Changes for page NDDS75 -- NB-IoT Distance Detect Sensor User Manual
Last modified by Bei Jinggeng on 2024/05/31 09:53
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 24 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - NSE01NB-IoTSoil Moisture & EC Sensor User Manual1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -8,639 +8,713 @@ 8 8 9 9 10 10 11 += 1. Introduction = 11 11 13 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 12 12 15 +((( 16 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 17 +))) 13 13 14 -**Table of Contents:** 19 +((( 20 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 21 +))) 15 15 16 -{{toc/}} 23 +((( 24 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 25 +))) 17 17 27 +((( 28 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 29 +))) 18 18 31 +((( 32 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 33 +))) 19 19 20 20 36 +[[image:1654503236291-817.png]] 21 21 22 22 23 - =1.Introduction =39 +[[image:1654503265560-120.png]] 24 24 25 -== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 26 26 42 + 43 +== 1.2 Features == 44 + 45 +* LoRaWAN 1.0.3 Class A 46 +* Ultra low power consumption 47 +* Monitor Soil Moisture 48 +* Monitor Soil Temperature 49 +* Monitor Soil Conductivity 50 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 51 +* AT Commands to change parameters 52 +* Uplink on periodically 53 +* Downlink to change configure 54 +* IP66 Waterproof Enclosure 55 +* 4000mAh or 8500mAh Battery for long term use 56 + 57 +== 1.3 Specification == 58 + 59 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 60 + 61 +[[image:image-20220606162220-5.png]] 62 + 63 + 64 + 65 +== 1.4 Applications == 66 + 67 +* Smart Agriculture 68 + 69 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 70 + 71 + 72 +== 1.5 Firmware Change log == 73 + 74 + 75 +**LSE01 v1.0 :** Release 76 + 77 + 78 + 79 += 2. Configure LSE01 to connect to LoRaWAN network = 80 + 81 +== 2.1 How it works == 82 + 27 27 ((( 28 - 84 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 85 +))) 29 29 30 -Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 87 +((( 88 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.UsingtheATCommands"]]. 89 +))) 31 31 32 -It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 33 33 34 -The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 35 35 36 - NSE01 are powered by (% style="color:blue"%)**8500mAhLi-SOCI2**(%%)batteries,whichcanbeused forup to5 years.93 +== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 37 37 95 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 96 + 97 + 98 +[[image:1654503992078-669.png]] 99 + 100 + 101 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 102 + 103 + 104 +**Step 1**: Create a device in TTN with the OTAA keys from LSE01. 105 + 106 +Each LSE01 is shipped with a sticker with the default device EUI as below: 107 + 108 +[[image:image-20220606163732-6.jpeg]] 109 + 110 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 111 + 112 +**Add APP EUI in the application** 113 + 114 + 115 +[[image:1654504596150-405.png]] 116 + 117 + 118 + 119 +**Add APP KEY and DEV EUI** 120 + 121 +[[image:1654504683289-357.png]] 122 + 123 + 124 + 125 +**Step 2**: Power on LSE01 126 + 127 + 128 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 129 + 130 +[[image:image-20220606163915-7.png]] 131 + 132 + 133 +**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 134 + 135 +[[image:1654504778294-788.png]] 136 + 137 + 138 + 139 +== 2.3 Uplink Payload == 140 + 141 +=== 2.3.1 MOD~=0(Default Mode) === 142 + 143 +LSE01 will uplink payload via LoRaWAN with below payload format: 144 + 145 + 146 +Uplink payload includes in total 11 bytes. 38 38 148 + 149 +|((( 150 +**Size** 151 + 152 +**(bytes)** 153 +)))|**2**|**2**|**2**|**2**|**2**|**1** 154 +|**Value**|[[BAT>>path:#bat]]|((( 155 +Temperature 156 + 157 +(Reserve, Ignore now) 158 +)))|[[Soil Moisture>>path:#soil_moisture]]|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]]|((( 159 +MOD & Digital Interrupt 160 + 161 +(Optional) 39 39 ))) 40 40 41 -[[image:165450 3236291-817.png]]164 +[[image:1654504881641-514.png]] 42 42 43 43 44 -[[image:1657245163077-232.png]] 45 45 168 +=== 2.3.2 MOD~=1(Original value) === 46 46 170 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 47 47 48 -== 1.2 Features == 172 +|((( 173 +**Size** 49 49 50 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 51 -* Monitor Soil Moisture 52 -* Monitor Soil Temperature 53 -* Monitor Soil Conductivity 54 -* AT Commands to change parameters 55 -* Uplink on periodically 56 -* Downlink to change configure 57 -* IP66 Waterproof Enclosure 58 -* Ultra-Low Power consumption 59 -* AT Commands to change parameters 60 -* Micro SIM card slot for NB-IoT SIM 61 -* 8500mAh Battery for long term use 175 +**(bytes)** 176 +)))|**2**|**2**|**2**|**2**|**2**|**1** 177 +|**Value**|[[BAT>>path:#bat]]|((( 178 +Temperature 62 62 180 +(Reserve, Ignore now) 181 +)))|[[Soil Moisture>>path:#soil_moisture]](raw)|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]](raw)|((( 182 +MOD & Digital Interrupt 63 63 184 +(Optional) 185 +))) 64 64 65 - ==1.3 Specification==187 +[[image:1654504907647-967.png]] 66 66 67 67 68 -(% style="color:#037691" %)**Common DC Characteristics:** 69 69 70 -* Supply Voltage: 2.1v ~~ 3.6v 71 -* Operating Temperature: -40 ~~ 85°C 191 +=== 2.3.3 Battery Info === 72 72 193 +Check the battery voltage for LSE01. 