Changes for page NDDS75 -- NB-IoT Distance Detect Sensor User Manual
Last modified by Bei Jinggeng on 2024/05/31 09:53
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 24 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - NSE01NB-IoTSoil Moisture & EC Sensor User Manual1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -3,16 +3,8 @@ 3 3 4 4 5 5 6 +**Contents:** 6 6 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 -**Table of Contents:** 15 - 16 16 {{toc/}} 17 17 18 18 ... ... @@ -20,797 +20,1065 @@ 20 20 21 21 22 22 23 -= 1. 15 += 1. Introduction = 24 24 25 -== 1.1 17 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 26 26 27 27 ((( 28 - 20 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 21 +))) 29 29 30 -Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 23 +((( 24 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 25 +))) 31 31 32 -It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 27 +((( 28 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 29 +))) 33 33 34 -The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 31 +((( 32 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 33 +))) 35 35 36 -NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years. 37 - 38 - 35 +((( 36 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 39 39 ))) 40 40 39 + 41 41 [[image:1654503236291-817.png]] 42 42 43 43 44 -[[image:165 7245163077-232.png]]43 +[[image:1654503265560-120.png]] 45 45 46 46 47 47 48 -== 1.2 47 +== 1.2 Features == 49 49 50 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 49 +* LoRaWAN 1.0.3 Class A 50 +* Ultra low power consumption 51 51 * Monitor Soil Moisture 52 52 * Monitor Soil Temperature 53 53 * Monitor Soil Conductivity 54 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 54 54 * AT Commands to change parameters 55 55 * Uplink on periodically 56 56 * Downlink to change configure 57 57 * IP66 Waterproof Enclosure 58 -* Ultra-Low Power consumption 59 -* AT Commands to change parameters 60 -* Micro SIM card slot for NB-IoT SIM 61 -* 8500mAh Battery for long term use 59 +* 4000mAh or 8500mAh Battery for long term use 62 62 61 +== 1.3 Specification == 63 63 63 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 64 64 65 +[[image:image-20220606162220-5.png]] 65 65 66 -== 1.3 Specification == 67 67 68 68 69 - (% style="color:#037691"%)**Common DC Characteristics:**69 +== 1.4 Applications == 70 70 71 -* Supply Voltage: 2.1v ~~ 3.6v 72 -* Operating Temperature: -40 ~~ 85°C 71 +* Smart Agriculture 73 73 73 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 74 + 74 74 76 +== 1.5 Firmware Change log == 75 75 76 -(% style="color:#037691" %)**NB-IoT Spec:** 77 77 78 -* - B1 @H-FDD: 2100MHz 79 -* - B3 @H-FDD: 1800MHz 80 -* - B8 @H-FDD: 900MHz 81 -* - B5 @H-FDD: 850MHz 82 -* - B20 @H-FDD: 800MHz 83 -* - B28 @H-FDD: 700MHz 79 +**LSE01 v1.0 :** Release 84 84 85 85 86 86 87 - Probe(%style="color:#037691"%)** Specification:**83 += 2. Configure LSE01 to connect to LoRaWAN network = 88 88 89 - MeasureVolume:Baseonthe centra pin oftheprobe, a cylinderwith 7cm diameter and 10cm height.85 +== 2.1 How it works == 90 90 91 -[[image:image-20220708101224-1.png]] 87 +((( 88 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 89 +))) 92 92 91 +((( 92 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 93 +))) 93 93 94 94 95 -== 1.4 Applications == 96 96 97 - *SmartAgriculture97 +== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 98 98 99 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 100 - 99 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 101 101 102 -== 1.5 Pin Definitions == 103 103 102 +[[image:1654503992078-669.png]] 104 104 105 -[[image:1657246476176-652.png]] 106 106 105 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 107 107 108 108 109 - = 2. UseNSE01 tocommunicate withIoTServer=108 +**Step 1**: Create a device in TTN with the OTAA keys from LSE01. 110 110 111 - ==2.1Howitworks==110 +Each LSE01 is shipped with a sticker with the default device EUI as below: 112 112 112 +[[image:image-20220606163732-6.jpeg]] 113 113 114 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 115 + 116 +**Add APP EUI in the application** 117 + 118 + 119 +[[image:1654504596150-405.png]] 120 + 121 + 122 + 123 +**Add APP KEY and DEV EUI** 124 + 125 +[[image:1654504683289-357.png]] 126 + 127 + 128 + 129 +**Step 2**: Power on LSE01 130 + 131 + 132 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 133 + 134 +[[image:image-20220606163915-7.png]] 135 + 136 + 137 +**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 138 + 139 +[[image:1654504778294-788.png]] 140 + 141 + 142 + 143 +== 2.3 Uplink Payload == 144 + 145 +(% class="wikigeneratedid" %) 146 +=== === 147 + 148 +=== 2.3.1 MOD~=0(Default Mode) === 149 + 150 +LSE01 will uplink payload via LoRaWAN with below payload format: 151 + 114 114 ((( 115 - The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware inNSE01 will get environment data from sensors and send the value to local NB-IoT networkviathe NB-IoT module. The NB-IoT network will forwardthis valueto IoTserverviathe protocoldefinedbyNSE01.153 +Uplink payload includes in total 11 bytes. 