Changes for page NDDS75 -- NB-IoT Distance Detect Sensor User Manual
Last modified by Bei Jinggeng on 2024/05/31 09:53
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 24 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - NSE01NB-IoTSoil Moisture & EC Sensor User Manual1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -3,16 +3,8 @@ 3 3 4 4 5 5 6 +**Contents:** 6 6 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 -**Table of Contents:** 15 - 16 16 {{toc/}} 17 17 18 18 ... ... @@ -20,797 +20,1045 @@ 20 20 21 21 22 22 23 -= 1. 15 += 1. Introduction = 24 24 25 -== 1.1 17 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 26 26 27 27 ((( 28 - 20 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 21 +))) 29 29 30 -Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 23 +((( 24 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 25 +))) 31 31 32 -It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 27 +((( 28 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 29 +))) 33 33 34 -The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 31 +((( 32 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 33 +))) 35 35 36 -NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years. 37 - 38 - 35 +((( 36 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 39 39 ))) 40 40 39 + 41 41 [[image:1654503236291-817.png]] 42 42 43 43 44 -[[image:165 7245163077-232.png]]43 +[[image:1654503265560-120.png]] 45 45 46 46 47 47 48 -== 1.2 47 +== 1.2 Features == 49 49 50 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 49 +* LoRaWAN 1.0.3 Class A 50 +* Ultra low power consumption 51 51 * Monitor Soil Moisture 52 52 * Monitor Soil Temperature 53 53 * Monitor Soil Conductivity 54 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 54 54 * AT Commands to change parameters 55 55 * Uplink on periodically 56 56 * Downlink to change configure 57 57 * IP66 Waterproof Enclosure 58 -* Ultra-Low Power consumption 59 -* AT Commands to change parameters 60 -* Micro SIM card slot for NB-IoT SIM 61 -* 8500mAh Battery for long term use 59 +* 4000mAh or 8500mAh Battery for long term use 62 62 61 +== 1.3 Specification == 63 63 63 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 64 64 65 +[[image:image-20220606162220-5.png]] 65 65 66 -== 1.3 Specification == 67 67 68 68 69 - (% style="color:#037691"%)**Common DC Characteristics:**69 +== 1.4 Applications == 70 70 71 -* Supply Voltage: 2.1v ~~ 3.6v 72 -* Operating Temperature: -40 ~~ 85°C 71 +* Smart Agriculture 73 73 73 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 74 + 74 74 76 +== 1.5 Firmware Change log == 75 75 76 -(% style="color:#037691" %)**NB-IoT Spec:** 77 77 78 -* - B1 @H-FDD: 2100MHz 79 -* - B3 @H-FDD: 1800MHz 80 -* - B8 @H-FDD: 900MHz 81 -* - B5 @H-FDD: 850MHz 82 -* - B20 @H-FDD: 800MHz 83 -* - B28 @H-FDD: 700MHz 79 +**LSE01 v1.0 :** Release 84 84 85 85 86 86 87 - Probe(%style="color:#037691"%)** Specification:**83 += 2. Configure LSE01 to connect to LoRaWAN network = 88 88 89 - MeasureVolume:Baseonthe centra pin oftheprobe, a cylinderwith 7cm diameter and 10cm height.85 +== 2.1 How it works == 90 90 91 -[[image:image-20220708101224-1.png]] 87 +((( 88 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 89 +))) 92 92 91 +((( 92 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 93 +))) 93 93 94 94 95 -== 1.4 Applications == 96 96 97 - *SmartAgriculture97 +== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 98 98 99 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 100 - 99 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 101 101 102 -== 1.5 Pin Definitions == 103 103 102 +[[image:1654503992078-669.png]] 104 104 105 -[[image:1657246476176-652.png]] 106 106 105 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 107 107 108 108 109 - = 2. UseNSE01 tocommunicate withIoTServer=108 +**Step 1**: Create a device in TTN with the OTAA keys from LSE01. 110 110 111 - ==2.1Howitworks==110 +Each LSE01 is shipped with a sticker with the default device EUI as below: 112 112 112 +[[image:image-20220606163732-6.jpeg]] 113 113 114 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 115 + 116 +**Add APP EUI in the application** 117 + 118 + 119 +[[image:1654504596150-405.png]] 120 + 121 + 122 + 123 +**Add APP KEY and DEV EUI** 124 + 125 +[[image:1654504683289-357.png]] 126 + 127 + 128 + 129 +**Step 2**: Power on LSE01 130 + 131 + 132 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 133 + 134 +[[image:image-20220606163915-7.png]] 135 + 136 + 137 +**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 138 + 139 +[[image:1654504778294-788.png]] 140 + 141 + 142 + 143 +== 2.3 Uplink Payload == 144 + 145 +(% class="wikigeneratedid" %) 146 +=== === 147 + 148 +=== 2.3.1 MOD~=0(Default Mode) === 149 + 150 +LSE01 will uplink payload via LoRaWAN with below payload format: 151 + 114 114 ((( 115 - The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware inNSE01 will get environment data from sensors and send the value to local NB-IoT networkviathe NB-IoT module. The NB-IoT network will forwardthis valueto IoTserverviathe protocoldefinedbyNSE01.153 +Uplink payload includes in total 11 bytes. 