73 73 74 - (% style="color:#037691"%)**NB-IoTSpec:**195 +Ex1: 0x0B45 = 2885mV 75 75 76 -* - B1 @H-FDD: 2100MHz 77 -* - B3 @H-FDD: 1800MHz 78 -* - B8 @H-FDD: 900MHz 79 -* - B5 @H-FDD: 850MHz 80 -* - B20 @H-FDD: 800MHz 81 -* - B28 @H-FDD: 700MHz 197 +Ex2: 0x0B49 = 2889mV 82 82 83 83 84 -Probe(% style="color:#037691" %)** Specification:** 85 85 86 - MeasureVolume:Baseon the centra pinof the probe, a cylinder with 7cm diameterand 10cm height.201 +=== 2.3.4 Soil Moisture === 87 87 88 - [[image:image-20220708101224-1.png]]203 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 89 89 205 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 90 90 91 91 92 -== 1.4Applications==208 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 93 93 94 -* Smart Agriculture 95 95 96 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 97 - 98 98 99 -== 1.5PinDefinitions==212 +=== 2.3.5 Soil Temperature === 100 100 214 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 101 101 102 - [[image:1657246476176-652.png]]216 +**Example**: 103 103 218 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 104 104 220 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 105 105 106 -= 2. Use NSE01 to communicate with IoT Server = 107 107 108 -== 2.1 How it works == 109 109 224 +=== 2.3.6 Soil Conductivity (EC) === 110 110 111 111 ((( 112 - The NSE01 is equipped withaNB-IoTmodule, the pre-loaded firmware in NSE01willgetenvironmentdata fromsensorsandsendthe valuetolocal NB-IoTnetworkviatheNB-IoT module.NB-IoTnetworkwillforwardthisvaluetoIoT server viaheprotocoldefinedby NSE01.227 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 113 113 ))) 114 114 230 +((( 231 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 232 +))) 115 115 116 116 ((( 117 - Thediagram belowshowstheworkingflowin defaultfirmwareofNSE01:235 +Generally, the EC value of irrigation water is less than 800uS / cm. 118 118 ))) 119 119 120 -[[image:image-20220708101605-2.png]] 238 +((( 239 + 240 +))) 121 121 122 122 ((( 123 123 124 124 ))) 125 125 246 +=== 2.3.7 MOD === 126 126 248 +Firmware version at least v2.1 supports changing mode. 127 127 128 - == 2.2 Configure theNSE01=250 +For example, bytes[10]=90 129 129 252 +mod=(bytes[10]>>7)&0x01=1. 130 130 131 -=== 2.2.1 Test Requirement === 132 132 255 +Downlink Command: 133 133 134 - TouseNSE01inyourcity, make suremeet below requirements:257 +If payload = 0x0A00, workmode=0 135 135 136 -* Your local operator has already distributed a NB-IoT Network there. 137 -* The local NB-IoT network used the band that NSE01 supports. 138 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 259 +If** **payload =** **0x0A01, workmode=1 139 139 140 -((( 141 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 142 -))) 143 143 144 144 145 - [[image:1657249419225-449.png]]263 +=== 2.3.8 Decode payload in The Things Network === 146 146 265 +While using TTN network, you can add the payload format to decode the payload. 147 147 148 148 149 - ===2.2.2 Insert SIM card ===268 +[[image:1654505570700-128.png]] 150 150 151 - Insert theNB-IoT Cardgetfromyourprovider.270 +The payload decoder function for TTN is here: 152 152 153 - Userneedtotakeout theNB-IoT moduleandsert theIM cardkebelow:272 +LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 154 154 155 155 156 - [[image:1657249468462-536.png]]275 +== 2.4 Uplink Interval == 157 157 277 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: 158 158 279 +[[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]] 159 159 160 -=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 161 161 162 -((( 163 -((( 164 -User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 165 -))) 166 -))) 167 167 283 +== 2.5 Downlink Payload == 168 168 169 - **Connection:**285 +By default, LSE50 prints the downlink payload to console port. 170 170 171 - (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND287 +[[image:image-20220606165544-8.png]] 172 172 173 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 174 174 175 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD290 +**Examples:** 176 176 177 177 178 - InthePC, use below serialtoolsettings:293 +* **Set TDC** 179 179 180 -* Baud: (% style="color:green" %)**9600** 181 -* Data bits:** (% style="color:green" %)8(%%)** 182 -* Stop bits: (% style="color:green" %)**1** 183 -* Parity: (% style="color:green" %)**None** 184 -* Flow Control: (% style="color:green" %)**None** 295 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 185 185 186 -((( 187 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 188 -))) 297 +Payload: 01 00 00 1E TDC=30S 189 