW125 to SF12BW125
394 394  
395 -(((
396 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
397 -)))
437 +486.7 - SF7BW125 to SF12BW125
398 398  
439 +486.9 - SF7BW125 to SF12BW125
399 399  
441 +487.1 - SF7BW125 to SF12BW125
400 400  
401 -=== 2.4. Soil Temperature ===
443 +487.3 - SF7BW125 to SF12BW125
402 402  
403 -(((
404 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
405 -)))
445 +487.5 - SF7BW125 to SF12BW125
406 406  
407 -(((
408 -**Example**:
409 -)))
447 +487.7 - SF7BW125 to SF12BW125
410 410  
411 -(((
412 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
413 -)))
414 414  
415 -(((
416 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
417 -)))
450 +(% style="color:#037691" %)**Downlink:**
418 418  
452 +506.7 - SF7BW125 to SF12BW125
419 419  
454 +506.9 - SF7BW125 to SF12BW125
420 420  
421 -=== 2.4.7  Soil Conductivity (EC) ===
456 +507.1 - SF7BW125 to SF12BW125
422 422  
423 -(((
424 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
425 -)))
458 +507.3 - SF7BW125 to SF12BW125
426 426  
427 -(((
428 -For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
429 -)))
460 +507.5 - SF7BW125 to SF12BW125
430 430  
431 -(((
432 -Generally, the EC value of irrigation water is less than 800uS / cm.
433 -)))
462 +507.7 - SF7BW125 to SF12BW125
434 434  
435 -(((
436 -
437 -)))
464 +507.9 - SF7BW125 to SF12BW125
438 438  
439 -(((
440 -
441 -)))
466 +508.1 - SF7BW125 to SF12BW125
442 442  
443 -=== 2.4.8  Digital Interrupt ===
468 +505.3 - SF12BW125 (RX2 downlink only)
444 444  
445 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
446 446  
447 -The command is:
448 448  
449 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
472 +=== 2.7.4 AU915-928(AU915) ===
450 450  
474 +Default use CHE=2
451 451  
452 -The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up.
476 +(% style="color:#037691" %)**Uplink:**
453 453  
478 +916.8 - SF7BW125 to SF12BW125
454 454  
455 -Example:
480 +917.0 - SF7BW125 to SF12BW125
456 456  
457 -0x(00): Normal uplink packet.
482 +917.2 - SF7BW125 to SF12BW125
458 458  
459 -0x(01): Interrupt Uplink Packet.
484 +917.4 - SF7BW125 to SF12BW125
460 460  
486 +917.6 - SF7BW125 to SF12BW125
461 461  
488 +917.8 - SF7BW125 to SF12BW125
462 462  
463 -=== 2.4.9  ​+5V Output ===
490 +918.0 - SF7BW125 to SF12BW125
464 464  
465 -NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
492 +918.2 - SF7BW125 to SF12BW125
466 466  
467 467  
468 -The 5V output time can be controlled by AT Command.
495 +(% style="color:#037691" %)**Downlink:**
469 469  
470 -(% style="color:blue" %)**AT+5VT=1000**
497 +923.3 - SF7BW500 to SF12BW500
471 471  
472 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
499 +923.9 - SF7BW500 to SF12BW500
473 473  
501 +924.5 - SF7BW500 to SF12BW500
474 474  
503 +925.1 - SF7BW500 to SF12BW500
475 475  
476 -== 2.5  Downlink Payload ==
505 +925.7 - SF7BW500 to SF12BW500
477 477  
478 -By default, NSE01 prints the downlink payload to console port.
