Last modified by Bei Jinggeng on 2024/05/31 09:53

From version 65.3
edited by Xiaoling
on 2022/07/08 15:04
Change comment: There is no comment for this version
To version 32.11
edited by Xiaoling
on 2022/06/07 11:39
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
Content
... ... @@ -3,16 +3,8 @@
3 3  
4 4  
5 5  
6 +**Contents:**
6 6  
7 -
8 -
9 -
10 -
11 -
12 -
13 -
14 -**Table of Contents:**
15 -
16 16  {{toc/}}
17 17  
18 18  
... ... @@ -20,797 +20,1041 @@
20 20  
21 21  
22 22  
23 -= 1.  Introduction =
15 += 1. Introduction =
24 24  
25 -== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
17 +== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
26 26  
27 27  (((
28 -
20 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
21 +)))
29 29  
30 -Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
23 +(((
24 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
25 +)))
31 31  
32 -It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
27 +(((
28 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 +)))
33 33  
34 -The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
31 +(((
32 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
33 +)))
35 35  
36 -NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
37 -
38 -
35 +(((
36 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
39 39  )))
40 40  
39 +
41 41  [[image:1654503236291-817.png]]
42 42  
43 43  
44 -[[image:1657245163077-232.png]]
43 +[[image:1654503265560-120.png]]
45 45  
46 46  
47 47  
48 -== 1.2 ​ Features ==
47 +== 1.2 ​Features ==
49 49  
50 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
49 +* LoRaWAN 1.0.3 Class A
50 +* Ultra low power consumption
51 51  * Monitor Soil Moisture
52 52  * Monitor Soil Temperature
53 53  * Monitor Soil Conductivity
54 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
54 54  * AT Commands to change parameters
55 55  * Uplink on periodically
56 56  * Downlink to change configure
57 57  * IP66 Waterproof Enclosure
58 -* Ultra-Low Power consumption
59 -* AT Commands to change parameters
60 -* Micro SIM card slot for NB-IoT SIM
61 -* 8500mAh Battery for long term use
59 +* 4000mAh or 8500mAh Battery for long term use
62 62  
61 +== 1.3 Specification ==
63 63  
63 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
64 64  
65 +[[image:image-20220606162220-5.png]]
65 65  
66 -== 1.3  Specification ==
67 67  
68 68  
69 -(% style="color:#037691" %)**Common DC Characteristics:**
69 +== ​1.4 Applications ==
70 70  
71 -* Supply Voltage: 2.1v ~~ 3.6v
72 -* Operating Temperature: -40 ~~ 85°C
71 +* Smart Agriculture
73 73  
73 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
74 +​
74 74  
76 +== 1.5 Firmware Change log ==
75 75  
76 -(% style="color:#037691" %)**NB-IoT Spec:**
77 77  
78 -* - B1 @H-FDD: 2100MHz
79 -* - B3 @H-FDD: 1800MHz
80 -* - B8 @H-FDD: 900MHz
81 -* - B5 @H-FDD: 850MHz
82 -* - B20 @H-FDD: 800MHz
83 -* - B28 @H-FDD: 700MHz
79 +**LSE01 v1.0 :**  Release
84 84  
85 85  
86 86  
87 -Probe(% style="color:#037691" %)** Specification:**
83 += 2. Configure LSE01 to connect to LoRaWAN network =
88 88  
89 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
85 +== 2.1 How it works ==
90 90  
91 -[[image:image-20220708101224-1.png]]
87 +(((
88 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
89 +)))
92 92  
91 +(((
92 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
93 +)))
93 93  
94 94  
95 -== ​1.4  Applications ==
96 96  
97 -* Smart Agriculture
97 +== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
98 98  
99 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
100 -​
99 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
101 101  
102 -== 1.5  Pin Definitions ==
103 103  
102 +[[image:1654503992078-669.png]]
104 104  
105 -[[image:1657246476176-652.png]]
106 106  
105 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
107 107  
108 108  
109 -= 2.  Use NSE01 to communicate with IoT Server =
108 +**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
110 110  
111 -== 2.1  How it works ==
110 +Each LSE01 is shipped with a sticker with the default device EUI as below:
112 112  
112 +[[image:image-20220606163732-6.jpeg]]
113 113  
114 -(((
115 -The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
116 -)))
114 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
117 117  
116 +**Add APP EUI in the application**
118 118  
118 +
119 +[[image:1654504596150-405.png]]
120 +
121 +
122 +
123 +**Add APP KEY and DEV EUI**
124 +
125 +[[image:1654504683289-357.png]]
126 +
127 +
128 +
129 +**Step 2**: Power on LSE01
130 +
131 +
132 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
133 +
134 +[[image:image-20220606163915-7.png]]
135 +
136 +
137 +**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
138 +
139 +[[image:1654504778294-788.png]]
140 +
141 +
142 +
143 +== 2.3 Uplink Payload ==
144 +
145 +(% class="wikigeneratedid" %)
146 +=== ===
147 +
148 +=== 2.3.1 MOD~=0(Default Mode) ===
149 +
150 +LSE01 will uplink payload via LoRaWAN with below payload format: 
151 +
119 119  (((
120 -The diagram below shows the working flow in default firmware of NSE01:
153 +Uplink payload includes in total 11 bytes.