189 190 - [[image:image-20220708110657-3.png]]299 +Payload: 01 00 00 3C TDC=60S 191 191 192 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 193 193 302 +* **Reset** 194 194 304 +If payload = 0x04FF, it will reset the LSE01 195 195 196 -=== 2.2.4 Use CoAP protocol to uplink data === 197 197 198 - (%style="color:red" %)Note: if you don't haveCoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]307 +* **CFM** 199 199 309 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 200 200 201 -**Use below commands:** 202 202 203 -* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 204 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 205 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 206 206 207 - Forparameterdescription,pleaserefer toATcommand set313 +== 2.6 Show Data in DataCake IoT Server == 208 208 209 -[[ima ge:1657249793983-486.png]]315 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 210 210 211 211 212 - Afterconfigure theserveraddressand(% style="color:green" %)**reset thedevice**(%%) (via AT+ATZ ), NSE01willstart to uplinksensorvaluesto CoAP server.318 +**Step 1**: Be sure that your device is programmed and properly connected to the network at this time. 213 213 214 - [[image:1657249831934-534.png]]320 +**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 215 215 216 216 323 +[[image:1654505857935-743.png]] 217 217 218 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 219 219 220 - This feature is supported since firmwareversion v1.0.1326 +[[image:1654505874829-548.png]] 221 221 328 +Step 3: Create an account or log in Datacake. 222 222 223 -* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 224 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 225 -* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 330 +Step 4: Search the LSE01 and add DevEUI. 226 226 227 -[[image:1657249864775-321.png]] 228 228 333 +[[image:1654505905236-553.png]] 229 229 230 -[[image:1657249930215-289.png]] 231 231 336 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 232 232 338 +[[image:1654505925508-181.png]] 233 233 234 -=== 2.2.6 Use MQTT protocol to uplink data === 235 235 236 -This feature is supported since firmware version v110 237 237 342 +== 2.7 Frequency Plans == 238 238 239 -* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 240 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 241 -* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 242 -* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 243 -* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 244 -* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 245 -* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 344 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 246 246 247 -[[image:1657249978444-674.png]] 248 248 347 +=== 2.7.1 EU863-870 (EU868) === 249 249 250 - [[image:1657249990869-686.png]]349 +(% style="color:#037691" %)** Uplink:** 251 251 351 +868.1 - SF7BW125 to SF12BW125 252 252 253 -((( 254 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 255 -))) 353 +868.3 - SF7BW125 to SF12BW125 and SF7BW250 256 256 355 +868.5 - SF7BW125 to SF12BW125 257 257 357 +867.1 - SF7BW125 to SF12BW125 258 258 259 - === 2.2.7UseTCP protocolto uplink data ===359 +867.3 - SF7BW125 to SF12BW125 260 260 261 - Thisfeatureissupported since firmware versionv110361 +867.5 - SF7BW125 to SF12BW125 262 262 363 +867.7 - SF7BW125 to SF12BW125 263 263 264 -* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 265 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 365 +867.9 - SF7BW125 to SF12BW125 266 266 267 - [[image:1657250217799-140.png]]367 +868.8 - FSK 268 268 269 269 270 - [[image:1657250255956-604.png]]370 +(% style="color:#037691" %)** Downlink:** 271 271 372 +Uplink channels 1-9 (RX1) 272 272 374 +869.525 - SF9BW125 (RX2 downlink only) 273 273 274 -=== 2.2.8 Change Update Interval === 275 275 276 -User can use below command to change the (% style="color:green" %)**uplink interval**. 277 277 278 - * (% style="color:blue" %)**AT+TDC=600**%%)~/~/Set Update Interval to 600s378 +=== 2.7.2 US902-928(US915) === 279 279 280 -((( 281 -(% style="color:red" %)**NOTE:** 282 -))) 380 +Used in USA, Canada and South America. Default use CHE=2 283 283 284 -((( 285 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 286 -))) 382 +(% style="color:#037691" %)**Uplink:** 287 287 384 +903.9 - SF7BW125 to SF10BW125 288 288 386 +904.1 - SF7BW125 to SF10BW125 289 289 290 - == 2.3UplinkPayload==388 +904.3 - SF7BW125 to SF10BW125 291 291 292 - Inthismode,uplink payload includes intotal18 bytes390 +904.5 - SF7BW125 to SF10BW125 293 293 294 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 295 -|=(% style="width: 50px;" %)((( 296 -**Size(bytes)** 297 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1** 298 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 392 +904.7 - SF7BW125 to SF10BW125 299 299 300 - Ifweusethe MQTT client tosubscribe to this MQTT topic, we can see the following information when the NSE01uplink data.394 +904.9 - SF7BW125 to SF10BW125 301 301 396 +905.1 - SF7BW125 to SF10BW125 302 302 303 - [[image:image-20220708111918-4.png]]398 +905.3 - SF7BW125 to SF10BW125 304 304 305 305 306 - Thepayload is ASCII string,representative same HEX:401 +(% style="color:#037691" %)**Downlink:** 307 307 308 - 0x72403155615900640c7817075e0a8c02f900 where:403 +923.3 - SF7BW500 to SF12BW500 309 309 310 -* Device ID: 0x 724031556159 = 724031556159 311 -* Version: 0x0064=100=1.0.0 405 +923.9 - SF7BW500 to SF12BW500 312 312 313 -* BAT: 0x0c78 = 3192 mV = 3.192V 314 -* Singal: 0x17 = 23 315 -* Soil Moisture: 0x075e= 1886 = 18.86 % 316 -* Soil Temperature:0x0a8c =2700=27 °C 317 -* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 318 -* Interrupt: 0x00 = 0 407 +924.5 - SF7BW500 to SF12BW500 319 319 409 +925.1 - SF7BW500 to SF12BW500 320 320 411 +925.7 - SF7BW500 to SF12BW500 321 321 322 - ==2.4PayloadExplanation andSensorInterface==413 +926.3 - SF7BW500 to SF12BW500 323 323 415 +926.9 - SF7BW500 to SF12BW500 324 324 325 - ===2.4.1 DeviceID===417 +927.5 - SF7BW500 to SF12BW500 326 326 327 -B ydefault, the DeviceID equal tothelast 6 bytes of IMEI.419 +923.3 - SF12BW500(RX2 downlink only) 328 328 329 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 330 330 331 -**Example:** 332 332 333 - AT+DEUI=A84041F15612423 +=== 2.7.3 CN470-510 (CN470) === 334 334 335 - The Device ID isstored inanone-erase area,Upgradethefirmware or run AT+FDR won'teraseDevice ID.425 +Used in China, Default use CHE=1 336 336 427 +(% style="color:#037691" %)**Uplink:** 337 337 429 +486.3 - SF7BW125 to SF12BW125 338 338 339 - === 2.4.2VersionInfo ===431 +486.5 - SF7BW125 to SF12BW125 340 340 341 - Specifythesoftware version: 0x64=100,means firmware version1.00.433 +486.7 - SF7BW125 to SF12BW125 342 342 343 - For example: 0x00 64:this device is NSE01with firmware version1.0.0.435 +486.9 - SF7BW125 to SF12BW125 344 344 437 +487.1 - SF7BW125 to SF12BW125 345 345 439 +487.3 - SF7BW125 to SF12BW125 346 346 347 - === 2.4.3BatteryInfo===441 +487.5 - SF7BW125 to SF12BW125 348 348 349 -((( 350 -Check the battery voltage for LSE01. 351 -))) 443 +487.7 - SF7BW125 to SF12BW125 352 352 353 -((( 354 -Ex1: 0x0B45 = 2885mV 355 -))) 356 356 357 -((( 358 -Ex2: 0x0B49 = 2889mV 359 -))) 446 +(% style="color:#037691" %)**Downlink:** 360 360 448 +506.7 - SF7BW125 to SF12BW125 361 361 450 +506.9 - SF7BW125 to SF12BW125 362 362 363 - === 2.4.4SignalStrength===452 +507.1 - SF7BW125 to SF12BW125 364 364 365 - NB-IoTNetworksignalStrength.454 +507.3 - SF7BW125 to SF12BW125 366 366 367 - **Ex1:0x1d=29**456 +507.5 - SF7BW125 to SF12BW125 368 368 369 - (% style="color:blue" %)**0**(%%)113dBmorless458 +507.7 - SF7BW125 to SF12BW125 370 370 371 - (%style="color:blue"%)**1**(%%)-111dBm460 +507.9 - SF7BW125 to SF12BW125 372 372 373 - (%style="color:blue"%)**2...30**(%%)-109dBm... -53dBm462 +508.1 - SF7BW125 to SF12BW125 374 374 375 - (%style="color:blue"%)**31**(%%)-51dBmorgreater464 +505.3 - SF12BW125 (RX2 downlink only) 376 376 377 -(% style="color:blue" %)**99** (%%) Not known or not detectable 378 378 379 379 468 +=== 2.7.4 AU915-928(AU915) === 380 380 381 - === 2.4.5 SoilMoisture ===470 +Default use CHE=2 382 382 383 -((( 384 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 385 -))) 472 +(% style="color:#037691" %)**Uplink:** 386 386 387 -((( 388 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 389 -))) 474 +916.8 - SF7BW125 to SF12BW125 390 390 391 -((( 392 - 393 -))) 476 +917.0 - SF7BW125 to SF12BW125 394 394 395 -((( 396 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 397 -))) 478 +917.2 - SF7BW125 to SF12BW125 398 398 480 +917.4 - SF7BW125 to SF12BW125 399 399 482 +917.6 - SF7BW125 to SF12BW125 400 400 401 - === 2.4.6SoilTemperature===484 +917.8 - SF7BW125 to SF12BW125 402 402 403 -((( 404 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 405 -))) 486 +918.0 - SF7BW125 to SF12BW125 406 406 407 -((( 408 -**Example**: 409 -))) 488 +918.2 - SF7BW125 to SF12BW125 410 410 411 -((( 412 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 413 -))) 414 414 415 -((( 416 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 417 -))) 491 +(% style="color:#037691" %)**Downlink:** 418 418 493 +923.3 - SF7BW500 to SF12BW500 419 419 495 +923.9 - SF7BW500 to SF12BW500 420 420 421 - ===2.4.7SoilConductivity(EC) ===497 +924.5 - SF7BW500 to SF12BW500 422 422 423 -((( 424 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 425 -))) 499 +925.1 - SF7BW500 to SF12BW500 426 426 427 -((( 428 -For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 429 -))) 501 +925.7 - SF7BW500 to SF12BW500 430 430 431 -((( 432 -Generally, the EC value of irrigation water is less than 800uS / cm. 433 -))) 503 +926.3 - SF7BW500 to SF12BW500 434 434 435 -((( 436 - 437 -))) 505 +926.9 - SF7BW500 to SF12BW500 438 438 439 -((( 440 - 441 -))) 507 +927.5 - SF7BW500 to SF12BW500 442 442 443 - ===2.4.8DigitalInterrupt===509 +923.3 - SF12BW500(RX2 downlink only) 444 444 445 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 446 446 447 -The command is: 448 448 449 - (% style="color:blue" %)**AT+INTMOD=3**(%%)~/~/(more info about INMOD please refer [[**ATCommandManual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**513 +=== 2.7.5 AS920-923 & AS923-925 (AS923) === 450 450 515 +(% style="color:#037691" %)**Default Uplink channel:** 451 451 452 - The lower four bits of this data field shows if this packet is generated by interrupt or not.