507 +926.3 - SF7BW500 to SF12BW500
479 479  
480 -[[image:image-20220708133731-5.png]]
509 +926.9 - SF7BW500 to SF12BW500
481 481  
511 +927.5 - SF7BW500 to SF12BW500
482 482  
483 -(((
484 -(% style="color:blue" %)**Examples:**
485 -)))
513 +923.3 - SF12BW500(RX2 downlink only)
486 486  
487 -(((
488 -
489 -)))
490 490  
491 -* (((
492 -(% style="color:blue" %)**Set TDC**
493 -)))
494 494  
495 -(((
496 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
497 -)))
517 +=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
498 498  
499 -(((
500 -Payload:    01 00 00 1E    TDC=30S
501 -)))
519 +(% style="color:#037691" %)**Default Uplink channel:**
502 502  
503 -(((
504 -Payload:    01 00 00 3C    TDC=60S
505 -)))
521 +923.2 - SF7BW125 to SF10BW125
506 506  
507 -(((
508 -
509 -)))
523 +923.4 - SF7BW125 to SF10BW125
510 510  
511 -* (((
512 -(% style="color:blue" %)**Reset**
513 -)))
514 514  
515 -(((
516 -If payload = 0x04FF, it will reset the NSE01
517 -)))
526 +(% style="color:#037691" %)**Additional Uplink Channel**:
518 518  
528 +(OTAA mode, channel added by JoinAccept message)
519 519  
520 -* (% style="color:blue" %)**INTMOD**
530 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
521 521  
522 -Downlink Payload: 06000003, Set AT+INTMOD=3
532 +922.2 - SF7BW125 to SF10BW125
523 523  
534 +922.4 - SF7BW125 to SF10BW125
524 524  
536 +922.6 - SF7BW125 to SF10BW125
525 525  
526 -== 2. ​LED Indicator ==
538 +922.8 - SF7BW125 to SF10BW125
527 527  
528 -(((
529 -The NSE01 has an internal LED which is to show the status of different state.
540 +923.0 - SF7BW125 to SF10BW125
530 530  
542 +922.0 - SF7BW125 to SF10BW125
531 531  
532 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
533 -* Then the LED will be on for 1 second means device is boot normally.
534 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
535 -* For each uplink probe, LED will be on for 500ms.
536 -)))
537 537  
545 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
538 538  
547 +923.6 - SF7BW125 to SF10BW125
539 539  
549 +923.8 - SF7BW125 to SF10BW125
540 540  
541 -== 2.7  Installation in Soil ==
551 +924.0 - SF7BW125 to SF10BW125
542 542  
543 -__**Measurement the soil surface**__
553 +924.2 - SF7BW125 to SF10BW125
544 544  
545 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
555 +924.4 - SF7BW125 to SF10BW125
546 546  
547 -[[image:1657259653666-883.png]]
557 +924.6 - SF7BW125 to SF10BW125
548 548  
549 549  
550 -(((
551 -
560 +(% style="color:#037691" %)** Downlink:**
552 552  
553 -(((
554 -Dig a hole with diameter > 20CM.
555 -)))
562 +Uplink channels 1-8 (RX1)
556 556  
557 -(((
558 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
559 -)))
560 -)))
564 +923.2 - SF10BW125 (RX2)
561 561  
562 -[[image:1654506665940-119.png]]
563 563  
564 -(((
565 -
566 -)))
567 567  
568 +=== 2.7.6 KR920-923 (KR920) ===
568 568  
569 -== 2.8  ​Firmware Change Log ==
570 +Default channel:
570 570  
572 +922.1 - SF7BW125 to SF12BW125
571 571  
572 -Download URL & Firmware Change log
574 +922.3 - SF7BW125 to SF12BW125
573 573  
574 -[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
576 +922.5 - SF7BW125 to SF12BW125
575 575  
576 576  
577 -Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]]
579 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
578 578  
581 +922.1 - SF7BW125 to SF12BW125
579 579  
583 +922.3 - SF7BW125 to SF12BW125
580 580  
581 -== 2. Battery Analysis ==
585 +922.5 - SF7BW125 to SF12BW125
582 582  
583 -=== 2.9.1  Battery Type ===
587 +922.7 - SF7BW125 to SF12BW125
584 584  
589 +922.9 - SF7BW125 to SF12BW125
585 585  
586 -The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
591 +923.1 - SF7BW125 to SF12BW125
587 587  
593 +923.3 - SF7BW125 to SF12BW125
588 588  
589 -The battery is designed to last for several years depends on the actually use environment and update interval. 