121 121  )))
122 122  
123 -[[image:image-20220708101605-2.png]]
156 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
157 +|(((
158 +**Size**
124 124  
125 -(((
126 -
160 +**(bytes)**
161 +)))|**2**|**2**|**2**|**2**|**2**|**1**
162 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
163 +Temperature
164 +
165 +(Reserve, Ignore now)
166 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
167 +MOD & Digital Interrupt
168 +
169 +(Optional)
127 127  )))
128 128  
129 129  
130 130  
131 -== 2.2 ​ Configure the NSE01 ==
174 +=== 2.3.2 MOD~=1(Original value) ===
132 132  
176 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
133 133  
134 -=== 2.2.1 Test Requirement ===
178 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
179 +|(((
180 +**Size**
135 135  
182 +**(bytes)**
183 +)))|**2**|**2**|**2**|**2**|**2**|**1**
184 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
185 +Temperature
136 136  
137 -To use NSE01 in your city, make sure meet below requirements:
187 +(Reserve, Ignore now)
188 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
189 +MOD & Digital Interrupt
138 138  
139 -* Your local operator has already distributed a NB-IoT Network there.
140 -* The local NB-IoT network used the band that NSE01 supports.
141 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
191 +(Optional)
192 +)))
142 142  
194 +
195 +
196 +=== 2.3.3 Battery Info ===
197 +
143 143  (((
144 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
199 +Check the battery voltage for LSE01.
145 145  )))
146 146  
202 +(((
203 +Ex1: 0x0B45 = 2885mV
204 +)))
147 147  
148 -[[image:1657249419225-449.png]]
206 +(((
207 +Ex2: 0x0B49 = 2889mV
208 +)))
149 149  
150 150  
151 151  
152 -=== 2.2.2 Insert SIM card ===
212 +=== 2.3.4 Soil Moisture ===
153 153  
154 -Insert the NB-IoT Card get from your provider.
214 +(((
215 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
216 +)))
155 155  
156 -User need to take out the NB-IoT module and insert the SIM card like below:
218 +(((
219 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
220 +)))
157 157  
222 +(((
223 +
224 +)))
158 158  
159 -[[image:1657249468462-536.png]]
226 +(((
227 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
228 +)))
160 160  
161 161  
162 162  
163 -=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
232 +=== 2.3.5 Soil Temperature ===
164 164  
165 165  (((
235 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
236 +)))
237 +
166 166  (((
167 -User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
239 +**Example**:
168 168  )))
241 +
242 +(((
243 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
169 169  )))
170 170  
246 +(((
247 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
248 +)))
171 171  
172 -**Connection:**
173 173  
174 - (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
175 175  
176 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
252 +=== 2.3.6 Soil Conductivity (EC) ===
177 177  
178 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
254 +(((
255 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
256 +)))
179 179  
258 +(((
259 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
260 +)))
180 180  
181 -In the PC, use below serial tool settings:
262 +(((
263 +Generally, the EC value of irrigation water is less than 800uS / cm.
264 +)))
182 182  
183 -* Baud:  (% style="color:green" %)**9600**
184 -* Data bits:** (% style="color:green" %)8(%%)**
185 -* Stop bits: (% style="color:green" %)**1**
186 -* Parity:  (% style="color:green" %)**None**
187 -* Flow Control: (% style="color:green" %)**None**
266 +(((
267 +
268 +)))
188 188  
189 189  (((
190 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
271 +
191 191  )))
192 192  
193 -[[image:image-20220708110657-3.png]]
274 +=== 2.3.7 MOD ===
194 194  
195 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
276 +Firmware version at least v2.1 supports changing mode.
196 196  
278 +For example, bytes[10]=90
197 197  
280 +mod=(bytes[10]>>7)&0x01=1.
198 198  
199 -=== 2.2.4 Use CoAP protocol to uplink data ===
200 200  
201 -(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
283 +**Downlink Command:**
202 202  
285 +If payload = 0x0A00, workmode=0
203 203  
204 -**Use below commands:**
287 +If** **payload =** **0x0A01, workmode=1
205 205  
206 -* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
207 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
208 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
209 209  
210 -For parameter description, please refer to AT command set
211 211  
212 -[[image:1657249793983-486.png]]
291 +=== 2.3.8 ​Decode payload in The Things Network ===
213 213  
293 +While using TTN network, you can add the payload format to decode the payload.