116 116 ))) 117 117 156 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 157 +|((( 158 +**Size** 118 118 160 +**(bytes)** 161 +)))|**2**|**2**|**2**|**2**|**2**|**1** 162 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 163 +Temperature 164 + 165 +(Reserve, Ignore now) 166 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 167 +MOD & Digital Interrupt 168 + 169 +(Optional) 170 +))) 171 + 172 + 173 + 174 +=== 2.3.2 MOD~=1(Original value) === 175 + 176 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 177 + 178 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 179 +|((( 180 +**Size** 181 + 182 +**(bytes)** 183 +)))|**2**|**2**|**2**|**2**|**2**|**1** 184 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 185 +Temperature 186 + 187 +(Reserve, Ignore now) 188 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 189 +MOD & Digital Interrupt 190 + 191 +(Optional) 192 +))) 193 + 194 + 195 + 196 +=== 2.3.3 Battery Info === 197 + 119 119 ((( 120 - Thediagram below showstheworkingflow in defaultfirmwareofNSE01:199 +Check the battery voltage for LSE01. 121 121 ))) 122 122 123 -[[image:image-20220708101605-2.png]] 202 +((( 203 +Ex1: 0x0B45 = 2885mV 204 +))) 124 124 125 125 ((( 207 +Ex2: 0x0B49 = 2889mV 208 +))) 209 + 210 + 211 + 212 +=== 2.3.4 Soil Moisture === 213 + 214 +((( 215 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 216 +))) 217 + 218 +((( 219 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 220 +))) 221 + 222 +((( 126 126 127 127 ))) 128 128 226 +((( 227 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 228 +))) 129 129 130 130 131 -== 2.2 Configure the NSE01 == 132 132 232 +=== 2.3.5 Soil Temperature === 133 133 134 -=== 2.2.1 Test Requirement === 234 +((( 235 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 236 +))) 135 135 238 +((( 239 +**Example**: 240 +))) 136 136 137 -To use NSE01 in your city, make sure meet below requirements: 242 +((( 243 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 244 +))) 138 138 139 - * Your local operator has already distributed a NB-IoT Network there.140 - *ThelocalNB-IoTnetworkusedthebandthatNSE01supports.141 - * Your operator is able to distribute the data received in their NB-IoT network to your IoT server.246 +((( 247 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 248 +))) 142 142 250 + 251 + 252 +=== 2.3.6 Soil Conductivity (EC) === 253 + 143 143 ((( 144 - Below figureshows our testingstructure.Here we have NB-IoTnetwork coverage by ChinaMobile, the bandthey useis B8. The NSE01 willuse CoAP((% style="color:red" %)120.24.4.116:5683)(%%)orrawUDP((%style="color:red" %)120.24.4.116:5601)(%%) orMQTT((% style="color:red" %)120.24.4.116:1883)(%%)orTCP((%style="color:red"%)120.24.4.116:5600)(%%)protocoltosenddatato thetest server255 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 145 145 ))) 146 146 258 +((( 259 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 260 +))) 147 147 148 -[[image:1657249419225-449.png]] 262 +((( 263 +Generally, the EC value of irrigation water is less than 800uS / cm. 264 +))) 149 149 266 +((( 267 + 268 +))) 150 150 270 +((( 271 + 272 +))) 151 151 152 -=== 2. 2.2Insert SIMcard===274 +=== 2.3.7 MOD === 153 153 154 - Insert theNB-IoTCardgetfromyourprovider.276 +Firmware version at least v2.1 supports changing mode. 155 155 156 - Userneed to take out the NB-IoTmoduleand inserttheSIM card like below:278 +For example, bytes[10]=90 157 157 280 +mod=(bytes[10]>>7)&0x01=1. 158 158 159 -[[image:1657249468462-536.png]] 160 160 283 +**Downlink Command:** 161 161 285 +If payload = 0x0A00, workmode=0 162 162 163 - ===2.2.3 ConnectUSB– TTL to NSE01toconfigureit===287 +If** **payload =** **0x0A01, workmode=1 164 164 289 + 290 + 291 +=== 2.3.8 Decode payload in The Things Network === 292 + 293 +While using TTN network, you can add the payload format to decode the payload. 294 + 295 + 296 +[[image:1654505570700-128.png]] 297 + 165 165 ((( 299 +The payload decoder function for TTN is here: 300 +))) 301 + 166 166 ((( 167 - User need to configure NSE01viaserialportto set the (% style="color:blue"%)**Server Address** / **Uplink Topic** (%%)toefinewhereandhow-to uplink packets. NSE01support AT Commands, usercan use a USB toTTL adapterct tond use AT Commands toconfigureit, as below.303 +LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 168 168 ))) 169 -))) 170 170 171 171 172 -**Connection:** 173 173 174 - (%style="background-color:yellow"%)USB TTL GND <~-~-~-~-> GND308 +== 2.4 Uplink Interval == 175 175 176 - (%style="background-color:yellow"%)USBTTLTXD<~-~-~-~->UART_RXD310 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 177 177 178 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 179 179 180 180 181 - InthePC, use belowserialtoolsettings:314 +== 2.5 Downlink Payload == 182 182 183 -* Baud: (% style="color:green" %)**9600** 184 -* Data bits:** (% style="color:green" %)8(%%)** 185 -* Stop bits: (% style="color:green" %)**1** 186 -* Parity: (% style="color:green" %)**None** 187 -* Flow Control: (% style="color:green" %)**None** 316 +By default, LSE50 prints the downlink payload to console port. 188 188 318 +[[image:image-20220606165544-8.png]] 319 + 320 + 189 189 ((( 190 - Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on asbelow, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.322 +**Examples:** 191 191 ))) 192 192 193 -[[image:image-20220708110657-3.png]] 325 +((( 326 + 327 +))) 194 194 195 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 329 +* ((( 330 +**Set TDC** 331 +))) 196 196 333 +((( 334 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 335 +))) 197 197 337 +((( 338 +Payload: 01 00 00 1E TDC=30S 339 +))) 198 198 199 -=== 2.2.4 Use CoAP protocol to uplink data === 341 +((( 342 +Payload: 01 00 00 3C TDC=60S 343 +))) 200 200 201 -(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 345 +((( 346 + 347 +))) 202 202 349 +* ((( 350 +**Reset** 351 +))) 203 203 204 -**Use below commands:** 353 +((( 354 +If payload = 0x04FF, it will reset the LSE01 355 +))) 205 205 206 -* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 207 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 208 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 209 209 210 - Forparameter description, please refer to AT command set358 +* **CFM** 211 211 212 - [[image:1657249793983-486.png]]360 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 213 213 214 214 215 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 216 216 217 - [[image:1657249831934-534.png]]364 +== 2.6 Show Data in DataCake IoT Server == 218 218 366 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 219 219 220 220 221 - ===2.2.5UseUDPprotocoltouplinkdata(Defaultprotocol)===369 +**Step 1**: Be sure that your device is programmed and properly connected to the network at this time. 222 222 223 -T hisfeatureissupportedsincefirmwareversionv1.0.1371 +**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 224 224 225 225 226 -* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 227 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 228 -* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 374 +[[image:1654505857935-743.png]] 229 229 230 -[[image:1657249864775-321.png]] 231 231 377 +[[image:1654505874829-548.png]] 232 232 233 - [[image:1657249930215-289.png]]379 +Step 3: Create an account or log in Datacake. 234 234 381 +Step 4: Search the LSE01 and add DevEUI. 235 235 236 236 237 - ===2.2.6Use MQTTprotocol to uplink data ===384 +[[image:1654505905236-553.png]] 238 238 239 -This feature is supported since firmware version v110 240 240 387 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 241 241 242 -* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 243 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 244 -* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 245 -* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 246 -* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 247 -* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 248 -* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 389 +[[image:1654505925508-181.png]] 249 249 250 -[[image:1657249978444-674.png]] 251 251 252 252 253 - [[image:1657249990869-686.png]]393 +== 2.7 Frequency Plans == 254 254 395 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 255 255 256 -((( 257 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 258 -))) 259 259 398 +=== 2.7.1 EU863-870 (EU868) === 260 260 400 +(% style="color:#037691" %)** Uplink:** 261 261 262 - === 2.2.7UseTCP protocolto uplink data ===402 +868.1 - SF7BW125 to SF12BW125 263 263 264 - Thisfeatureissupportedsincefirmware versionv110404 +868.3 - SF7BW125 to SF12BW125 and SF7BW250 265 265 406 +868.5 - SF7BW125 to SF12BW125 266 266 267 -* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 268 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 408 +867.1 - SF7BW125 to SF12BW125 269 269 270 - [[image:1657250217799-140.png]]410 +867.3 - SF7BW125 to SF12BW125 271 271 412 +867.5 - SF7BW125 to SF12BW125 272 272 273 - [[image:1657250255956-604.png]]414 +867.7 - SF7BW125 to SF12BW125 274 274 416 +867.9 - SF7BW125 to SF12BW125 275 275 418 +868.8 - FSK 276 276 277 -=== 2.2.8 Change Update Interval === 278 278 279 - User can use below command to change the(% style="color:green" %)**uplinkinterval**.421 +(% style="color:#037691" %)** Downlink:** 280 280 281 - * (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ SetUpdateIntervalto600s423 +Uplink channels 1-9 (RX1) 282 282 283 -((( 284 -(% style="color:red" %)**NOTE:** 285 -))) 425 +869.525 - SF9BW125 (RX2 downlink only) 286 286 287 -((( 288 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 289 -))) 290 290 291 291 429 +=== 2.7.2 US902-928(US915) === 292 292 293 - ==2.3UplinkPayload==431 +Used in USA, Canada and South America. Default use CHE=2 294 294 295 - Inthismode, uplink payload includes in total8bytes433 +(% style="color:#037691" %)**Uplink:** 296 296 297 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 298 -|=(% style="width: 50px;" %)((( 299 -**Size(bytes)** 300 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1** 301 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]] 435 +903.9 - SF7BW125 to SF10BW125 302 302 303 - Ifweusethe MQTT client tosubscribe to this MQTT topic, we