590 590  
596 +(% style="color:#037691" %)**Downlink:**
591 591  
592 -The battery related documents as below:
598 +Uplink channels 1-7(RX1)
593 593  
594 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
595 -* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
596 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
600 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
597 597  
602 +
603 +
604 +=== 2.7.7 IN865-867 (IN865) ===
605 +
606 +(% style="color:#037691" %)** Uplink:**
607 +
608 +865.0625 - SF7BW125 to SF12BW125
609 +
610 +865.4025 - SF7BW125 to SF12BW125
611 +
612 +865.9850 - SF7BW125 to SF12BW125
613 +
614 +
615 +(% style="color:#037691" %) **Downlink:**
616 +
617 +Uplink channels 1-3 (RX1)
618 +
619 +866.550 - SF10BW125 (RX2)
620 +
621 +
622 +
623 +
624 +== 2.8 LED Indicator ==
625 +
626 +The LSE01 has an internal LED which is to show the status of different state.
627 +
628 +* Blink once when device power on.
629 +* Solid ON for 5 seconds once device successful Join the network.
630 +* Blink once when device transmit a packet.
631 +
632 +
633 +
634 +== 2.9 Installation in Soil ==
635 +
636 +**Measurement the soil surface**
637 +
638 +
639 +[[image:1654506634463-199.png]] ​
640 +
598 598  (((
599 -[[image:image-20220708140453-6.png]]
642 +(((
643 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
600 600  )))
645 +)))
601 601  
602 602  
648 +[[image:1654506665940-119.png]]
603 603  
604 -=== 2.9.2  Power consumption Analyze ===
650 +(((
651 +Dig a hole with diameter > 20CM.
652 +)))
605 605  
606 606  (((
607 -Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
655 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
608 608  )))
609 609  
610 610  
659 +== 2.10 ​Firmware Change Log ==
660 +
611 611  (((
612 -Instruction to use as below:
662 +**Firmware download link:**
613 613  )))
614 614  
615 615  (((
616 -(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
666 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
617 617  )))
618 618  
669 +(((
670 +
671 +)))
619 619  
620 620  (((
621 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose
674 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
622 622  )))
623 623  
624 -* (((
625 -Product Model
677 +(((
678 +
626 626  )))
627 -* (((
628 -Uplink Interval
680 +
681 +(((
682 +**V1.0.**
629 629  )))
630 -* (((
631 -Working Mode
632 -)))
633 633  
634 634  (((
635 -And the Life expectation in difference case will be shown on the right.
686 +Release
636 636  )))
637 637  
638 -[[image:image-20220708141352-7.jpeg]]
639 639  
690 +== 2.11 ​Battery Analysis ==
640 640  
692 +=== 2.11.1 ​Battery Type ===
641 641  
642 -=== 2.9.3  ​Battery Note ===
694 +(((
695 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
696 +)))
643 643  
644 644  (((
645 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
699 +The battery is designed to last for more than 5 years for the LSN50.
646 646  )))
647 647  
702 +(((
703 +(((
704 +The battery-related documents are as below:
705 +)))
706 +)))
648 648  
708 +* (((
709 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
710 +)))
711 +* (((
712 +[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
713 +)))
714 +* (((
715 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
716 +)))
649 649  
650 -=== 2.9.4  Replace the battery ===
718 + [[image:image-20220606171726-9.png]]
651 651  
720 +
721 +
722 +=== 2.11.2 ​Battery Note ===
723 +
652 652  (((
653 -The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
725 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
654 654  )))
655 655  
656 656  
657 657  
658 -= 3. ​ Access NB-IoT Module =
730 +=== 2.11.3 Replace the battery ===
659 659  
660 660  (((
661 -Users can directly access the AT command set of the NB-IoT module.
733 +If Battery is lower than 2.7v, user should replace the battery of LSE01.