214 214  
215 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
216 216  
217 -[[image:1657249831934-534.png]]
296 +[[image:1654505570700-128.png]]
218 218  
298 +The payload decoder function for TTN is here:
219 219  
300 +LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
220 220  
221 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
222 222  
223 -This feature is supported since firmware version v1.0.1
224 224  
304 +== 2.4 Uplink Interval ==
225 225  
226 -* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
227 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
228 -* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
306 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
229 229  
230 -[[image:1657249864775-321.png]]
231 231  
232 232  
233 -[[image:1657249930215-289.png]]
310 +== 2.5 Downlink Payload ==
234 234  
312 +By default, LSE50 prints the downlink payload to console port.
235 235  
314 +[[image:image-20220606165544-8.png]]
236 236  
237 -=== 2.2.6 Use MQTT protocol to uplink data ===
238 238  
239 -This feature is supported since firmware version v110
317 +**Examples:**
240 240  
241 241  
242 -* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
243 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
244 -* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
245 -* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
246 -* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
247 -* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
248 -* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
320 +* **Set TDC**
249 249  
250 -[[image:1657249978444-674.png]]
322 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
251 251  
324 +Payload:    01 00 00 1E    TDC=30S
252 252  
253 -[[image:1657249990869-686.png]]
326 +Payload:    01 00 00 3C    TDC=60S
254 254  
255 255  
256 -(((
257 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
258 -)))
329 +* **Reset**
259 259  
331 +If payload = 0x04FF, it will reset the LSE01
260 260  
261 261  
262 -=== 2.2.7 Use TCP protocol to uplink data ===
334 +* **CFM**
263 263  
264 -This feature is supported since firmware version v110
336 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
265 265  
266 266  
267 -* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
268 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
269 269  
270 -[[image:1657250217799-140.png]]
340 +== 2.6 ​Show Data in DataCake IoT Server ==
271 271  
342 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
272 272  
273 -[[image:1657250255956-604.png]]
274 274  
345 +**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
275 275  
347 +**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
276 276  
277 -=== 2.2.8 Change Update Interval ===
278 278  
279 -User can use below command to change the (% style="color:green" %)**uplink interval**.
350 +[[image:1654505857935-743.png]]
280 280  
281 -* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
282 282  
283 -(((
284 -(% style="color:red" %)**NOTE:**
285 -)))
353 +[[image:1654505874829-548.png]]
286 286  
287 -(((
288 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
289 -)))
355 +Step 3: Create an account or log in Datacake.
290 290  
357 +Step 4: Search the LSE01 and add DevEUI.
291 291  
292 292  
293 -== 2.3  Uplink Payload ==
360 +[[image:1654505905236-553.png]]
294 294  
295 -In this mode, uplink payload includes in total 18 bytes
296 296  
297 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
298 -|=(% style="width: 50px;" %)(((
299 -**Size(bytes)**
300 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
301 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]]
363 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
302 302  
303 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
365 +[[image:1654505925508-181.png]]
304 304  
305 305  
306 -[[image:image-20220708111918-4.png]]
307 307  
369 +== 2.7 Frequency Plans ==
308 308  
309 -The payload is ASCII string, representative same HEX:
371 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
310 310  
311 -0x72403155615900640c7817075e0a8c02f900 where:
312 312  
313 -* Device ID: 0x 724031556159 = 724031556159
314 -* Version: 0x0064=100=1.0.0
374 +=== 2.7.1 EU863-870 (EU868) ===
315 315  
316 -* BAT: 0x0c78 = 3192 mV = 3.192V
317 -* Singal: 0x17 = 23
318 -* Soil Moisture: 0x075e= 1886 = 18.86  %
319 -* Soil Temperature:0x0a8c =2700=27 °C
320 -* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
321 -* Interrupt: 0x00 = 0
376 +(% style="color:#037691" %)** Uplink:**
322 322  
378 +868.1 - SF7BW125 to SF12BW125
323 323  
380 +868.3 - SF7BW125 to SF12BW125 and SF7BW250
324 324  
382 +868.5 - SF7BW125 to SF12BW125
325 325  
326 -== 2. Payload Explanation and Sensor Interface ==
384 +867.1 - SF7BW125 to SF12BW125
327 327  
386 +867.3 - SF7BW125 to SF12BW125
328 328  
329 -=== 2.4.1  Device ID ===
388 +867.5 - SF7BW125 to SF12BW125
330 330  
331 -By default, the Device ID equal to the last 6 bytes of IMEI.