[[Clickhere>>||anchor="H"]]forthe hardware and softwareset up.517 +923.2 - SF7BW125 to SF10BW125 453 453 519 +923.4 - SF7BW125 to SF10BW125 454 454 455 -Example: 456 456 457 - 0x(00):Normaluplinkpacket.522 +(% style="color:#037691" %)**Additional Uplink Channel**: 458 458 459 - 0x(01):InterruptUplinkPacket.524 +(OTAA mode, channel added by JoinAccept message) 460 460 526 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 461 461 528 +922.2 - SF7BW125 to SF10BW125 462 462 463 - ===2.4.9+5VOutput===530 +922.4 - SF7BW125 to SF10BW125 464 464 465 - NSE01willenable +5Voutput beforeall sampling and disable the +5v after all sampling.532 +922.6 - SF7BW125 to SF10BW125 466 466 534 +922.8 - SF7BW125 to SF10BW125 467 467 468 - The5Voutput time can be controlledby AT Command.536 +923.0 - SF7BW125 to SF10BW125 469 469 470 - (%style="color:blue"%)**AT+5VT=1000**538 +922.0 - SF7BW125 to SF10BW125 471 471 472 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 473 473 541 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 474 474 543 +923.6 - SF7BW125 to SF10BW125 475 475 476 - ==2.5DownlinkPayload ==545 +923.8 - SF7BW125 to SF10BW125 477 477 478 - Bydefault,NSE01prints the downlinkpayload to console port.547 +924.0 - SF7BW125 to SF10BW125 479 479 480 - [[image:image-20220708133731-5.png]]549 +924.2 - SF7BW125 to SF10BW125 481 481 551 +924.4 - SF7BW125 to SF10BW125 482 482 483 -((( 484 -(% style="color:blue" %)**Examples:** 485 -))) 553 +924.6 - SF7BW125 to SF10BW125 486 486 487 -((( 488 - 489 -))) 490 490 491 -* ((( 492 -(% style="color:blue" %)**Set TDC** 493 -))) 556 +(% style="color:#037691" %)** Downlink:** 494 494 495 -((( 496 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 497 -))) 558 +Uplink channels 1-8 (RX1) 498 498 499 -((( 500 -Payload: 01 00 00 1E TDC=30S 501 -))) 560 +923.2 - SF10BW125 (RX2) 502 502 503 -((( 504 -Payload: 01 00 00 3C TDC=60S 505 -))) 506 506 507 -((( 508 - 509 -))) 510 510 511 -* ((( 512 -(% style="color:blue" %)**Reset** 513 -))) 564 +=== 2.7.6 KR920-923 (KR920) === 514 514 515 -((( 516 -If payload = 0x04FF, it will reset the NSE01 517 -))) 566 +Default channel: 518 518 568 +922.1 - SF7BW125 to SF12BW125 519 519 520 - *(%style="color:blue"%)**INTMOD**570 +922.3 - SF7BW125 to SF12BW125 521 521 522 - DownlinkPayload:06000003,SetAT+INTMOD=3572 +922.5 - SF7BW125 to SF12BW125 523 523 524 524 575 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 525 525 526 - ==2.6LEDIndicator==577 +922.1 - SF7BW125 to SF12BW125 527 527 528 -((( 529 -The NSE01 has an internal LED which is to show the status of different state. 579 +922.3 - SF7BW125 to SF12BW125 530 530 581 +922.5 - SF7BW125 to SF12BW125 531 531 532 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 533 -* Then the LED will be on for 1 second means device is boot normally. 534 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 535 -* For each uplink probe, LED will be on for 500ms. 536 -))) 583 +922.7 - SF7BW125 to SF12BW125 537 537 585 +922.9 - SF7BW125 to SF12BW125 538 538 587 +923.1 - SF7BW125 to SF12BW125 539 539 589 +923.3 - SF7BW125 to SF12BW125 540 540 541 -== 2.7 Installation in Soil == 542 542 543 - __**Measurementthesoilsurface**__592 +(% style="color:#037691" %)**Downlink:** 544 544 545 - Choose theproper measuring position. Avoid the probe to touch rocksor hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Verticalinsertthe probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]594 +Uplink channels 1-7(RX1) 546 546 547 - [[image:1657259653666-883.png]] 596 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 548 548 549 549 550 -((( 551 - 552 552 553 -((( 554 -Dig a hole with diameter > 20CM. 555 -))) 600 +=== 2.7.7 IN865-867 (IN865) === 556 556 557 -((( 558 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 559 -))) 560 -))) 602 +(% style="color:#037691" %)** Uplink:** 561 561 562 - [[image:1654506665940-119.png]]604 +865.0625 - SF7BW125 to SF12BW125 563 563 564 -((( 565 - 566 -))) 606 +865.4025 - SF7BW125 to SF12BW125 567 567 608 +865.9850 - SF7BW125 to SF12BW125 568 568 569 -== 2.8 Firmware Change Log == 570 570 611 +(% style="color:#037691" %) **Downlink:** 571 571 572 - DownloadURL & FirmwareChangeog613 +Uplink channels 1-3 (RX1) 573 573 574 - [[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]615 +866.550 - SF10BW125 (RX2) 575 575 576 576 577 -Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]] 578 578 579 579 620 +== 2.8 LED Indicator == 580 580 581 - ==2.9Battery Analysis==622 +The LSE01 has an internal LED which is to show the status of different state. 