can see the following information when the NSE01uplink data.437 +904.1 - SF7BW125 to SF10BW125 304 304 439 +904.3 - SF7BW125 to SF10BW125 305 305 306 - [[image:image-20220708111918-4.png]]441 +904.5 - SF7BW125 to SF10BW125 307 307 443 +904.7 - SF7BW125 to SF10BW125 308 308 309 - Thepayloadis ASCIIstring,representative same HEX:445 +904.9 - SF7BW125 to SF10BW125 310 310 311 -0 x72403155615900640c7817075e0a8c02f900 where:447 +905.1 - SF7BW125 to SF10BW125 312 312 313 -* Device ID: 0x 724031556159 = 724031556159 314 -* Version: 0x0064=100=1.0.0 449 +905.3 - SF7BW125 to SF10BW125 315 315 316 -* BAT: 0x0c78 = 3192 mV = 3.192V 317 -* Singal: 0x17 = 23 318 -* Soil Moisture: 0x075e= 1886 = 18.86 % 319 -* Soil Temperature:0x0a8c =2700=27 °C 320 -* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 321 -* Interrupt: 0x00 = 0 322 322 452 +(% style="color:#037691" %)**Downlink:** 323 323 454 +923.3 - SF7BW500 to SF12BW500 324 324 456 +923.9 - SF7BW500 to SF12BW500 325 325 326 - ==2.4PayloadExplanation andSensorInterface==458 +924.5 - SF7BW500 to SF12BW500 327 327 460 +925.1 - SF7BW500 to SF12BW500 328 328 329 - ===2.4.1 DeviceID===462 +925.7 - SF7BW500 to SF12BW500 330 330 331 - Bydefault,theDevice ID equaltothe last 6 bytes of IMEI.464 +926.3 - SF7BW500 to SF12BW500 332 332 333 - Usercanuse(% style="color:blue"%)**AT+DEUI**(%%) to set Device ID466 +926.9 - SF7BW500 to SF12BW500 334 334 335 - **Example:**468 +927.5 - SF7BW500 to SF12BW500 336 336 337 - AT+DEUI=A84041F15612470 +923.3 - SF12BW500(RX2 downlink only) 338 338 339 -The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 340 340 341 341 474 +=== 2.7.3 CN470-510 (CN470) === 342 342 343 - === 2.4.2 VersionInfo===476 +Used in China, Default use CHE=1 344 344 345 - Specifythesoftwareversion:x64=100,means firmware version1.00.478 +(% style="color:#037691" %)**Uplink:** 346 346 347 - For example: 0x00 64:this device is NSE01with firmware version1.0.0.480 +486.3 - SF7BW125 to SF12BW125 348 348 482 +486.5 - SF7BW125 to SF12BW125 349 349 484 +486.7 - SF7BW125 to SF12BW125 350 350 351 - === 2.4.3BatteryInfo===486 +486.9 - SF7BW125 to SF12BW125 352 352 353 -((( 354 -Check the battery voltage for LSE01. 355 -))) 488 +487.1 - SF7BW125 to SF12BW125 356 356 357 -((( 358 -Ex1: 0x0B45 = 2885mV 359 -))) 490 +487.3 - SF7BW125 to SF12BW125 360 360 361 -((( 362 -Ex2: 0x0B49 = 2889mV 363 -))) 492 +487.5 - SF7BW125 to SF12BW125 364 364 494 +487.7 - SF7BW125 to SF12BW125 365 365 366 366 367 -= ==2.4.4 SignalStrength ===497 +(% style="color:#037691" %)**Downlink:** 368 368 369 - NB-IoTNetworksignalStrength.499 +506.7 - SF7BW125 to SF12BW125 370 370 371 - **Ex1:0x1d=29**501 +506.9 - SF7BW125 to SF12BW125 372 372 373 - (% style="color:blue" %)**0**(%%)113dBmorless503 +507.1 - SF7BW125 to SF12BW125 374 374 375 - (%style="color:blue"%)**1**(%%)-111dBm505 +507.3 - SF7BW125 to SF12BW125 376 376 377 - (%style="color:blue"%)**2...30**(%%)-109dBm... -53dBm507 +507.5 - SF7BW125 to SF12BW125 378 378 379 - (%style="color:blue"%)**31** (%%) -51dBmorgreater509 +507.7 - SF7BW125 to SF12BW125 380 380 381 - (% style="color:blue" %)**99**(%%)Notknownor not detectable511 +507.9 - SF7BW125 to SF12BW125 382 382 513 +508.1 - SF7BW125 to SF12BW125 383 383 515 +505.3 - SF12BW125 (RX2 downlink only) 384 384 385 -=== 2.4.5 Soil Moisture === 386 386 387 -((( 388 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 389 -))) 390 390 391 -((( 392 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 393 -))) 519 +=== 2.7.4 AU915-928(AU915) === 394 394 395 -((( 396 - 397 -))) 521 +Default use CHE=2 398 398 399 -((( 400 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 401 -))) 523 +(% style="color:#037691" %)**Uplink:** 402 402 525 +916.8 - SF7BW125 to SF12BW125 403 403 527 +917.0 - SF7BW125 to SF12BW125 404 404 405 - === 2.4.6SoilTemperature===529 +917.2 - SF7BW125 to SF12BW125 406 406 407 -((( 408 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 409 -))) 531 +917.4 - SF7BW125 to SF12BW125 410 410 411 -((( 412 -**Example**: 413 -))) 533 +917.6 - SF7BW125 to SF12BW125 414 414 415 -((( 416 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 417 -))) 535 +917.8 - SF7BW125 to SF12BW125 418 418 419 -((( 420 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 421 -))) 537 +918.0 - SF7BW125 to SF12BW125 422 422 539 +918.2 - SF7BW125 to SF12BW125 423 423 424 424 425 - ===2.4.7 SoilConductivity (EC) ===542 +(% style="color:#037691" %)**Downlink:** 426 426 427 -((( 428 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 429 -))) 544 +923.3 - SF7BW500 to SF12BW500 430 430 431 -((( 432 -For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 433 -))) 546 +923.9 - SF7BW500 to SF12BW500 434 434 435 -((( 436 -Generally, the EC value of irrigation water is less than 800uS / cm. 437 -))) 548 +924.5 - SF7BW500 to SF12BW500 438 438 439 -((( 440 - 441 -))) 550 +925.1 - SF7BW500 to SF12BW500 442 442 443 -((( 444 - 445 -))) 552 +925.7 - SF7BW500 to SF12BW500 446 446 447 - ===2.4.8DigitalInterrupt===554 +926.3 - SF7BW500 to SF12BW500 448 448 449 - Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods.Whenthere is a trigger, the NSE01will send a