116 116 ))) 117 117 156 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 157 +|((( 158 +**Size** 118 118 119 -((( 120 -The diagram below shows the working flow in default firmware of NSE01: 160 +**(bytes)** 161 +)))|**2**|**2**|**2**|**2**|**2**|**1** 162 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 163 +Temperature 164 + 165 +(Reserve, Ignore now) 166 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 167 +MOD & Digital Interrupt 168 + 169 +(Optional) 121 121 ))) 122 122 123 -[[image:image-20220708101605-2.png]] 124 124 173 + 174 +=== 2.3.2 MOD~=1(Original value) === 175 + 176 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 177 + 178 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 179 +|((( 180 +**Size** 181 + 182 +**(bytes)** 183 +)))|**2**|**2**|**2**|**2**|**2**|**1** 184 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 185 +Temperature 186 + 187 +(Reserve, Ignore now) 188 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 189 +MOD & Digital Interrupt 190 + 191 +(Optional) 192 +))) 193 + 194 + 195 + 196 +=== 2.3.3 Battery Info === 197 + 125 125 ((( 126 - 199 +Check the battery voltage for LSE01. 127 127 ))) 128 128 202 +((( 203 +Ex1: 0x0B45 = 2885mV 204 +))) 129 129 206 +((( 207 +Ex2: 0x0B49 = 2889mV 208 +))) 130 130 131 -== 2.2 Configure the NSE01 == 132 132 133 133 134 -=== 2. 2.1TestRequirement===212 +=== 2.3.4 Soil Moisture === 135 135 214 +((( 215 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 216 +))) 136 136 137 -To use NSE01 in your city, make sure meet below requirements: 218 +((( 219 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 220 +))) 138 138 139 - * Your local operator has already distributed a NB-IoT Network there.140 - *The local NB-IoT network used the band that NSE01 supports.141 - * Your operator is able to distribute the data received in their NB-IoT network to your IoT server.222 +((( 223 + 224 +))) 142 142 143 143 ((( 144 - Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%)or raw UDP((% style="color:red"%)120.24.4.116:5601)(%%)or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)orTCP((% style="color:red"%)120.24.4.116:5600)(%%)protocol to send data to the test server227 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 145 145 ))) 146 146 147 147 148 -[[image:1657249419225-449.png]] 149 149 232 +=== 2.3.5 Soil Temperature === 150 150 234 +((( 235 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 236 +))) 151 151 152 -=== 2.2.2 Insert SIM card === 238 +((( 239 +**Example**: 240 +))) 153 153 154 -Insert the NB-IoT Card get from your provider. 242 +((( 243 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 244 +))) 155 155 156 -User need to take out the NB-IoT module and insert the SIM card like below: 246 +((( 247 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 248 +))) 157 157 158 158 159 -[[image:1657249468462-536.png]] 160 160 252 +=== 2.3.6 Soil Conductivity (EC) === 161 161 254 +((( 255 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 256 +))) 162 162 163 -=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 258 +((( 259 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 260 +))) 164 164 165 165 ((( 263 +Generally, the EC value of irrigation water is less than 800uS / cm. 264 +))) 265 + 166 166 ((( 167 - Userneed to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.267 + 168 168 ))) 269 + 270 +((( 271 + 169 169 ))) 170 170 274 +=== 2.3.7 MOD === 171 171 172 - **Connection:**276 +Firmware version at least v2.1 supports changing mode. 173 173 174 - (% style="background-color:yellow"%)USB TTL GND <~-~-~-~-> GND278 +For example, bytes[10]=90 175 175 176 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~->UART_RXD280 +mod=(bytes[10]>>7)&0x01=1. 177 177 178 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 179 179 283 +**Downlink Command:** 180 180 181 -I nthePC,usebelowserial tool settings:285 +If payload = 0x0A00, workmode=0 182 182 183 -* Baud: (% style="color:green" %)**9600** 184 -* Data bits:** (% style="color:green" %)8(%%)** 185 -* Stop bits: (% style="color:green" %)**1** 186 -* Parity: (% style="color:green" %)**None** 187 -* Flow Control: (% style="color:green" %)**None** 287 +If** **payload =** **0x0A01, workmode=1 188 188 289 + 290 + 291 +=== 2.3.8 Decode payload in The Things Network === 292 + 293 +While using TTN network, you can add the payload format to decode the payload. 