390 +867.7 - SF7BW125 to SF12BW125
332 332  
333 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
392 +867.9 - SF7BW125 to SF12BW125
334 334  
335 -**Example:**
394 +868.8 - FSK
336 336  
337 -AT+DEUI=A84041F15612
338 338  
339 -The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
397 +(% style="color:#037691" %)** Downlink:**
340 340  
399 +Uplink channels 1-9 (RX1)
341 341  
401 +869.525 - SF9BW125 (RX2 downlink only)
342 342  
343 -=== 2.4.2  Version Info ===
344 344  
345 -Specify the software version: 0x64=100, means firmware version 1.00.
346 346  
347 -For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
405 +=== 2.7.2 US902-928(US915) ===
348 348  
407 +Used in USA, Canada and South America. Default use CHE=2
349 349  
409 +(% style="color:#037691" %)**Uplink:**
350 350  
351 -=== 2.4.3  Battery Info ===
411 +903.9 - SF7BW125 to SF10BW125
352 352  
353 -(((
354 -Check the battery voltage for LSE01.
355 -)))
413 +904.1 - SF7BW125 to SF10BW125
356 356  
357 -(((
358 -Ex1: 0x0B45 = 2885mV
359 -)))
415 +904.3 - SF7BW125 to SF10BW125
360 360  
361 -(((
362 -Ex2: 0x0B49 = 2889mV
363 -)))
417 +904.5 - SF7BW125 to SF10BW125
364 364  
419 +904.7 - SF7BW125 to SF10BW125
365 365  
421 +904.9 - SF7BW125 to SF10BW125
366 366  
367 -=== 2.4.4  Signal Strength ===
423 +905.1 - SF7BW125 to SF10BW125
368 368  
369 -NB-IoT Network signal Strength.
425 +905.3 - SF7BW125 to SF10BW125
370 370  
371 -**Ex1: 0x1d = 29**
372 372  
373 -(% style="color:blue" %)**0**(%%)  -113dBm or less
428 +(% style="color:#037691" %)**Downlink:**
374 374  
375 -(% style="color:blue" %)**1**(%%)  -111dBm
430 +923.3 - SF7BW500 to SF12BW500
376 376  
377 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
432 +923.9 - SF7BW500 to SF12BW500
378 378  
379 -(% style="color:blue" %)**31**  (%%) -51dBm or greater
434 +924.5 - SF7BW500 to SF12BW500
380 380  
381 -(% style="color:blue" %)**99**   (%%) Not known or not detectable
436 +925.1 - SF7BW500 to SF12BW500
382 382  
438 +925.7 - SF7BW500 to SF12BW500
383 383  
440 +926.3 - SF7BW500 to SF12BW500
384 384  
385 -=== 2.4.5  Soil Moisture ===
442 +926.9 - SF7BW500 to SF12BW500
386 386  
387 -(((
388 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
389 -)))
444 +927.5 - SF7BW500 to SF12BW500
390 390  
391 -(((
392 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
393 -)))
446 +923.3 - SF12BW500(RX2 downlink only)
394 394  
395 -(((
396 -
397 -)))
398 398  
399 -(((
400 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
401 -)))
402 402  
450 +=== 2.7.3 CN470-510 (CN470) ===
403 403  
452 +Used in China, Default use CHE=1
404 404  
405 -=== 2.4.6  Soil Temperature ===
454 +(% style="color:#037691" %)**Uplink:**
406 406  
407 -(((
408 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
409 -)))
456 +486.3 - SF7BW125 to SF12BW125
410 410  
411 -(((
412 -**Example**:
413 -)))
458 +486.5 - SF7BW125 to SF12BW125
414 414  
415 -(((
416 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
417 -)))
460 +486.7 - SF7BW125 to SF12BW125
418 418  
419 -(((
420 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
421 -)))
462 +486.9 - SF7BW125 to SF12BW125
422 422  
464 +487.1 - SF7BW125 to SF12BW125
423 423  
466 +487.3 - SF7BW125 to SF12BW125
424 424  
425 -=== 2.4.7  Soil Conductivity (EC) ===
468 +487.5 - SF7BW125 to SF12BW125
426 426  
427 -(((
428 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
429 -)))
470 +487.7 - SF7BW125 to SF12BW125
430 430  
431 -(((
432 -For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
433 -)))
434 434  
435 -(((
436 -Generally, the EC value of irrigation water is less than 800uS / cm.
437 -)))
473 +(% style="color:#037691" %)**Downlink:**
438 438  
439 -(((
440 -
441 -)))
475 +506.7 - SF7BW125 to SF12BW125
442 442  
443 -(((
444 -
445 -)))
477 +506.9 - SF7BW125 to SF12BW125
446 446  
447 -=== 2.4.8  Digital Interrupt ===
479 +507.1 - SF7BW125 to SF12BW125
448 448  
449 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
481 +507.3 - SF7BW125 to SF12BW125
450 450  
451 -The command is:
483 +507.5 - SF7BW125 to SF12BW125
452 452  
453 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
485 +507.7 - SF7BW125 to SF12BW125
454 454  
487 +507.9 - SF7BW125 to SF12BW125
455 455  
456 -The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up.