packettothe server.556 +926.9 - SF7BW500 to SF12BW500 450 450 451 - Thecommandis:558 +927.5 - SF7BW500 to SF12BW500 452 452 453 - (% style="color:blue" %)**AT+INTMOD=3**(%%)~/~/(moreinfo about INMOD please refer [[**AT CommandManual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**560 +923.3 - SF12BW500(RX2 downlink only) 454 454 455 455 456 -The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up. 457 457 564 +=== 2.7.5 AS920-923 & AS923-925 (AS923) === 458 458 459 - Example:566 +(% style="color:#037691" %)**Default Uplink channel:** 460 460 461 - 0x(00):Normaluplinkpacket.568 +923.2 - SF7BW125 to SF10BW125 462 462 463 - 0x(01):InterruptUplinkPacket.570 +923.4 - SF7BW125 to SF10BW125 464 464 465 465 573 +(% style="color:#037691" %)**Additional Uplink Channel**: 466 466 467 - ===2.4.9+5VOutput===575 +(OTAA mode, channel added by JoinAccept message) 468 468 469 - NSE01willenable +5Voutputbeforeall samplinganddisable the +5vafter allsampling.577 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 470 470 579 +922.2 - SF7BW125 to SF10BW125 471 471 472 - The5Voutput time can be controlledby AT Command.581 +922.4 - SF7BW125 to SF10BW125 473 473 474 - (%style="color:blue"%)**AT+5VT=1000**583 +922.6 - SF7BW125 to SF10BW125 475 475 476 - Meansset5Vvalidtime tohave 1000ms.So the real 5V output will actually have1000ms + sampling time for other sensors.585 +922.8 - SF7BW125 to SF10BW125 477 477 587 +923.0 - SF7BW125 to SF10BW125 478 478 589 +922.0 - SF7BW125 to SF10BW125 479 479 480 -== 2.5 Downlink Payload == 481 481 482 - Bydefault, NSE01printsthedownlinkpayloadtoconsoleport.592 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 483 483 484 - [[image:image-20220708133731-5.png]]594 +923.6 - SF7BW125 to SF10BW125 485 485 596 +923.8 - SF7BW125 to SF10BW125 486 486 487 -((( 488 -(% style="color:blue" %)**Examples:** 489 -))) 598 +924.0 - SF7BW125 to SF10BW125 490 490 491 -((( 492 - 493 -))) 600 +924.2 - SF7BW125 to SF10BW125 494 494 495 -* ((( 496 -(% style="color:blue" %)**Set TDC** 497 -))) 602 +924.4 - SF7BW125 to SF10BW125 498 498 499 -((( 500 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 501 -))) 604 +924.6 - SF7BW125 to SF10BW125 502 502 503 -((( 504 -Payload: 01 00 00 1E TDC=30S 505 -))) 506 506 507 -((( 508 -Payload: 01 00 00 3C TDC=60S 509 -))) 607 +(% style="color:#037691" %)** Downlink:** 510 510 511 -((( 512 - 513 -))) 609 +Uplink channels 1-8 (RX1) 514 514 515 -* ((( 516 -(% style="color:blue" %)**Reset** 517 -))) 611 +923.2 - SF10BW125 (RX2) 518 518 519 -((( 520 -If payload = 0x04FF, it will reset the NSE01 521 -))) 522 522 523 523 524 - *(%style="color:blue"%)**INTMOD**615 +=== 2.7.6 KR920-923 (KR920) === 525 525 526 -D ownlinkPayload:06000003, Set AT+INTMOD=3617 +Default channel: 527 527 619 +922.1 - SF7BW125 to SF12BW125 528 528 621 +922.3 - SF7BW125 to SF12BW125 529 529 530 - ==2.6LEDIndicator==623 +922.5 - SF7BW125 to SF12BW125 531 531 532 -((( 533 -The NSE01 has an internal LED which is to show the status of different state. 534 534 626 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 535 535 536 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 537 -* Then the LED will be on for 1 second means device is boot normally. 538 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 539 -* For each uplink probe, LED will be on for 500ms. 540 -))) 628 +922.1 - SF7BW125 to SF12BW125 541 541 630 +922.3 - SF7BW125 to SF12BW125 542 542 632 +922.5 - SF7BW125 to SF12BW125 543 543 634 +922.7 - SF7BW125 to SF12BW125 544 544 545 - ==2.7InstallationinSoil ==636 +922.9 - SF7BW125 to SF12BW125 546 546 547 - __**Measurementthesoilsurface**__638 +923.1 - SF7BW125 to SF12BW125 548 548 549 - Choose the proper measuring position.Avoidthe probe to touch rocks or hard things.Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]640 +923.3 - SF7BW125 to SF12BW125 550 550 551 -[[image:1657259653666-883.png]] 552 552 643 +(% style="color:#037691" %)**Downlink:** 553 553 554 -((( 555 - 645 +Uplink channels 1-7(RX1) 556 556 557 -((( 558 -Dig a hole with diameter > 20CM. 559 -))) 647 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 560 560 561 -((( 562 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 563 -))) 564 -))) 565 565 566 -[[image:1654506665940-119.png]] 567 567 568 -((( 569 - 570 -))) 651 +=== 2.7.7 IN865-867 (IN865) === 571 571 653 +(% style="color:#037691" %)** Uplink:** 572 572 573 - == 2.8FirmwareChange Log==655 +865.0625 - SF7BW125 to SF12BW125 574 574 657 +865.4025 - SF7BW125 to SF12BW125 575 575 576 - DownloadURL&FirmwareChange log659 +865.9850 - SF7BW125 to SF12BW125 577 577 578 -[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 579 579 662 +(% style="color:#037691" %) **Downlink:** 580 580 581 -Up grade Instruction:[[Upgrade_Firmware>>||anchor="H"]]664 +Uplink channels 1-3 (RX1) 582 582 666 +866.550 - SF10BW125 (RX2) 583 583 584 584 585 -== 2.9 Battery Analysis == 586 586 587 -=== 2.9.1 Battery Type === 588 588 671 +== 2.8 LED Indicator == 589 589 590 -The NSE01battery is acombinationof an 8500mAh Li/SOCI2 Battery and a Super Capacitor. Thebattery isnone-rechargeablebatterytypewitha low dischargerate (<2% per year). This typeofbatteryiscommonlyusedin IoTdevicessuchas water meter.673 +The LSE01 has an internal LED which is to show the status of different state. 