582 582 583 -=== 2.9.1 Battery Type === 624 +* Blink once when device power on. 625 +* Solid ON for 5 seconds once device successful Join the network. 626 +* Blink once when device transmit a packet. 584 584 628 +== 2.9 Installation in Soil == 585 585 586 - TheNSE01 battery isa combination of an 8500mAh Li/SOCI2 Battery and a SuperCapacitor. Thebattery isnone-rechargeable batterytype witha low dischargerate (<2% per year). Thistypeof batteryis commonlyused in IoT devices suchas water meter.630 +**Measurement the soil surface** 587 587 588 588 589 - The batteryis designed to last for several years dependson the actually use environment and update interval.633 +[[image:1654506634463-199.png]] 590 590 635 +((( 636 +((( 637 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 638 +))) 639 +))) 591 591 592 -The battery related documents as below: 593 593 594 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 595 -* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 596 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 642 +[[image:1654506665940-119.png]] 597 597 598 598 ((( 599 - [[image:image-20220708140453-6.png]]645 +Dig a hole with diameter > 20CM. 600 600 ))) 601 601 648 +((( 649 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 650 +))) 602 602 603 603 604 -== =2.9.2Powerconsumption Analyze ===653 +== 2.10 Firmware Change Log == 605 605 606 606 ((( 607 - Dragino battery powered productareall runs in Low Power mode. We have an update battery calculatorwhich base onthe measurement of the realdevice. User can use this calculator to check the battery life andcalculate the battery life if want to use different transmit interval.656 +**Firmware download link:** 608 608 ))) 609 609 659 +((( 660 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 661 +))) 610 610 611 611 ((( 612 - Instructionto use as below:664 + 613 613 ))) 614 614 615 615 ((( 616 - (% style="color:blue" %)**Step1:(%%)Downlink theup-to-dateDRAGINO_Battery_Life_Prediction_Table.xlsx from:[[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]668 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 617 617 ))) 618 618 671 +((( 672 + 673 +))) 619 619 620 620 ((( 621 - (% style="color:blue" %)**Step 2:**(%%) Open it and choose676 +**V1.0.** 622 622 ))) 623 623 624 - *(((625 - Product Model679 +((( 680 +Release 626 626 ))) 627 -* ((( 628 -Uplink Interval 682 + 683 + 684 +== 2.11 Battery Analysis == 685 + 686 +=== 2.11.1 Battery Type === 687 + 688 +((( 689 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 629 629 ))) 630 -* ((( 631 -Working Mode 691 + 692 +((( 693 +The battery is designed to last for more than 5 years for the LSN50. 632 632 ))) 633 633 634 634 ((( 635 -And the Life expectation in difference case will be shown on the right. 697 +((( 698 +The battery-related documents are as below: 636 636 ))) 700 +))) 637 637 638 -[[image:image-20220708141352-7.jpeg]] 702 +* ((( 703 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 704 +))) 705 +* ((( 706 +[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 707 +))) 708 +* ((( 709 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 710 +))) 639 639 712 + [[image:image-20220606171726-9.png]] 640 640 641 641 642 -=== 2.9.3 Battery Note === 643 643 716 +=== 2.11.2 Battery Note === 717 + 644 644 ((( 645 645 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 646 646 ))) ... ... @@ -647,186 +647,299 @@ 647 647 648 648 649 649 650 -=== 2. 9.4Replace the battery ===724 +=== 2.11.3 Replace the battery === 651 651 652 652 ((( 653 - The defaultbatterypack of NSE01includesa ER26500 plus super capacitor. If usercan'tfind this pack locally, they canfind ER26500or equivalencewithouttheSPC1520 capacitor, which willalso work in mostcase.The SPC can enlargethe batterylife for highfrequencyuse (update period below 5 minutes).727 +If Battery is lower than 2.7v, user should replace the battery of LSE01. 654 654 ))) 655 655 656 - 657 - 658 -= 3. Access NB-IoT Module = 659 - 660 660 ((( 661 - Userscan directly accesstheATcommand set of theNB-IoTmodule.731 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 662 662 ))) 663 663 664 664 ((( 665 -The ATCommand setcanrefer theBC35-GNB-IoTModuleATCommand: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]]735 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 666 666 ))) 667 667 668 -[[image:1657261278785-153.png]] 669 669 670 670 740 += 3. Using the AT Commands = 671 671 672 -= 4.UsingtheAT Commands =742 +== 3.1 Access AT Commands == 673 673 674 -== 4.1 Access AT Commands == 675 675 676 -S eethislinkfordetail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]745 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 677 677 747 +[[image:1654501986557-872.png]] 678 678 679 -AT+<CMD>? : Help on <CMD> 680 680 681 - AT+<CMD>: Run<CMD>750 +Or if you have below board, use below connection: 682 682 683 -AT+<CMD>=<value> : Set the value 684 684 685 - AT+<CMD>=? : Get the value753 +[[image:1654502005655-729.png]] 686 686 687 687 756 + 757 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 758 + 759 + 760 + [[image:1654502050864-459.png]] 761 + 762 + 763 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]] 764 + 765 + 766 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 767 + 768 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 769 + 770 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 771 + 772 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 773 + 774 + 688 688 (% style="color:#037691" %)**General Commands**(%%) 689 689 690 -AT 777 +(% style="background-color:#dcdcdc" %)**AT**(%%) : Attention 691 691 692 -AT? 779 +(% style="background-color:#dcdcdc" %)**AT?