489 +508.1 - SF7BW125 to SF12BW125
457 457  
491 +505.3 - SF12BW125 (RX2 downlink only)
458 458  
459 -Example:
460 460  
461 -0x(00): Normal uplink packet.
462 462  
463 -0x(01): Interrupt Uplink Packet.
495 +=== 2.7.4 AU915-928(AU915) ===
464 464  
497 +Default use CHE=2
465 465  
499 +(% style="color:#037691" %)**Uplink:**
466 466  
467 -=== 2.4.9  ​+5V Output ===
501 +916.8 - SF7BW125 to SF12BW125
468 468  
469 -NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
503 +917.0 - SF7BW125 to SF12BW125
470 470  
505 +917.2 - SF7BW125 to SF12BW125
471 471  
472 -The 5V output time can be controlled by AT Command.
507 +917.4 - SF7BW125 to SF12BW125
473 473  
474 -(% style="color:blue" %)**AT+5VT=1000**
509 +917.6 - SF7BW125 to SF12BW125
475 475  
476 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
511 +917.8 - SF7BW125 to SF12BW125
477 477  
513 +918.0 - SF7BW125 to SF12BW125
478 478  
515 +918.2 - SF7BW125 to SF12BW125
479 479  
480 -== 2.5  Downlink Payload ==
481 481  
482 -By default, NSE01 prints the downlink payload to console port.
518 +(% style="color:#037691" %)**Downlink:**
483 483  
484 -[[image:image-20220708133731-5.png]]
520 +923.3 - SF7BW500 to SF12BW500
485 485  
522 +923.9 - SF7BW500 to SF12BW500
486 486  
487 -(((
488 -(% style="color:blue" %)**Examples:**
489 -)))
524 +924.5 - SF7BW500 to SF12BW500
490 490  
491 -(((
492 -
493 -)))
526 +925.1 - SF7BW500 to SF12BW500
494 494  
495 -* (((
496 -(% style="color:blue" %)**Set TDC**
497 -)))
528 +925.7 - SF7BW500 to SF12BW500
498 498  
499 -(((
500 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
501 -)))
530 +926.3 - SF7BW500 to SF12BW500
502 502  
503 -(((
504 -Payload:    01 00 00 1E    TDC=30S
505 -)))
532 +926.9 - SF7BW500 to SF12BW500
506 506  
507 -(((
508 -Payload:    01 00 00 3C    TDC=60S
509 -)))
534 +927.5 - SF7BW500 to SF12BW500
510 510  
511 -(((
512 -
513 -)))
536 +923.3 - SF12BW500(RX2 downlink only)
514 514  
515 -* (((
516 -(% style="color:blue" %)**Reset**
517 -)))
518 518  
519 -(((
520 -If payload = 0x04FF, it will reset the NSE01
521 -)))
522 522  
540 +=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
523 523  
524 -* (% style="color:blue" %)**INTMOD**
542 +(% style="color:#037691" %)**Default Uplink channel:**
525 525  
526 -Downlink Payload: 06000003, Set AT+INTMOD=3
544 +923.2 - SF7BW125 to SF10BW125
527 527  
546 +923.4 - SF7BW125 to SF10BW125
528 528  
529 529  
530 -== 2.6  ​LED Indicator ==
549 +(% style="color:#037691" %)**Additional Uplink Channel**:
531 531  
532 -(((
533 -The NSE01 has an internal LED which is to show the status of different state.
551 +(OTAA mode, channel added by JoinAccept message)
534 534  
553 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
535 535  
536 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
537 -* Then the LED will be on for 1 second means device is boot normally.
538 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
539 -* For each uplink probe, LED will be on for 500ms.
540 -)))
555 +922.2 - SF7BW125 to SF10BW125
541 541  
557 +922.4 - SF7BW125 to SF10BW125
542 542  
559 +922.6 - SF7BW125 to SF10BW125
543 543  
561 +922.8 - SF7BW125 to SF10BW125
544 544  
545 -== 2.7  Installation in Soil ==
563 +923.0 - SF7BW125 to SF10BW125
546 546  
547 -__**Measurement the soil surface**__
565 +922.0 - SF7BW125 to SF10BW125
548 548  
549 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
550 550  
551 -[[image:1657259653666-883.png]]
568 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
552 552  
570 +923.6 - SF7BW125 to SF10BW125
553 553  
554 -(((
555 -
572 +923.8 - SF7BW125 to SF10BW125
556 556  
557 -(((
558 -Dig a hole with diameter > 20CM.