294 + 295 + 296 +[[image:1654505570700-128.png]] 297 + 189 189 ((( 190 - Make sure theswitch is in FLASHposition,then powerondevice by connecting the jumperonNSE01. NSE01 will output system infoonce poweronasbelow, we can enter the(% style="color:green" %)**password:12345678**(%%) to access AT Command input.299 +The payload decoder function for TTN is here: 191 191 ))) 192 192 193 -[[image:image-20220708110657-3.png]] 302 +((( 303 +LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 304 +))) 194 194 195 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 196 196 197 197 308 +== 2.4 Uplink Interval == 198 198 199 - ===2.2.4APprotocoltouplink data ===310 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 200 200 201 -(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 202 202 203 203 204 - **Usebelowcommands:**314 +== 2.5 Downlink Payload == 205 205 206 -* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 207 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 208 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 316 +By default, LSE50 prints the downlink payload to console port. 209 209 210 - For parameter description, pleaserefer to AT command set318 +[[image:image-20220606165544-8.png]] 211 211 212 -[[image:1657249793983-486.png]] 213 213 321 +**Examples:** 214 214 215 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 216 216 217 - [[image:1657249831934-534.png]]324 +* **Set TDC** 218 218 326 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 219 219 328 +Payload: 01 00 00 1E TDC=30S 220 220 221 - === 2.2.5 Use UDPprotocoltouplinkdata(Defaultprotocol)===330 +Payload: 01 00 00 3C TDC=60S 222 222 223 -This feature is supported since firmware version v1.0.1 224 224 333 +* **Reset** 225 225 226 -* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 227 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 228 -* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 335 +If payload = 0x04FF, it will reset the LSE01 229 229 230 -[[image:1657249864775-321.png]] 231 231 338 +* **CFM** 232 232 233 - [[image:1657249930215-289.png]]340 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 234 234 235 235 236 236 237 -== =2.2.6Use MQTT protocoltouplinkdata ===344 +== 2.6 Show Data in DataCake IoT Server == 238 238 239 -Th isfeature is supportedsincefirmwareversionv110346 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 240 240 241 241 242 -* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 243 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 244 -* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 245 -* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 246 -* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 247 -* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 248 -* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 349 +**Step 1**: Be sure that your device is programmed and properly connected to the network at this time. 249 249 250 - [[image:1657249978444-674.png]]351 +**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 251 251 252 252 253 -[[image:165 7249990869-686.png]]354 +[[image:1654505857935-743.png]] 254 254 255 255 256 -((( 257 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 258 -))) 357 +[[image:1654505874829-548.png]] 259 259 359 +Step 3: Create an account or log in Datacake. 260 260 361 +Step 4: Search the LSE01 and add DevEUI. 261 261 262 -=== 2.2.7 Use TCP protocol to uplink data === 263 263 264 - This feature is supported since firmwareversion v110364 +[[image:1654505905236-553.png]] 265 265 266 266 267 -* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 268 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 367 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 269 269 270 -[[image:165 7250217799-140.png]]369 +[[image:1654505925508-181.png]] 271 271 272 272 273 -[[image:1657250255956-604.png]] 274 274 373 +== 2.7 Frequency Plans == 275 275 375 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 276 276 277 -=== 2.2.8 Change Update Interval === 278 278 279 - Usercanusebelow command to change the(% style="color:green" %)**uplinkinterval**.378 +=== 2.7.1 EU863-870 (EU868) === 280 280 281 - *(% style="color:blue" %)**AT+TDC=600** (%%)~/~/ SetUpdate Intervalto 600s380 +(% style="color:#037691" %)** Uplink:** 282 282 283 -((( 284 -(% style="color:red" %)**NOTE:** 285 -))) 382 +868.1 - SF7BW125 to SF12BW125 286 286 287 -((( 288 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 289 -))) 384 +868.3 - SF7BW125 to SF12BW125 and SF7BW250 290 290 386 +868.5 - SF7BW125 to SF12BW125 291 291 388 +867.1 - SF7BW125 to SF12BW125 292 292 293 - == 2.3UplinkPayload==390 +867.3 - SF7BW125 to SF12BW125 294 294 295 - Inthismode,uplink payload includes intotal18 bytes392 +867.5 - SF7BW125 to SF12BW125 296 296 297 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 298 -|=(% style="width: 50px;" %)((( 299 -**Size(bytes)** 300 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1** 301 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]] 394 +867.7 - SF7BW125 to SF12BW125 302 302 303 - Ifweusethe MQTT client tosubscribe to this MQTT topic, we can see the following information when the NSE01uplink data.396 +867.9 - SF7BW125 to SF12BW125 304 304 398 +868.8 - FSK 305 305 306 -[[image:image-20220708111918-4.png]] 307 307 401 +(% style="color:#037691" %)** Downlink:** 308 308 309 - Thepayloadis ASCII string,representativeameHEX:403 +Uplink channels 1-9 (RX1) 310 310 311 - 0x72403155615900640c7817075e0a8c02f900where:405 +869.525 - SF9BW125 (RX2 downlink only) 312 312 313 -* Device ID: 0x 724031556159 = 724031556159 314 -* Version: 0x0064=100=1.0.0 315 315 316 -* BAT: 0x0c78 = 3192 mV = 3.192V 317 -* Singal: 0x17 = 23 318 -* Soil Moisture: 0x075e= 1886 = 18.86 % 319 -* Soil Temperature:0x0a8c =2700=27 °C 320 -* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 321 -* Interrupt: 0x00 = 0 322 322 409 +=== 2.7.2 US902-928(US915) === 323 323 411 +Used in USA, Canada and South America. Default use CHE=2 324 324 413 +(% style="color:#037691" %)**Uplink:** 325 325 326 - == 2.4PayloadExplanation andSensorInterface==415 +903.9 - SF7BW125 to SF10BW125 327 327 417 +904.1 - SF7BW125 to SF10BW125 328 328 329 - === 2.4.1DeviceID===419 +904.3 - SF7BW125 to SF10BW125 330 330 331 - Bydefault,theDevice ID equaltothe last 6 bytes of IMEI.421 +904.5 - SF7BW125 to SF10BW125 332 332 333 - Usercanuse(% style="color:blue"%)**AT+DEUI**(%%) to set Device ID423 +904.7 - SF7BW125 to SF10BW125 334 334 335 - **Example:**425 +904.9 - SF7BW125 to SF10BW125 336 336 337 - AT+DEUI=A84041F15612427 +905.1 - SF7BW125 to SF10BW125 338 338 339 - TheDevice ID is stored in a none-erasearea,Upgradethe firmwareorrun AT+FDR won't erase Device ID.429 +905.3 - SF7BW125 to SF10BW125 340 340 341 341 432 +(% style="color:#037691" %)**Downlink:** 342 342 343 - ===2.4.2VersionInfo===434 +923.3 - SF7BW500 to SF12BW500 344 344 345 - Specifythesoftware version:0x64=100,means firmware version1.00.436 +923.9 - SF7BW500 to SF12BW500 346 346 347 - For example: 0x00 64:this device is NSE01with firmware version1.0.0.438 +924.5 - SF7BW500 to SF12BW500 348 348 440 +925.1 - SF7BW500 to SF12BW500 349 349 442 +925.7 - SF7BW500 to SF12BW500 350 350 351 - ===2.4.3atteryInfo===444 +926.3 - SF7BW500 to SF12BW500 352 352 353 -((( 354 -Check the battery voltage for LSE01. 355 -))) 446 +926.9 - SF7BW500 to SF12BW500 356 356 357 -((( 358 -Ex1: 0x0B45 = 2885mV 359 -))) 448 +927.5 - SF7BW500 to SF12BW500 360 360 361 -((( 362 -Ex2: 0x0B49 = 2889mV 363 -))) 450 +923.3 - SF12BW500(RX2 downlink only) 364 364 365 365 366 366 367 -=== 2. 4.4SignalStrength===454 +=== 2.7.3 CN470-510 (CN470) === 368 368 369 - NB-IoT NetworksignalStrength.456 +Used in China, Default use CHE=1 370 370 371 - **Ex1:0x1d= 29**458 +(% style="color:#037691" %)**Uplink:** 372 372 373 - (%style="color:blue" %)**0**(%%)-113dBmorless460 +486.3 - SF7BW125 to SF12BW125 374 374 375 - (%style="color:blue"%)**1**(%%)-111dBm462 +486.5 - SF7BW125 to SF12BW125 376 376 377 - (%style="color:blue"%)**2...30**(%%)-109dBm... -53dBm464 +486.7 - SF7BW125 to SF12BW125 378 378 379 - (%style="color:blue"%)**31** (%%) -51dBmorgreater466 +486.9 - SF7BW125 to SF12BW125 380 380 381 - (%style="color:blue"%)**99**(%%) Notknownor not detectable468 +487.1 - SF7BW125 to SF12BW125 382 382 470 +487.3 - SF7BW125 to SF12BW125 383 383 472 +487.5 - SF7BW125 to SF12BW125 384 384 385 - === 2.4.5SoilMoisture===474 +487.7 - SF7BW125 to SF12BW125 386 386 387 -((( 388 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 389 -))) 390 390 391 -((( 392 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 393 -))) 477 +(% style="color:#037691" %)**Downlink:** 394 394 395 -((( 396 - 397 -))) 479 +506.7 - SF7BW125 to SF12BW125 398 398 399 -((( 400 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 401 -))) 481 +506.9 - SF7BW125 to SF12BW125 402 402 483 +507.1 - SF7BW125 to SF12BW125 403 403 485 +507.3 - SF7BW125 to SF12BW125 404 404 405 - === 2.4.6SoilTemperature===487 +507.5 - SF7BW125 to SF12BW125 406 406 407 -((( 408 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 409 -))) 489 +507.7 - SF7BW125 to SF12BW125 410 410 411 -((( 412 -**Example**: 413 -))) 491 +507.9 - SF7BW125 to SF12BW125 414 414 415 -((( 416 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 417 -))) 493 +508.1 - SF7BW125 to SF12BW125 418 418 419 -((( 420 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 421 -))) 495 +505.3 - SF12BW125 (RX2 downlink only) 422 422 423 423 424 424 425 -=== 2. 4.7Soil Conductivity(EC) ===499 +=== 2.7.4 AU915-928(AU915) === 426 426 427 -((( 428 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 429 -))) 501 +Default use CHE=2 430 430 431 -((( 432 -For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 433 -))) 503 +(% style="color:#037691" %)**Uplink:** 434 434 435 -((( 436 -Generally, the EC value of irrigation water is less than 800uS / cm. 437 -))) 505 +916.8 - SF7BW125 to SF12BW125 438 438 439 -((( 440 - 441 -))) 507 +917.0 - SF7BW125 to SF12BW125 442 442 443 -((( 444 - 445 -))) 509 +917.2 - SF7BW125 to SF12BW125 446 446 447 - === 2.4.8DigitalInterrupt===511 +917.4 - SF7BW125 to SF12BW125 448 448 449 - Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods.Whenthere is a trigger, the NSE01will send a packettothe server.513 +917.6 - SF7BW125 to SF12BW125 450 450 451 - Thecommandis:515 +917.8 - SF7BW125 to SF12BW125 452 452 453 - (%style="color:blue"%)**AT+INTMOD=3**(%%) ~/~/(more info aboutINMOD please refer [[**AT CommandManual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**517 +918.0 - SF7BW125 to SF12BW125 454 454 519 +918.2 - SF7BW125 to SF12BW125 455 455 456 -The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up. 457 457 522 +(% style="color:#037691" %)**Downlink:** 458 458 459 - Example:524 +923.3 - SF7BW500 to SF12BW500 460 460 461 -0 x(00):Normaluplink packet.526 +923.9 - SF7BW500 to SF12BW500 462 462 463 -0 x(01):InterruptUplink Packet.528 +924.5 - SF7BW500 to SF12BW500 464 464 530 +925.1 - SF7BW500 to SF12BW500 465 465 532 +925.7 - SF7BW500 to SF12BW500 466 466 467 - ===2.4.9+5VOutput===534 +926.3 - SF7BW500 to SF12BW500 468 468 469 - NSE01willenable +5Voutput beforeall sampling and disable the +5v after all sampling.536 +926.9 - SF7BW500 to SF12BW500 470 470 538 +927.5 - SF7BW500 to SF12BW500 471 471 472 - The5Voutput time canbe controlled byAT Command.540 +923.3 - SF12BW500(RX2 downlink only) 473 473 474 -(% style="color:blue" %)**AT+5VT=1000** 475 475 476 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 477 477 544 +=== 2.7.5 AS920-923 & AS923-925 (AS923) === 478 478 546 +(% style="color:#037691" %)**Default Uplink channel:** 479 479 480 - ==2.5DownlinkPayload ==548 +923.2 - SF7BW125 to SF10BW125 481 481 482 - Bydefault,NSE01prints the downlinkpayload to console port.550 +923.4 - SF7BW125 to SF10BW125 483 483 484 -[[image:image-20220708133731-5.png]] 485 485 553 +(% style="color:#037691" %)**Additional Uplink Channel**: 486 486 487 -((( 488 -(% style="color:blue" %)**Examples:** 489 -))) 555 +(OTAA mode, channel added by JoinAccept message) 490 490 491 -((( 492 - 493 -))) 557 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 494 494 495 -* ((( 496 -(% style="color:blue" %)**Set TDC** 497 -))) 559 +922.2 - SF7BW125 to SF10BW125 498 498 499 -((( 500 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 501 -))) 561 +922.4 - SF7BW125 to SF10BW125 502 502 503 -((( 504 -Payload: 01 00 00 1E TDC=30S 505 -))) 563 +922.6 - SF7BW125 to SF10BW125 506 506 507 -((( 508 -Payload: 01 00 00 3C TDC=60S 509 -))) 565 +922.8 - SF7BW125 to SF10BW125 510 510 511 -((( 512 - 513 -))) 567 +923.0 - SF7BW125 to SF10BW125 514 514 515 -* ((( 516 -(% style="color:blue" %)**Reset** 517 -))) 569 +922.0 - SF7BW125 to SF10BW125 518 518 519 -((( 520 -If payload = 0x04FF, it will reset the NSE01 521 -))) 522 522 572 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 523 523 524 - *(%style="color:blue"%)**INTMOD**574 +923.6 - SF7BW125 to SF10BW125 525 525 526 - Downlink Payload: 06000003,SetAT+INTMOD=3576 +923.8 - SF7BW125 to SF10BW125 527 527 578 +924.0 - SF7BW125 to SF10BW125 528 528 580 +924.2 - SF7BW125 to SF10BW125 529 529 530 - ==2.6LEDIndicator==582 +924.4 - SF7BW125 to SF10BW125 531 531 532 -((( 533 -The NSE01 has an internal LED which is to show the status of different state. 584 +924.6 - SF7BW125 to SF10BW125 534 534 535 535 536 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 537 -* Then the LED will be on for 1 second means device is boot normally. 538 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 539 -* For each uplink probe, LED will be on for 500ms. 540 -))) 587 +(% style="color:#037691" %)** Downlink:** 541 541 589 +Uplink channels 1-8 (RX1) 542 542 591 +923.2 - SF10BW125 (RX2) 543 543 544 544 545 -== 2.7 Installation in Soil == 546 546 547 - __**Measurementthesoilsurface**__595 +=== 2.7.6 KR920-923 (KR920) === 548 548 549 - Choosethe proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as originaldensity.Vertical insert the probe into the soil to be measured. Make surenot shake wheninserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]597 +Default channel: 550 550 551 - [[image:1657259653666-883.png]]599 +922.1 - SF7BW125 to SF12BW125 552 552 601 +922.3 - SF7BW125 to SF12BW125 553 553 554 -((( 555 - 603 +922.5 - SF7BW125 to SF12BW125 556 556 557 -((( 558 -Dig a hole with diameter > 20CM. 559 -))) 560 560 561 -((( 562 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 563 -))) 564 -))) 606 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 565 565 566 - [[image:1654506665940-119.png]]608 +922.1 - SF7BW125 to SF12BW125 567 567 568 -((( 569 - 570 -))) 610 +922.3 - SF7BW125 to SF12BW125 571 571 612 +922.5 - SF7BW125 to SF12BW125 572 572 573 - ==2.8FirmwareChange Log==614 +922.7 - SF7BW125 to SF12BW125 574 574 616 +922.9 - SF7BW125 to SF12BW125 575 575 576 - DownloadURL&FirmwareChange log618 +923.1 - SF7BW125 to SF12BW125 577 577 578 - [[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]620 +923.3 - SF7BW125 to SF12BW125 579 579 580 580 581 - UpgradeInstruction:[[Upgrade_Firmware>>||anchor="H"]]623 +(% style="color:#037691" %)**Downlink:** 582 582 625 +Uplink channels 1-7(RX1) 583 583 627 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 584 584 585 -== 2.9 Battery Analysis == 586 586 587 -=== 2.9.1 Battery Type === 588 588 631 +=== 2.7.7 IN865-867 (IN865) === 589 589 590 - TheNSE01 battery isa combination of an 8500mAh Li/SOCI2 Batteryand a Super Capacitor. The battery is none-rechargeable battery type with a low dischargerate (<2%per year).This type of battery is commonly usedinIoT devices such as water meter.633 +(% style="color:#037691" %)** Uplink:** 591 591 635 +865.0625 - SF7BW125 to SF12BW125 592 592 593 - Thebatteryisdesignedtolast for several years depends on the actually use environment and update interval.637 +865.4025 - SF7BW125 to SF12BW125 594 594 639 +865.9850 - SF7BW125 to SF12BW125 595 595 596 -The battery related documents as below: 597 597 598 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 599 -* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 600 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 642 +(% style="color:#037691" %) **Downlink:** 601 601 644 +Uplink channels 1-3 (RX1) 645 + 646 +866.550 - SF10BW125 (RX2) 647 + 648 + 649 + 650 + 651 +== 2.8 LED Indicator == 652 + 653 +The LSE01 has an internal LED which is to show the status of different state. 