591 591 675 +* Blink once when device power on. 676 +* Solid ON for 5 seconds once device successful Join the network. 677 +* Blink once when device transmit a packet. 592 592 593 -The battery is designed to last for several years depends on the actually use environment and update interval. 594 594 595 595 596 - Thebatteryrelated documentsasbelow:681 +== 2.9 Installation in Soil == 597 597 598 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 599 -* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 600 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 683 +**Measurement the soil surface** 601 601 685 + 686 +[[image:1654506634463-199.png]] 687 + 602 602 ((( 603 -[[image:image-20220708140453-6.png]] 689 +((( 690 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 604 604 ))) 692 +))) 605 605 606 606 695 +[[image:1654506665940-119.png]] 607 607 608 -=== 2.9.2 Power consumption Analyze === 697 +((( 698 +Dig a hole with diameter > 20CM. 699 +))) 609 609 610 610 ((( 611 - Draginobattery powered productare allrunsinLow Powermode. Wehavean update battery calculator whichbase onthemeasurementof the realdevice. User canuse this calculatorto checkthebatterylife andcalculatethe batterylifeif want to use different transmit interval.702 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 612 612 ))) 613 613 614 614 706 +== 2.10 Firmware Change Log == 707 + 615 615 ((( 616 - Instructiontouseasbelow:709 +**Firmware download link:** 617 617 ))) 618 618 619 619 ((( 620 - (% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:[[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]713 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 621 621 ))) 622 622 716 +((( 717 + 718 +))) 623 623 624 624 ((( 625 - (% style="color:blue" %)**Step2: **(%%)Openithoose721 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 626 626 ))) 627 627 628 - *(((629 - ProductModel724 +((( 725 + 630 630 ))) 631 -* ((( 632 -Uplink Interval 727 + 728 +((( 729 +**V1.0.** 633 633 ))) 634 -* ((( 635 -Working Mode 636 -))) 637 637 638 638 ((( 639 - And theLifeexpectation in difference casewill be shown on the right.733 +Release 640 640 ))) 641 641 642 -[[image:image-20220708141352-7.jpeg]] 643 643 737 +== 2.11 Battery Analysis == 644 644 739 +=== 2.11.1 Battery Type === 645 645 646 -=== 2.9.3 Battery Note === 741 +((( 742 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 743 +))) 647 647 648 648 ((( 649 -The Li-SICObattery is designedfor small current/ longperiod application. It isnotgood to use a high current,short period transmit method. Therecommendedminimum period for use ofthis batteryis5minutes. Ifyou useshorterperiod time to transmitLoRa,thenthe battery life may be decreased.746 +The battery is designed to last for more than 5 years for the LSN50. 650 650 ))) 651 651 749 +((( 750 +((( 751 +The battery-related documents are as below: 752 +))) 753 +))) 652 652 755 +* ((( 756 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 757 +))) 758 +* ((( 759 +[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 760 +))) 761 +* ((( 762 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 763 +))) 653 653 654 - ===2.9.4 Replacethe battery ===765 + [[image:image-20220606171726-9.png]] 655 655 767 + 768 + 769 +=== 2.11.2 Battery Note === 770 + 656 656 ((( 657 -The defaultbatterypackofNSE01includesaER26500 plussupercapacitor. Ifusercan'tfind this pack locally,theycanfindER26500 orquivalence withoutthe SPC1520 capacitor, which will alsowork inmostcase. TheSPCcanlarge thebatterylifeforhigh frequency use(update periodbelow5minutes).772 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 658 658 ))) 659 659 660 660 661 661 662 -= 3. AccessNB-IoTModule =777 +=== 2.11.3 Replace the battery === 663 663 664 664 ((( 665 - Userscan directlyaccesstheAT command setoftheNB-IoTmodule.780 +If Battery is lower than 2.7v, user should replace the battery of LSE01. 666 666 ))) 667 667 668 668 ((( 669 - The AT Commandsetcanrefer theBC35-G NB-IoTModuleATCommand: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]]784 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 670 670 ))) 671 671 672 -[[image:1657261278785-153.png]] 787 +((( 788 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 789 +))) 673 673 674 674 675 675 676 -= 4.793 += 3. Using the AT Commands = 677 677 678 -== 4.1795 +== 3.1 Access AT Commands == 679 679 680 -See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 681 681 798 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 682 682 683 - AT+<CMD>? : Helpon<CMD>800 +[[image:1654501986557-872.png||height="391" width="800"]] 684 684 685 -AT+<CMD> : Run <CMD> 686 686 687 - AT+<CMD>=<value>: Setthevalue803 +Or if you have below board, use below connection: 688 688 689 -AT+<CMD>=? : Get the value 690 690 806 +[[image:1654502005655-729.png||height="503" width="801"]] 691 691 808 + 809 + 810 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 811 + 812 + 813 + [[image:1654502050864-459.png||height="564" width="806"]] 814 + 815 + 816 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]] 817 + 818 + 819 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 820 + 821 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 822 + 823 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 824 + 825 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 826 + 827 + 692 692 (% style="color:#037691" %)**General Commands**(%%) 693 693 694 -AT 830 +(% style="background-color:#dcdcdc" %)**AT**(%%) : Attention 695 695 696 -AT? 832 +(% style="background-color:#dcdcdc" %)**AT?