662 662  )))
663 663  
664 664  (((
665 -The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
737 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
666 666  )))
667 667  
668 -[[image:1657261278785-153.png]]
740 +(((
741 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
742 +)))
669 669  
670 670  
671 671  
672 -= 4.  Using the AT Commands =
746 += 3. Using the AT Commands =
673 673  
674 -== 4.1  Access AT Commands ==
748 +== 3.1 Access AT Commands ==
675 675  
676 -See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
677 677  
751 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
678 678  
679 -AT+<CMD>?  : Help on <CMD>
753 +[[image:1654501986557-872.png||height="391" width="800"]]
680 680  
681 -AT+<CMD>         : Run <CMD>
682 682  
683 -AT+<CMD>=<value> : Set the value
756 +Or if you have below board, use below connection:
684 684  
685 -AT+<CMD>=?  : Get the value
686 686  
759 +[[image:1654502005655-729.png||height="503" width="801"]]
687 687  
761 +
762 +
763 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
764 +
765 +
766 + [[image:1654502050864-459.png||height="564" width="806"]]
767 +
768 +
769 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
770 +
771 +
772 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
773 +
774 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
775 +
776 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
777 +
778 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
779 +
780 +
688 688  (% style="color:#037691" %)**General Commands**(%%)      
689 689  
690 -AT  : Attention       
783 +(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
691 691  
692 -AT?  : Short Help     
785 +(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
693 693  
694 -ATZ  : MCU Reset    
787 +(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
695 695  
696 -AT+TDC  : Application Data Transmission Interval
789 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
697 697  
698 -AT+CFG  : Print all configurations
699 699  
700 -AT+CFGMOD           : Working mode selection
792 +(% style="color:#037691" %)**Keys, IDs and EUIs management**
701 701  
702 -AT+INTMOD            : Set the trigger interrupt mode
794 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
703 703  
704 -AT+5VT  : Set extend the time of 5V power  
796 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
705 705  
706 -AT+PRO  : Choose agreement
798 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
707 707  
708 -AT+WEIGRE  : Get weight or set weight to 0
800 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
709 709  
710 -AT+WEIGAP  : Get or Set the GapValue of weight
802 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
711 711  
712 -AT+RXDL  : Extend the sending and receiving time
804 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
713 713  
714 -AT+CNTFAC  : Get or set counting parameters
806 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
715 715  
716 -AT+SERVADDR  : Server Address
808 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
717 717  
810 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
718 718  
719 -(% style="color:#037691" %)**COAP Management**      
812 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
720 720  
721 -AT+URI            : Resource parameters
814 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
722 722  
816 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
723 723  
724 -(% style="color:#037691" %)**UDP Management**
818 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
725 725  
726 -AT+CFM          : Upload confirmation mode (only valid for UDP)
820 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
727 727  
822 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
728 728  
729 -(% style="color:#037691" %)**MQTT Management**
824 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
730 730  
731 -AT+CLIENT               : Get or Set MQTT client
732 732  
733 -AT+UNAME  : Get or Set MQTT Username
827 +(% style="color:#037691" %)**LoRa Network Management**
734 734  
735 -AT+PWD                  : Get or Set MQTT password
829 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
736 736  
737 -AT+PUBTOPI : Get or Set MQTT publish topic
831 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
738 738  
739 -AT+SUBTOPIC  : Get or Set MQTT subscription topic
833 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
740 740  
835 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
741 741  
742 -(% style="color:#037691" %)**Information**          
837 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
743 743  
744 -AT+FDR  : Factory Data Reset
839 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
745 745  
746 -AT+PWOR : Serial Access Password
841 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
747 747  
843 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
748 748  
845 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
749 749  
750 -= ​5.  FAQ =
847 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
751 751  
752 -== 5.1 How to Upgrade Firmware ==
849 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
753 753  
851 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
754 754  
853 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
854 +
855 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
856 +
857 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
858 +
859 +
860 +(% style="color:#037691" %)**Information** 
861 +
862 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
863 +
864 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
865 +
866 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
867 +
868 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
869 +
870 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
871 +
872 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
873 +
874 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
875 +
876 +
877 += ​4. FAQ =
878 +
879 +== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
880 +
755 755  (((
756 -User can upgrade the firmware for 1) bug fix, 2) new feature release.