559 -)))
574 +924.0 - SF7BW125 to SF10BW125
560 560  
561 -(((
562 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
563 -)))
564 -)))
576 +924.2 - SF7BW125 to SF10BW125
565 565  
566 -[[image:1654506665940-119.png]]
578 +924.4 - SF7BW125 to SF10BW125
567 567  
568 -(((
569 -
570 -)))
580 +924.6 - SF7BW125 to SF10BW125
571 571  
572 572  
573 -== 2.8  ​Firmware Change Log ==
583 +(% style="color:#037691" %)** Downlink:**
574 574  
585 +Uplink channels 1-8 (RX1)
575 575  
576 -Download URL & Firmware Change log
587 +923.2 - SF10BW125 (RX2)
577 577  
578 -[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
579 579  
580 580  
581 -Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]]
591 +=== 2.7.6 KR920-923 (KR920) ===
582 582  
593 +Default channel:
583 583  
595 +922.1 - SF7BW125 to SF12BW125
584 584  
585 -== 2. Battery Analysis ==
597 +922.3 - SF7BW125 to SF12BW125
586 586  
587 -=== 2.9.1  Battery Type ===
599 +922.5 - SF7BW125 to SF12BW125
588 588  
589 589  
590 -The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
602 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
591 591  
604 +922.1 - SF7BW125 to SF12BW125
592 592  
593 -The battery is designed to last for several years depends on the actually use environment and update interval. 
606 +922.3 - SF7BW125 to SF12BW125
594 594  
608 +922.5 - SF7BW125 to SF12BW125
595 595  
596 -The battery related documents as below:
610 +922.7 - SF7BW125 to SF12BW125
597 597  
598 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
599 -* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
600 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
612 +922.9 - SF7BW125 to SF12BW125
601 601  
614 +923.1 - SF7BW125 to SF12BW125
615 +
616 +923.3 - SF7BW125 to SF12BW125
617 +
618 +
619 +(% style="color:#037691" %)**Downlink:**
620 +
621 +Uplink channels 1-7(RX1)
622 +
623 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
624 +
625 +
626 +
627 +=== 2.7.7 IN865-867 (IN865) ===
628 +
629 +(% style="color:#037691" %)** Uplink:**
630 +
631 +865.0625 - SF7BW125 to SF12BW125
632 +
633 +865.4025 - SF7BW125 to SF12BW125
634 +
635 +865.9850 - SF7BW125 to SF12BW125
636 +
637 +
638 +(% style="color:#037691" %) **Downlink:**
639 +
640 +Uplink channels 1-3 (RX1)
641 +
642 +866.550 - SF10BW125 (RX2)
643 +
644 +
645 +
646 +
647 +== 2.8 LED Indicator ==
648 +
649 +The LSE01 has an internal LED which is to show the status of different state.
650 +
651 +* Blink once when device power on.
652 +* Solid ON for 5 seconds once device successful Join the network.
653 +* Blink once when device transmit a packet.
654 +
655 +
656 +
657 +== 2.9 Installation in Soil ==
658 +
659 +**Measurement the soil surface**
660 +
661 +
662 +[[image:1654506634463-199.png]] ​
663 +
602 602  (((
603 -[[image:image-20220708140453-6.png]]
665 +(((
666 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
604 604  )))
668 +)))
605 605  
606 606  
671 +[[image:1654506665940-119.png]]
607 607  
608 -=== 2.9.2  Power consumption Analyze ===
673 +(((
674 +Dig a hole with diameter > 20CM.
675 +)))
609 609  
610 610  (((
611 -Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
678 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
612 612  )))
613 613  
614 614  
682 +== 2.10 ​Firmware Change Log ==
683 +
615 615  (((
616 -Instruction to use as below:
685 +**Firmware download link:**
617 617  )))
618 618  
619 619  (((
620 -(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
689 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
621 621  )))
622 622  
692 +(((
693 +
694 +)))
623 623  
624 624  (((
625 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose
697 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
626 626  )))
627 627  
628 -* (((
629 -Product Model
700 +(((
701 +
630 630  )))
631 -* (((
632 -Uplink Interval
703 +
704 +(((
705 +**V1.0.**
633 633  )))
634 -* (((
635 -Working Mode
636 -)))
637 637  
638 638  (((
639 -And the Life expectation in difference case will be shown on the right.
709 +Release
640 640  )))
641 641  
642 -[[image:image-20220708141352-7.jpeg]]
643 643  
713 +== 2.11 ​Battery Analysis ==
644 644  
715 +=== 2.11.1 ​Battery Type ===
645 645  
646 -=== 2.9.3  ​Battery Note ===
717 +(((
718 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
719 +)))
647 647  
648 648  (((
649 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
722 +The battery is designed to last for more than 5 years for the LSN50.