**(%%) : Short Help 697 697 698 -ATZ 834 +(% style="background-color:#dcdcdc" %)**ATZ**(%%) : MCU Reset 699 699 700 -AT+TDC 836 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%) : Application Data Transmission Interval 701 701 702 -AT+CFG : Print all configurations 703 703 704 - AT+CFGMOD: Workingmode selection839 +(% style="color:#037691" %)**Keys, IDs and EUIs management** 705 705 706 -AT+I NTMOD:Setthe trigger interruptmode841 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%) : Application EUI 707 707 708 -AT+ 5VTSetextend the timeof5V power843 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%) : Application Key 709 709 710 -AT+P ROChooseagreement845 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%) : Application Session Key 711 711 712 -AT+ WEIGREGet weightorsetweight to 0847 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%) : Device Address 713 713 714 -AT+ WEIGAPGet or SettheGapValue of weight849 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%) : Device EUI 715 715 716 -AT+ RXDL: Extendthe sendingandreceivingtime851 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%) : Network ID (You can enter this command change only after successful network connection) 717 717 718 -AT+ CNTFACGettcountingparameters853 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%) : Network Session Key Joining and sending date on LoRa network 719 719 720 -AT+ SERVADDR:ServerAddress855 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%) : Confirm Mode 721 721 857 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 722 722 723 -(% style="color:# 037691" %)**COAPManagement**859 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%) : Join LoRa? Network 724 724 725 -AT+ URIsourceparameters861 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%) : LoRa? Network Join Mode 726 726 863 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 727 727 728 -(% style="color:# 037691" %)**UDPManagement**865 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%) : Print Last Received Data in Raw Format 729 729 730 -AT+C FM:Uploadconfirmationmode (onlyvalid forUDP)867 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%) : Print Last Received Data in Binary Format 731 731 869 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 732 732 733 -(% style="color:# 037691" %)**MQTTManagement**871 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%) : Send Hexadecimal Data 734 734 735 -AT+CLIENT : Get or Set MQTT client 736 736 737 - AT+UNAMEGetSetMQTT Username874 +(% style="color:#037691" %)**LoRa Network Management** 738 738 739 -AT+ PWDGetor SetMQTT password876 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%) : Adaptive Rate 740 740 741 -AT+ PUBTOPICGetorSetMQTTpublishtopic878 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%) : LoRa Class(Currently only support class A 742 742 743 -AT+ SUBTOPIC :GetorSetMQTT subscriptiontopic880 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%) : Duty Cycle Setting 744 744 882 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 745 745 746 -(% style="color:# 037691" %)**Information**884 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink 747 747 748 -AT+F DRctoryDataReset886 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%) : Frame Counter Uplink 749 749 750 -AT+ PWORDSerialAccessPassword888 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%) : Join Accept Delay1 751 751 890 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 752 752 892 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 753 753 754 -= 5.FAQ=894 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%) : Receive Delay1 755 755 756 -= =5.1HowtoUpgradeFirmware==896 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%) : Receive Delay2 757 757 898 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 758 758 900 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 901 + 902 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 903 + 904 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 905 + 906 + 907 +(% style="color:#037691" %)**Information** 908 + 909 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 910 + 911 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 912 + 913 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 914 + 915 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 916 + 917 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 918 + 919 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 920 + 921 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 922 + 923 + 924 += 4. FAQ = 925 + 926 +== 4.1 How to change the LoRa Frequency Bands/Region? == 927 + 759 759 ((( 760 -User can upgrade the firmware for 1) bug fix, 2) new feature release. 