654 + 655 +* Blink once when device power on. 656 +* Solid ON for 5 seconds once device successful Join the network. 657 +* Blink once when device transmit a packet. 658 + 659 + 660 + 661 +== 2.9 Installation in Soil == 662 + 663 +**Measurement the soil surface** 664 + 665 + 666 +[[image:1654506634463-199.png]] 667 + 602 602 ((( 603 -[[image:image-20220708140453-6.png]] 669 +((( 670 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 604 604 ))) 672 +))) 605 605 606 606 675 +[[image:1654506665940-119.png]] 607 607 608 -=== 2.9.2 Power consumption Analyze === 677 +((( 678 +Dig a hole with diameter > 20CM. 679 +))) 609 609 610 610 ((( 611 - Draginobattery powered productare allrunsinLow Powermode. Wehavean update battery calculator whichbase onthemeasurementof the realdevice. User canuse this calculatorto checkthebatterylife andcalculatethe batterylifeif want to use different transmit interval.682 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 612 612 ))) 613 613 614 614 686 +== 2.10 Firmware Change Log == 687 + 615 615 ((( 616 - Instructiontouseasbelow:689 +**Firmware download link:** 617 617 ))) 618 618 619 619 ((( 620 - (% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:[[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]693 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 621 621 ))) 622 622 696 +((( 697 + 698 +))) 623 623 624 624 ((( 625 - (% style="color:blue" %)**Step2: **(%%)Openithoose701 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 626 626 ))) 627 627 628 - *(((629 - ProductModel704 +((( 705 + 630 630 ))) 631 -* ((( 632 -Uplink Interval 707 + 708 +((( 709 +**V1.0.** 633 633 ))) 634 -* ((( 635 -Working Mode 636 -))) 637 637 638 638 ((( 639 - And theLifeexpectation in difference casewill be shown on the right.713 +Release 640 640 ))) 641 641 642 -[[image:image-20220708141352-7.jpeg]] 643 643 717 +== 2.11 Battery Analysis == 644 644 719 +=== 2.11.1 Battery Type === 645 645 646 -=== 2.9.3 Battery Note === 721 +((( 722 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 723 +))) 647 647 648 648 ((( 649 -The Li-SICObattery is designedfor small current/ longperiod application. It isnotgood to use a high current,short period transmit method. Therecommendedminimum period for use ofthis batteryis5minutes. Ifyou useshorterperiod time to transmitLoRa,thenthe battery life may be decreased.726 +The battery is designed to last for more than 5 years for the LSN50. 650 650 ))) 651 651 729 +((( 730 +((( 731 +The battery-related documents are as below: 732 +))) 733 +))) 652 652 735 +* ((( 736 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 737 +))) 738 +* ((( 739 +[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 740 +))) 741 +* ((( 742 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 743 +))) 653 653 654 - ===2.9.4 Replacethe battery ===745 + [[image:image-20220606171726-9.png]] 655 655 747 + 748 + 749 +=== 2.11.2 Battery Note === 750 + 656 656 ((( 657 -The defaultbatterypackofNSE01includesaER26500 plussupercapacitor. Ifusercan'tfind this pack locally,theycanfindER26500 orquivalence withoutthe SPC1520 capacitor, which will alsowork inmostcase. TheSPCcanlarge thebatterylifeforhigh frequency use(update periodbelow5minutes).752 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 658 658 ))) 659 659 660 660 661 661 662 -= 3. AccessNB-IoTModule =757 +=== 2.11.3 Replace the battery === 663 663 664 664 ((( 665 - Userscan directlyaccesstheAT command setoftheNB-IoTmodule.760 +If Battery is lower than 2.7v, user should replace the battery of LSE01. 666 666 ))) 667 667 668 668 ((( 669 - The AT Commandsetcanrefer theBC35-G NB-IoTModuleATCommand: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]]764 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 670 670 ))) 671 671 672 -[[image:1657261278785-153.png]] 767 +((( 768 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 769 +))) 673 673 674 674 675 675 676 -= 4.773 += 3. Using the AT Commands = 677 677 678 -== 4.1775 +== 3.1 Access AT Commands == 679 679 680 -See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 681 681 778 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 682 682 683 - AT+<CMD>? : Helpon<CMD>780 +[[image:1654501986557-872.png||height="391" width="800"]] 684 684 685 -AT+<CMD> : Run <CMD> 686 686 687 - AT+<CMD>=<value>: Setthevalue783 +Or if you have below board, use below connection: 688 688 689 -AT+<CMD>=? : Get the value 690 690 786 +[[image:1654502005655-729.png||height="503" width="801"]] 691 691 788 + 789 + 790 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 791 + 792 + 793 + [[image:1654502050864-459.png||height="564" width="806"]] 794 + 795 + 796 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]] 797 + 798 + 799 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 800 + 801 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 802 + 803 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 804 + 805 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 806 + 807 + 692 692 (% style="color:#037691" %)**General Commands**(%%) 693 693 694 -AT 810 +(% style="background-color:#dcdcdc" %)**AT**(%%) : Attention 695 695 696 -AT? 812 +(% style="background-color:#dcdcdc" %)**AT?