650 650  )))
651 651  
725 +(((
726 +(((
727 +The battery-related documents are as below:
728 +)))
729 +)))
652 652  
731 +* (((
732 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
733 +)))
734 +* (((
735 +[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
736 +)))
737 +* (((
738 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
739 +)))
653 653  
654 -=== 2.9.4  Replace the battery ===
741 + [[image:image-20220606171726-9.png]]
655 655  
743 +
744 +
745 +=== 2.11.2 ​Battery Note ===
746 +
656 656  (((
657 -The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
748 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
658 658  )))
659 659  
660 660  
661 661  
662 -= 3. ​ Access NB-IoT Module =
753 +=== 2.11.3 Replace the battery ===
663 663  
664 664  (((
665 -Users can directly access the AT command set of the NB-IoT module.
756 +If Battery is lower than 2.7v, user should replace the battery of LSE01.
666 666  )))
667 667  
668 668  (((
669 -The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
760 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
670 670  )))
671 671  
672 -[[image:1657261278785-153.png]]
763 +(((
764 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
765 +)))
673 673  
674 674  
675 675  
676 -= 4.  Using the AT Commands =
769 += 3. Using the AT Commands =
677 677  
678 -== 4.1  Access AT Commands ==
771 +== 3.1 Access AT Commands ==
679 679  
680 -See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
681 681  
774 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
682 682  
683 -AT+<CMD>?  : Help on <CMD>
776 +[[image:1654501986557-872.png||height="391" width="800"]]
684 684  
685 -AT+<CMD>         : Run <CMD>
686 686  
687 -AT+<CMD>=<value> : Set the value
779 +Or if you have below board, use below connection:
688 688  
689 -AT+<CMD>=?  : Get the value
690 690  
782 +[[image:1654502005655-729.png||height="503" width="801"]]
691 691  
784 +
785 +
786 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
787 +
788 +
789 + [[image:1654502050864-459.png||height="564" width="806"]]
790 +
791 +
792 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
793 +
794 +
795 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
796 +
797 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
798 +
799 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
800 +
801 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
802 +
803 +
692 692  (% style="color:#037691" %)**General Commands**(%%)      
693 693  
694 -AT  : Attention       
806 +(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
695 695  
696 -AT?  : Short Help     
808 +(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
697 697  
698 -ATZ  : MCU Reset    
810 +(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
699 699  
700 -AT+TDC  : Application Data Transmission Interval
812 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
701 701  
702 -AT+CFG  : Print all configurations
703 703  
704 -AT+CFGMOD           : Working mode selection
815 +(% style="color:#037691" %)**Keys, IDs and EUIs management**
705 705  
706 -AT+INTMOD            : Set the trigger interrupt mode
817 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
707 707  
708 -AT+5VT  : Set extend the time of 5V power  
819 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
709 709  
710 -AT+PRO  : Choose agreement
821 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
711 711  
712 -AT+WEIGRE  : Get weight or set weight to 0
823 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
713 713  
714 -AT+WEIGAP  : Get or Set the GapValue of weight
825 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
715 715  
716 -AT+RXDL  : Extend the sending and receiving time
827 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
717 717  
718 -AT+CNTFAC  : Get or set counting parameters
829 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
719 719  
720 -AT+SERVADDR  : Server Address
831 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
721 721  
833 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
722 722  
723 -(% style="color:#037691" %)**COAP Management**      
835 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
724 724  
725 -AT+URI            : Resource parameters
837 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
726 726  
839 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
727 727  
728 -(% style="color:#037691" %)**UDP Management**
841 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
729 729  
730 -AT+CFM          : Upload confirmation mode (only valid for UDP)
843 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
731 731  
845 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
732 732  
733 -(% style="color:#037691" %)**MQTT Management**
847 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
734 734  
735 -AT+CLIENT               : Get or Set MQTT client
736 736  
737 -AT+UNAME  : Get or Set MQTT Username
850 +(% style="color:#037691" %)**LoRa Network Management**
738 738  
739 -AT+PWD                  : Get or Set MQTT password
852 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
740 740  
741 -AT+PUBTOPI : Get or Set MQTT publish topic
854 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
742 742  
743 -AT+SUBTOPIC  : Get or Set MQTT subscription topic
856 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
744 744  
858 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
745 745  
746 -(% style="color:#037691" %)**Information**          
860 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
747 747  
748 -AT+FDR  : Factory Data Reset
862 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
749 749  
750 -AT+PWOR : Serial Access Password
864 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
751 751  
866 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
752 752  
868 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
753 753  
754 -= ​5.  FAQ =
870 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
755 755  
756 -== 5.1 How to Upgrade Firmware ==
872 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
757 757  
874 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
758 758  
876 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
877 +
878 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
879 +
880 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
881 +
882 +
883 +(% style="color:#037691" %)**Information** 
884 +
885 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
886 +
887 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
888 +
889 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
890 +
891 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
892 +
893 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
894 +
895 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
896 +
897 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
898 +
899 +
900 += ​4. FAQ =
901 +
902 +== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
903 +
759 759  (((
760 -User can upgrade the firmware for 1) bug fix, 2) new feature release.