929 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 930 +When downloading the images, choose the required image file for download. 761 761 ))) 762 762 763 763 ((( 764 - Pleasesee this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]934 + 765 765 ))) 766 766 767 767 ((( 768 - (%style="color:red"%)Notice,NSE01andLSE01share thememotherboard.Theyuse thesameconnection andmethodto update.938 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 769 769 ))) 770 770 941 +((( 942 + 943 +))) 771 771 945 +((( 946 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 947 +))) 772 772 773 -= 6. Trouble Shooting = 949 +((( 950 + 951 +))) 774 774 775 -== 6.1 Connection problem when uploading firmware == 953 +((( 954 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 955 +))) 776 776 957 +[[image:image-20220606154726-3.png]] 777 777 778 -(% class="wikigeneratedid" %) 959 + 960 +When you use the TTN network, the US915 frequency bands use are: 961 + 962 +* 903.9 - SF7BW125 to SF10BW125 963 +* 904.1 - SF7BW125 to SF10BW125 964 +* 904.3 - SF7BW125 to SF10BW125 965 +* 904.5 - SF7BW125 to SF10BW125 966 +* 904.7 - SF7BW125 to SF10BW125 967 +* 904.9 - SF7BW125 to SF10BW125 968 +* 905.1 - SF7BW125 to SF10BW125 969 +* 905.3 - SF7BW125 to SF10BW125 970 +* 904.6 - SF8BW500 971 + 779 779 ((( 780 - (%style="font-size:14px"%)**Pleasesee:**(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color:rgb(255,255,255);font-size:14px;"]]973 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 781 781 ))) 782 782 976 +(% class="box infomessage" %) 977 +((( 978 +**AT+CHE=2** 979 +))) 783 783 981 +(% class="box infomessage" %) 982 +((( 983 +**ATZ** 984 +))) 784 784 785 -== 6.2 AT Command input doesn't work == 986 +((( 987 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 988 +))) 786 786 787 787 ((( 788 - Inthe case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.991 + 789 789 ))) 790 790 994 +((( 995 +The **AU915** band is similar. Below are the AU915 Uplink Channels. 996 +))) 791 791 998 +[[image:image-20220606154825-4.png]] 792 792 793 -= 7. Order Info = 794 794 795 795 796 - PartNumber**:** (% style="color:#4f81bd"%)**NSE01**1002 += 5. Trouble Shooting = 797 797 1004 +== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 798 798 1006 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 1007 + 1008 + 1009 +== 5.2 AT Command input doesn’t work == 1010 + 1011 +((( 1012 +In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1013 +))) 1014 + 1015 + 1016 +== 5.3 Device rejoin in at the second uplink packet == 1017 + 1018 +(% style="color:#4f81bd" %)**Issue describe as below:** 1019 + 1020 +[[image:1654500909990-784.png]] 1021 + 1022 + 1023 +(% style="color:#4f81bd" %)**Cause for this issue:** 1024 + 1025 +((( 1026 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 1027 +))) 1028 + 1029 + 1030 +(% style="color:#4f81bd" %)**Solution: ** 1031 + 1032 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 1033 + 1034 +[[image:1654500929571-736.png||height="458" width="832"]] 1035 + 1036 + 1037 += 6. Order Info = 1038 + 1039 + 1040 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 1041 + 1042 + 1043 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 1044 + 1045 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 1046 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 1047 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 1048 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 1049 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1050 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1051 +* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1052 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1053 + 1054 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1055 + 1056 +* (% style="color:red" %)**4**(%%): 4000mAh battery 1057 +* (% style="color:red" %)**8**(%%): 8500mAh battery 1058 + 799 799 (% class="wikigeneratedid" %) 800 800 ((( 801 801 802 802 ))) 803 803 804 -= 8.1064 += 7. Packing Info = 805 805 806 806 ((( 807 807 808 808 809 809 (% style="color:#037691" %)**Package Includes**: 1070 +))) 810 810 811 - 812 -* NSE01 NB-IoT Soil Moisture & EC Sensor x 1 813 -* External antenna x 1 1072 +* ((( 1073 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 814 814 ))) 815 815 816 816 ((( ... ... @@ -817,20 +817,30 @@ 817 817 818 818 819 819 (% style="color:#037691" %)**Dimension and weight**: 1080 +))) 820 820 821 - 822 -* Size: 195 x 125 x 55 mm 823 -* Weight: 420g 1082 +* ((( 1083 +Device Size: cm 824 824 ))) 1085 +* ((( 1086 +Device Weight: g 1087 +))) 1088 +* ((( 1089 +Package Size / pcs : cm 1090 +))) 1091 +* ((( 1092 +Weight / pcs : g 825 825 826 -((( 827 - 828 828 829 - 830 830 831 831 ))) 832 832 833 -= 9.1098 += 8. Support = 834 834 835 835 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 836 836 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1102 + 1103 + 1104 +~)~)~) 1105 +~)~)~) 1106 +~)~)~)
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -102.7 KB - Content