**(%%) : Short Help 697 697 698 -ATZ 814 +(% style="background-color:#dcdcdc" %)**ATZ**(%%) : MCU Reset 699 699 700 -AT+TDC 816 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%) : Application Data Transmission Interval 701 701 702 -AT+CFG : Print all configurations 703 703 704 - AT+CFGMOD: Workingmode selection819 +(% style="color:#037691" %)**Keys, IDs and EUIs management** 705 705 706 -AT+I NTMOD:Setthe trigger interruptmode821 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%) : Application EUI 707 707 708 -AT+ 5VTSetextend the timeof5V power823 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%) : Application Key 709 709 710 -AT+P ROChooseagreement825 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%) : Application Session Key 711 711 712 -AT+ WEIGREGet weightorsetweight to 0827 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%) : Device Address 713 713 714 -AT+ WEIGAPGet or SettheGapValue of weight829 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%) : Device EUI 715 715 716 -AT+ RXDL: Extendthe sendingandreceivingtime831 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%) : Network ID (You can enter this command change only after successful network connection) 717 717 718 -AT+ CNTFACGettcountingparameters833 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%) : Network Session Key Joining and sending date on LoRa network 719 719 720 -AT+ SERVADDR:ServerAddress835 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%) : Confirm Mode 721 721 837 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 722 722 723 -(% style="color:# 037691" %)**COAPManagement**839 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%) : Join LoRa? Network 724 724 725 -AT+ URIsourceparameters841 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%) : LoRa? Network Join Mode 726 726 843 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 727 727 728 -(% style="color:# 037691" %)**UDPManagement**845 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%) : Print Last Received Data in Raw Format 729 729 730 -AT+C FM:Uploadconfirmationmode (onlyvalid forUDP)847 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%) : Print Last Received Data in Binary Format 731 731 849 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 732 732 733 -(% style="color:# 037691" %)**MQTTManagement**851 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%) : Send Hexadecimal Data 734 734 735 -AT+CLIENT : Get or Set MQTT client 736 736 737 - AT+UNAMEGetSetMQTT Username854 +(% style="color:#037691" %)**LoRa Network Management** 738 738 739 -AT+ PWDGetor SetMQTT password856 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%) : Adaptive Rate 740 740 741 -AT+ PUBTOPICGetorSetMQTTpublishtopic858 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%) : LoRa Class(Currently only support class A 742 742 743 -AT+ SUBTOPIC :GetorSetMQTT subscriptiontopic860 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%) : Duty Cycle Setting 744 744 862 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 745 745 746 -(% style="color:# 037691" %)**Information**864 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink 747 747 748 -AT+F DRctoryDataReset866 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%) : Frame Counter Uplink 749 749 750 -AT+ PWORDSerialAccessPassword868 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%) : Join Accept Delay1 751 751 870 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 752 752 872 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 753 753 754 -= 5.FAQ=874 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%) : Receive Delay1 755 755 756 -= =5.1HowtoUpgradeFirmware==876 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%) : Receive Delay2 757 757 878 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 758 758 880 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 881 + 882 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 883 + 884 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 885 + 886 + 887 +(% style="color:#037691" %)**Information** 888 + 889 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 890 + 891 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 892 + 893 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 894 + 895 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 896 + 897 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 898 + 899 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 900 + 901 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 902 + 903 + 904 += 4. FAQ = 905 + 906 +== 4.1 How to change the LoRa Frequency Bands/Region? == 907 + 759 759 ((( 760 -User can upgrade the firmware for 1) bug fix, 2) new feature release. 