**(%%) : Short Help 693 693 694 -ATZ 781 +(% style="background-color:#dcdcdc" %)**ATZ**(%%) : MCU Reset 695 695 696 -AT+TDC 783 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%) : Application Data Transmission Interval 697 697 698 -AT+CFG : Print all configurations 699 699 700 - AT+CFGMOD: Workingmode selection786 +(% style="color:#037691" %)**Keys, IDs and EUIs management** 701 701 702 -AT+I NTMOD:Setthe trigger interruptmode788 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%) : Application EUI 703 703 704 -AT+ 5VTSetextend the timeof5V power790 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%) : Application Key 705 705 706 -AT+P ROChooseagreement792 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%) : Application Session Key 707 707 708 -AT+ WEIGREGet weightorsetweight to 0794 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%) : Device Address 709 709 710 -AT+ WEIGAPGet or SettheGapValue of weight796 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%) : Device EUI 711 711 712 -AT+ RXDL: Extendthe sendingandreceivingtime798 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%) : Network ID (You can enter this command change only after successful network connection) 713 713 714 -AT+ CNTFACGettcountingparameters800 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%) : Network Session Key Joining and sending date on LoRa network 715 715 716 -AT+ SERVADDR:ServerAddress802 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%) : Confirm Mode 717 717 804 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 718 718 719 -(% style="color:# 037691" %)**COAPManagement**806 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%) : Join LoRa? Network 720 720 721 -AT+ URIsourceparameters808 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%) : LoRa? Network Join Mode 722 722 810 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 723 723 724 -(% style="color:# 037691" %)**UDPManagement**812 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%) : Print Last Received Data in Raw Format 725 725 726 -AT+C FM:Uploadconfirmationmode (onlyvalid forUDP)814 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%) : Print Last Received Data in Binary Format 727 727 816 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 728 728 729 -(% style="color:# 037691" %)**MQTTManagement**818 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%) : Send Hexadecimal Data 730 730 731 -AT+CLIENT : Get or Set MQTT client 732 732 733 - AT+UNAMEGetSetMQTT Username821 +(% style="color:#037691" %)**LoRa Network Management** 734 734 735 -AT+ PWDGetor SetMQTT password823 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%) : Adaptive Rate 736 736 737 -AT+ PUBTOPICGetorSetMQTTpublishtopic825 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%) : LoRa Class(Currently only support class A 738 738 739 -AT+ SUBTOPIC :GetorSetMQTT subscriptiontopic827 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%) : Duty Cycle Setting 740 740 829 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 741 741 742 -(% style="color:# 037691" %)**Information**831 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink 743 743 744 -AT+F DRctoryDataReset833 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%) : Frame Counter Uplink 745 745 746 -AT+ PWORDSerialAccessPassword835 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%) : Join Accept Delay1 747 747 837 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 748 748 839 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 749 749 750 -= 5.FAQ=841 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%) : Receive Delay1 751 751 752 -= =5.1HowtoUpgradeFirmware==843 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%) : Receive Delay2 753 753 845 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 754 754 755 -((( 756 -User can upgrade the firmware for 1) bug fix, 2) new feature release. 757 -))) 847 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 758 758 849 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 850 + 851 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 852 + 853 + 854 +(% style="color:#037691" %)**Information** 855 + 856 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 857 + 858 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 859 + 860 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 861 + 862 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 863 + 864 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 865 + 866 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 867 + 868 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 869 + 870 + 871 += 4. FAQ = 872 + 873 +== 4.1 How to change the LoRa Frequency Bands/Region? == 874 + 875 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10FirmwareChangeLog"]]. 