905 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
906 +When downloading the images, choose the required image file for download. ​
761 761  )))
762 762  
763 763  (((
764 -Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
910 +
765 765  )))
766 766  
767 767  (((
768 -(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
914 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
769 769  )))
770 770  
917 +(((
918 +
919 +)))
771 771  
921 +(((
922 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
923 +)))
772 772  
773 -= 6.  Trouble Shooting =
925 +(((
926 +
927 +)))
774 774  
775 -== 6.1  ​Connection problem when uploading firmware ==
929 +(((
930 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
931 +)))
776 776  
933 +[[image:image-20220606154726-3.png]]
777 777  
778 -(% class="wikigeneratedid" %)
935 +
936 +When you use the TTN network, the US915 frequency bands use are:
937 +
938 +* 903.9 - SF7BW125 to SF10BW125
939 +* 904.1 - SF7BW125 to SF10BW125
940 +* 904.3 - SF7BW125 to SF10BW125
941 +* 904.5 - SF7BW125 to SF10BW125
942 +* 904.7 - SF7BW125 to SF10BW125
943 +* 904.9 - SF7BW125 to SF10BW125
944 +* 905.1 - SF7BW125 to SF10BW125
945 +* 905.3 - SF7BW125 to SF10BW125
946 +* 904.6 - SF8BW500
947 +
779 779  (((
780 -(% style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]]
949 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
781 781  )))
782 782  
952 +(% class="box infomessage" %)
953 +(((
954 +**AT+CHE=2**
955 +)))
783 783  
957 +(% class="box infomessage" %)
958 +(((
959 +**ATZ**
960 +)))
784 784  
785 -== 6.2  AT Command input doesn't work ==
962 +(((
963 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
964 +)))
786 786  
787 787  (((
788 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
967 +
789 789  )))
790 790  
970 +(((
971 +The **AU915** band is similar. Below are the AU915 Uplink Channels.
972 +)))
791 791  
974 +[[image:image-20220606154825-4.png]]
792 792  
793 -= 7. ​ Order Info =
794 794  
795 795  
796 -Part Number**:** (% style="color:#4f81bd" %)**NSE01**
978 += 5. Trouble Shooting =
797 797  
980 +== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
798 798  
982 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
983 +
984 +
985 +== 5.2 AT Command input doesn’t work ==
986 +
987 +(((
988 +In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
989 +)))
990 +
991 +
992 +== 5.3 Device rejoin in at the second uplink packet ==
993 +
994 +(% style="color:#4f81bd" %)**Issue describe as below:**
995 +
996 +[[image:1654500909990-784.png]]
997 +
998 +
999 +(% style="color:#4f81bd" %)**Cause for this issue:**
1000 +
1001 +(((
1002 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
1003 +)))
1004 +
1005 +
1006 +(% style="color:#4f81bd" %)**Solution: **
1007 +
1008 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1009 +
1010 +[[image:1654500929571-736.png||height="458" width="832"]]
1011 +
1012 +
1013 += 6. ​Order Info =
1014 +
1015 +
1016 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1017 +
1018 +
1019 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1020 +
1021 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1022 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1023 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1024 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1025 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1026 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1027 +* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1028 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1029 +
1030 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1031 +
1032 +* (% style="color:red" %)**4**(%%): 4000mAh battery
1033 +* (% style="color:red" %)**8**(%%): 8500mAh battery
1034 +
799 799  (% class="wikigeneratedid" %)
800 800  (((
801 801  
802 802  )))
803 803  
804 -= 8.  Packing Info =
1040 += 7. Packing Info =
805 805  
806 806  (((
807 807  
808 808  
809 809  (% style="color:#037691" %)**Package Includes**:
1046 +)))
810 810  
811 -
812 -* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
813 -* External antenna x 1
1048 +* (((
1049 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
814 814  )))
815 815  
816 816  (((
... ... @@ -817,20 +817,30 @@
817 817  
818 818  
819 819  (% style="color:#037691" %)**Dimension and weight**:
1056 +)))
820 820  
821 -
822 -* Size: 195 x 125 x 55 mm
823 -* Weight:   420g
1058 +* (((
1059 +Device Size: cm
824 824  )))
1061 +* (((
1062 +Device Weight: g
1063 +)))
1064 +* (((
1065 +Package Size / pcs : cm
1066 +)))
1067 +* (((
1068 +Weight / pcs : g
825 825  
826 -(((
827 -
828 828  
829 -
830 830  
831 831  )))
832 832  
833 -= 9.  Support =
1074 += 8. Support =
834 834  
835 835  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
836 836  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1078 +
1079 +
1080 +~)~)~)
1081 +~)~)~)
1082 +~)~)~)
1657245163077-232.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
image-20220610172436-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -370.3 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -102.7 KB
Content