909 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 910 +When downloading the images, choose the required image file for download. 761 761 ))) 762 762 763 763 ((( 764 - Pleasesee this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]914 + 765 765 ))) 766 766 767 767 ((( 768 - (%style="color:red"%)Notice,NSE01andLSE01share thememotherboard.Theyuse thesameconnection andmethodto update.918 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 769 769 ))) 770 770 921 +((( 922 + 923 +))) 771 771 925 +((( 926 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 927 +))) 772 772 773 -= 6. Trouble Shooting = 929 +((( 930 + 931 +))) 774 774 775 -== 6.1 Connection problem when uploading firmware == 933 +((( 934 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 935 +))) 776 776 937 +[[image:image-20220606154726-3.png]] 777 777 778 -(% class="wikigeneratedid" %) 939 + 940 +When you use the TTN network, the US915 frequency bands use are: 941 + 942 +* 903.9 - SF7BW125 to SF10BW125 943 +* 904.1 - SF7BW125 to SF10BW125 944 +* 904.3 - SF7BW125 to SF10BW125 945 +* 904.5 - SF7BW125 to SF10BW125 946 +* 904.7 - SF7BW125 to SF10BW125 947 +* 904.9 - SF7BW125 to SF10BW125 948 +* 905.1 - SF7BW125 to SF10BW125 949 +* 905.3 - SF7BW125 to SF10BW125 950 +* 904.6 - SF8BW500 951 + 779 779 ((( 780 - (%style="font-size:14px"%)**Pleasesee:**(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color:rgb(255,255,255);font-size:14px;"]]953 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 781 781 ))) 782 782 956 +(% class="box infomessage" %) 957 +((( 958 +**AT+CHE=2** 959 +))) 783 783 961 +(% class="box infomessage" %) 962 +((( 963 +**ATZ** 964 +))) 784 784 785 -== 6.2 AT Command input doesn't work == 966 +((( 967 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 968 +))) 786 786 787 787 ((( 788 - Inthe case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.971 + 789 789 ))) 790 790 974 +((( 975 +The **AU915** band is similar. Below are the AU915 Uplink Channels. 976 +))) 791 791 978 +[[image:image-20220606154825-4.png]] 792 792 793 -= 7. Order Info = 794 794 795 795 796 - PartNumber**:** (% style="color:#4f81bd"%)**NSE01**982 += 5. Trouble Shooting = 797 797 984 +== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 798 798 986 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 987 + 988 + 989 +== 5.2 AT Command input doesn’t work == 990 + 991 +((( 992 +In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 993 +))) 994 + 995 + 996 +== 5.3 Device rejoin in at the second uplink packet == 997 + 998 +(% style="color:#4f81bd" %)**Issue describe as below:** 999 + 1000 +[[image:1654500909990-784.png]] 1001 + 1002 + 1003 +(% style="color:#4f81bd" %)**Cause for this issue:** 1004 + 1005 +((( 1006 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 1007 +))) 1008 + 1009 + 1010 +(% style="color:#4f81bd" %)**Solution: ** 1011 + 1012 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 1013 + 1014 +[[image:1654500929571-736.png||height="458" width="832"]] 1015 + 1016 + 1017 += 6. Order Info = 1018 + 1019 + 1020 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 1021 + 1022 + 1023 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 1024 + 1025 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 1026 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 1027 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 1028 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 1029 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1030 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1031 +* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1032 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1033 + 1034 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1035 + 1036 +* (% style="color:red" %)**4**(%%): 4000mAh battery 1037 +* (% style="color:red" %)**8**(%%): 8500mAh battery 1038 + 799 799 (% class="wikigeneratedid" %) 800 800 ((( 801 801 802 802 ))) 803 803 804 -= 8.1044 += 7. Packing Info = 805 805 806 806 ((( 807 807 808 808 809 809 (% style="color:#037691" %)**Package Includes**: 1050 +))) 810 810 811 - 812 -* NSE01 NB-IoT Soil Moisture & EC Sensor x 1 813 -* External antenna x 1 1052 +* ((( 1053 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 814 814 ))) 815 815 816 816 ((( ... ... @@ -817,20 +817,30 @@ 817 817 818 818 819 819 (% style="color:#037691" %)**Dimension and weight**: 1060 +))) 820 820 821 - 822 -* Size: 195 x 125 x 55 mm 823 -* Weight: 420g 1062 +* ((( 1063 +Device Size: cm 824 824 ))) 1065 +* ((( 1066 +Device Weight: g 1067 +))) 1068 +* ((( 1069 +Package Size / pcs : cm 1070 +))) 1071 +* ((( 1072 +Weight / pcs : g 825 825 826 -((( 827 - 828 828 829 - 830 830 831 831 ))) 832 832 833 -= 9.1078 += 8. Support = 834 834 835 835 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 836 836 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1082 + 1083 + 1084 +~)~)~) 1085 +~)~)~) 1086 +~)~)~)
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -102.7 KB - Content