876 +When downloading the images, choose the required image file for download. 877 + 878 + 879 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 880 + 881 + 882 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 883 + 884 + 885 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 886 + 887 +[[image:image-20220606154726-3.png]] 888 + 889 +When you use the TTN network, the US915 frequency bands use are: 890 + 891 +* 903.9 - SF7BW125 to SF10BW125 892 +* 904.1 - SF7BW125 to SF10BW125 893 +* 904.3 - SF7BW125 to SF10BW125 894 +* 904.5 - SF7BW125 to SF10BW125 895 +* 904.7 - SF7BW125 to SF10BW125 896 +* 904.9 - SF7BW125 to SF10BW125 897 +* 905.1 - SF7BW125 to SF10BW125 898 +* 905.3 - SF7BW125 to SF10BW125 899 +* 904.6 - SF8BW500 900 + 901 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 902 + 903 +(% class="box infomessage" %) 759 759 ((( 760 - Please see this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]905 +**AT+CHE=2** 761 761 ))) 762 762 908 +(% class="box infomessage" %) 763 763 ((( 764 - (% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board.They use the same connection and method to update.910 +**ATZ** 765 765 ))) 766 766 913 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 767 767 768 768 769 - =6.TroubleShooting=916 +The **AU915** band is similar. Below are the AU915 Uplink Channels. 770 770 771 - == 6.1 Connection problemwhen uploadingfirmware==918 +[[image:image-20220606154825-4.png]] 772 772 773 773 774 -(% class="wikigeneratedid" %) 775 -((( 776 -(% style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]] 777 -))) 778 778 922 += 5. Trouble Shooting = 779 779 924 +== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 780 780 781 - ==6.2ATCommandinputdoesn'twork==926 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 782 782 783 -((( 784 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 785 -))) 786 786 929 +== 5.2 AT Command input doesn’t work == 787 787 931 +In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 788 788 789 -= 7. Order Info = 790 790 934 +== 5.3 Device rejoin in at the second uplink packet == 791 791 792 - Part Number**:**(% style="color:#4f81bd" %)**NSE01**936 +(% style="color:#4f81bd" %)**Issue describe as below:** 793 793 938 +[[image:1654500909990-784.png]] 794 794 795 -(% class="wikigeneratedid" %) 796 -((( 797 - 798 -))) 799 799 800 - =8.PackingInfo=941 +(% style="color:#4f81bd" %)**Cause for this issue:** 801 801 802 -((( 803 - 943 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 804 804 805 -(% style="color:#037691" %)**Package Includes**: 806 806 946 +(% style="color:#4f81bd" %)**Solution: ** 807 807 808 -* NSE01 NB-IoT Soil Moisture & EC Sensor x 1 809 -* External antenna x 1 810 -))) 948 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 811 811 950 +[[image:1654500929571-736.png]] 951 + 952 + 953 += 6. Order Info = 954 + 955 + 956 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 957 + 958 + 959 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 960 + 961 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 962 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 963 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 964 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 965 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 966 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 967 +* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 968 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 969 + 970 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 971 + 972 +* (% style="color:red" %)**4**(%%): 4000mAh battery 973 +* (% style="color:red" %)**8**(%%): 8500mAh battery 974 + 975 +(% class="wikigeneratedid" %) 812 812 ((( 813 813 978 +))) 814 814 815 - (% style="color:#037691"%)**Dimensionandweight**:980 += 7. Packing Info = 816 816 982 +((( 983 +**Package Includes**: 984 +))) 817 817 818 -* Size: 195 x 125 x 55 mm819 - *Weight:420g986 +* ((( 987 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 820 820 ))) 821 821 822 822 ((( 823 823 992 +))) 824 824 994 +((( 995 +**Dimension and weight**: 996 +))) 825 825 998 +* ((( 999 +Device Size: cm 1000 +))) 1001 +* ((( 1002 +Device Weight: g 1003 +))) 1004 +* ((( 1005 +Package Size / pcs : cm 1006 +))) 1007 +* ((( 1008 +Weight / pcs : g 1009 + 1010 + 826 826 827 827 ))) 828 828 829 -= 9.1014 += 8. Support = 830 830 831 831 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 832 832 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1018 + 1019 +
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -102.7 KB - Content