882 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
883 +When downloading the images, choose the required image file for download. ​
757 757  )))
758 758  
759 759  (((
760 -Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
887 +
761 761  )))
762 762  
763 763  (((
764 -(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
891 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
765 765  )))
766 766  
894 +(((
895 +
896 +)))
767 767  
898 +(((
899 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
900 +)))
768 768  
769 -= 6.  Trouble Shooting =
902 +(((
903 +
904 +)))
770 770  
771 -== 6.1  ​Connection problem when uploading firmware ==
906 +(((
907 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
908 +)))
772 772  
910 +[[image:image-20220606154726-3.png]]
773 773  
774 -(% class="wikigeneratedid" %)
912 +
913 +When you use the TTN network, the US915 frequency bands use are:
914 +
915 +* 903.9 - SF7BW125 to SF10BW125
916 +* 904.1 - SF7BW125 to SF10BW125
917 +* 904.3 - SF7BW125 to SF10BW125
918 +* 904.5 - SF7BW125 to SF10BW125
919 +* 904.7 - SF7BW125 to SF10BW125
920 +* 904.9 - SF7BW125 to SF10BW125
921 +* 905.1 - SF7BW125 to SF10BW125
922 +* 905.3 - SF7BW125 to SF10BW125
923 +* 904.6 - SF8BW500
924 +
775 775  (((
776 -(% style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]]
926 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
777 777  )))
778 778  
929 +(% class="box infomessage" %)
930 +(((
931 +**AT+CHE=2**
932 +)))
779 779  
934 +(% class="box infomessage" %)
935 +(((
936 +**ATZ**
937 +)))
780 780  
781 -== 6.2  AT Command input doesn't work ==
939 +(((
940 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
941 +)))
782 782  
783 783  (((
784 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
944 +
785 785  )))
786 786  
947 +(((
948 +The **AU915** band is similar. Below are the AU915 Uplink Channels.
949 +)))
787 787  
951 +[[image:image-20220606154825-4.png]]
788 788  
789 -= 7. ​ Order Info =
790 790  
791 791  
792 -Part Number**:** (% style="color:#4f81bd" %)**NSE01**
955 += 5. Trouble Shooting =
793 793  
957 +== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
794 794  
959 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
960 +
961 +
962 +== 5.2 AT Command input doesn’t work ==
963 +
964 +(((
965 +In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
966 +)))
967 +
968 +
969 +== 5.3 Device rejoin in at the second uplink packet ==
970 +
971 +(% style="color:#4f81bd" %)**Issue describe as below:**
972 +
973 +[[image:1654500909990-784.png]]
974 +
975 +
976 +(% style="color:#4f81bd" %)**Cause for this issue:**
977 +
978 +(((
979 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
980 +)))
981 +
982 +
983 +(% style="color:#4f81bd" %)**Solution: **
984 +
985 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
986 +
987 +[[image:1654500929571-736.png||height="458" width="832"]]
988 +
989 +
990 += 6. ​Order Info =
991 +
992 +
993 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
994 +
995 +
996 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
997 +
998 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
999 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1000 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1001 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1002 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1003 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1004 +* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1005 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1006 +
1007 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1008 +
1009 +* (% style="color:red" %)**4**(%%): 4000mAh battery
1010 +* (% style="color:red" %)**8**(%%): 8500mAh battery
1011 +
795 795  (% class="wikigeneratedid" %)
796 796  (((
797 797  
798 798  )))
799 799  
800 -= 8.  Packing Info =
1017 += 7. Packing Info =
801 801  
802 802  (((
803 803  
804 804  
805 805  (% style="color:#037691" %)**Package Includes**:
1023 +)))
806 806  
807 -
808 -* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
809 -* External antenna x 1
1025 +* (((
1026 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
810 810  )))
811 811  
812 812  (((
... ... @@ -813,20 +813,30 @@
813 813  
814 814  
815 815  (% style="color:#037691" %)**Dimension and weight**:
1033 +)))
816 816  
817 -
818 -* Size: 195 x 125 x 55 mm
819 -* Weight:   420g
1035 +* (((
1036 +Device Size: cm
820 820  )))
1038 +* (((
1039 +Device Weight: g
1040 +)))
1041 +* (((
1042 +Package Size / pcs : cm
1043 +)))
1044 +* (((
1045 +Weight / pcs : g
821 821  
822 -(((
823 -
824 824  
825 -
826 826  
827 827  )))
828 828  
829 -= 9.  Support =
1051 += 8. Support =
830 830  
831 831  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
832 832  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1055 +
1056 +
1057 +~)~)~)
1058 +~)~)~)
1059 +~)~)~)
1657245163077-232.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
image-20220610172436-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -370.3 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -102.7 KB
Content