Changes for page NDDS75 -- NB-IoT Distance Detect Sensor User Manual
Last modified by Bei Jinggeng on 2024/05/31 09:53
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 24 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - NSE01NB-IoTSoil Moisture & EC Sensor User Manual1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -8,643 +8,715 @@ 8 8 9 9 10 10 11 += 1. Introduction = 11 11 13 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 12 12 15 +((( 16 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 17 +))) 13 13 14 -**Table of Contents:** 19 +((( 20 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 21 +))) 15 15 16 -{{toc/}} 23 +((( 24 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 25 +))) 17 17 27 +((( 28 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 29 +))) 18 18 31 +((( 32 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 33 +))) 19 19 20 20 36 +[[image:1654503236291-817.png]] 21 21 22 22 23 - =1.Introduction =39 +[[image:1654503265560-120.png]] 24 24 25 -== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 26 26 42 + 43 +== 1.2 Features == 44 + 45 +* LoRaWAN 1.0.3 Class A 46 +* Ultra low power consumption 47 +* Monitor Soil Moisture 48 +* Monitor Soil Temperature 49 +* Monitor Soil Conductivity 50 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 51 +* AT Commands to change parameters 52 +* Uplink on periodically 53 +* Downlink to change configure 54 +* IP66 Waterproof Enclosure 55 +* 4000mAh or 8500mAh Battery for long term use 56 + 57 + 58 + 59 +== 1.3 Specification == 60 + 61 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 62 + 63 +[[image:image-20220606162220-5.png]] 64 + 65 + 66 + 67 +== 1.4 Applications == 68 + 69 +* Smart Agriculture 70 + 71 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 72 + 73 + 74 +== 1.5 Firmware Change log == 75 + 76 + 77 +**LSE01 v1.0 :** Release 78 + 79 + 80 + 81 += 2. Configure LSE01 to connect to LoRaWAN network = 82 + 83 +== 2.1 How it works == 84 + 27 27 ((( 28 - 86 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 87 +))) 29 29 30 -Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 89 +((( 90 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.UsingtheATCommands"]]. 91 +))) 31 31 32 -It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 33 33 34 -The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 35 35 36 - NSE01 are powered by (% style="color:blue"%)**8500mAhLi-SOCI2**(%%)batteries,whichcanbeused forup to5 years.95 +== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 37 37 97 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 98 + 99 + 100 +[[image:1654503992078-669.png]] 101 + 102 + 103 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 104 + 105 + 106 +**Step 1**: Create a device in TTN with the OTAA keys from LSE01. 107 + 108 +Each LSE01 is shipped with a sticker with the default device EUI as below: 109 + 110 +[[image:image-20220606163732-6.jpeg]] 111 + 112 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 113 + 114 +**Add APP EUI in the application** 115 + 116 + 117 +[[image:1654504596150-405.png]] 118 + 119 + 120 + 121 +**Add APP KEY and DEV EUI** 122 + 123 +[[image:1654504683289-357.png]] 124 + 125 + 126 + 127 +**Step 2**: Power on LSE01 128 + 129 + 130 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 131 + 132 +[[image:image-20220606163915-7.png]] 133 + 134 + 135 +**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 136 + 137 +[[image:1654504778294-788.png]] 138 + 139 + 140 + 141 +== 2.3 Uplink Payload == 142 + 143 +=== 2.3.1 MOD~=0(Default Mode) === 144 + 145 +LSE01 will uplink payload via LoRaWAN with below payload format: 146 + 147 + 148 +Uplink payload includes in total 11 bytes. 38 38 39 -))) 40 40 41 -[[image:1654503236291-817.png]] 151 +|((( 152 +**Size** 42 42 154 +**(bytes)** 155 +)))|**2**|**2**|**2**|**2**|**2**|**1** 156 +|**Value**|[[BAT>>path:#bat]]|((( 157 +Temperature 43 43 44 -[[image:1657245163077-232.png]] 159 +(Reserve, Ignore now) 160 +)))|[[Soil Moisture>>path:#soil_moisture]]|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]]|((( 161 +MOD & Digital Interrupt 45 45 163 +(Optional) 164 +))) 46 46 166 +[[image:1654504881641-514.png]] 47 47 48 -== 1.2 Features == 49 49 50 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 51 -* Monitor Soil Moisture 52 -* Monitor Soil Temperature 53 -* Monitor Soil Conductivity 54 -* AT Commands to change parameters 55 -* Uplink on periodically 56 -* Downlink to change configure 57 -* IP66 Waterproof Enclosure 58 -* Ultra-Low Power consumption 59 -* AT Commands to change parameters 60 -* Micro SIM card slot for NB-IoT SIM 61 -* 8500mAh Battery for long term use 62 62 170 +=== 2.3.2 MOD~=1(Original value) === 63 63 172 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 64 64 174 +|((( 175 +**Size** 65 65 66 -== 1.3 Specification == 177 +**(bytes)** 178 +)))|**2**|**2**|**2**|**2**|**2**|**1** 179 +|**Value**|[[BAT>>path:#bat]]|((( 180 +Temperature 67 67 182 +(Reserve, Ignore now) 183 +)))|[[Soil Moisture>>path:#soil_moisture]](raw)|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]](raw)|((( 184 +MOD & Digital Interrupt 68 68 69 -(% style="color:#037691" %)**Common DC Characteristics:** 186 +(Optional) 187 +))) 70 70 71 -* Supply Voltage: 2.1v ~~ 3.6v 72 -* Operating Temperature: -40 ~~ 85°C 189 +[[image:1654504907647-967.png]] 73 73 74 74 75 75 76 - (%style="color:#037691"%)**NB-IoTSpec:**193 +=== 2.3.3 Battery Info === 77 77 78 -* - B1 @H-FDD: 2100MHz 79 -* - B3 @H-FDD: 1800MHz 80 -* - B8 @H-FDD: 900MHz 81 -* - B5 @H-FDD: 850MHz 82 -* - B20 @H-FDD: 800MHz 83 -* - B28 @H-FDD: 700MHz 195 +Check the battery voltage for LSE01. 84 84 197 +Ex1: 0x0B45 = 2885mV 85 85 199 +Ex2: 0x0B49 = 2889mV 86 86 87 -Probe(% style="color:#037691" %)** Specification:** 88 88 89 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 90 90 91 - [[image:image-20220708101224-1.png]]203 +=== 2.3.4 Soil Moisture === 92 92 205 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 93 93 207 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 94 94 95 -== 1.4 Applications == 96 96 97 - *SmartAgriculture210 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 98 98 99 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 100 - 101 101 102 -== 1.5 Pin Definitions == 103 103 214 +=== 2.3.5 Soil Temperature === 104 104 105 - [[image:1657246476176-652.png]]216 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 106 106 218 +**Example**: 107 107 220 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 108 108 109 - =2.UseNSE01 to communicatewithIoTServer=222 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 110 110 111 -== 2.1 How it works == 112 112 113 113 226 +=== 2.3.6 Soil Conductivity (EC) === 227 + 114 114 ((( 115 - The NSE01 is equipped withaNB-IoTmodule, the pre-loaded firmware in NSE01willgetenvironmentdata fromsensorsandsendthe valuetolocal NB-IoTnetworkviatheNB-IoT module.NB-IoTnetworkwillforwardthisvaluetoIoT server viaheprotocoldefinedby NSE01.229 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 116 116 ))) 117 117 232 +((( 233 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 234 +))) 118 118 119 119 ((( 120 - Thediagram belowshowstheworkingflowin defaultfirmwareofNSE01:237 +Generally, the EC value of irrigation water is less than 800uS / cm. 121 121 ))) 122 122 123 -[[image:image-20220708101605-2.png]] 240 +((( 241 + 242 +))) 124 124 125 125 ((( 126 126 127 127 ))) 128 128 248 +=== 2.3.7 MOD === 129 129 250 +Firmware version at least v2.1 supports changing mode. 130 130 131 - == 2.2 Configure theNSE01=252 +For example, bytes[10]=90 132 132 254 +mod=(bytes[10]>>7)&0x01=1. 133 133 134 -=== 2.2.1 Test Requirement === 135 135 257 +Downlink Command: 136 136 137 - TouseNSE01inyourcity, make suremeet below requirements:259 +If payload = 0x0A00, workmode=0 138 138 139 -* Your local operator has already distributed a NB-IoT Network there. 140 -* The local NB-IoT network used the band that NSE01 supports. 141 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 261 +If** **payload =** **0x0A01, workmode=1 142 142 143 -((( 144 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 145 -))) 146 146 147 147 148 - [[image:1657249419225-449.png]]265 +=== 2.3.8 Decode payload in The Things Network === 149 149 267 +While using TTN network, you can add the payload format to decode the payload. 150 150 151 151 152 - ===2.2.2 Insert SIM card ===270 +[[image:1654505570700-128.png]] 153 153 154 - Insert theNB-IoT Cardgetfromyourprovider.272 +The payload decoder function for TTN is here: 155 155 156 - Userneedtotakeout theNB-IoT moduleandsert theIM cardkebelow:274 +LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 157 157 158 158 159 - [[image:1657249468462-536.png]]277 +== 2.4 Uplink Interval == 160 160 279 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: 161 161 281 +[[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]] 162 162 163 -=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 164 164 165 -((( 166 -((( 167 -User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 168 -))) 169 -))) 170 170 285 +== 2.5 Downlink Payload == 171 171 172 - **Connection:**287 +By default, LSE50 prints the downlink payload to console port. 173 173 174 - (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND289 +[[image:image-20220606165544-8.png]] 175 175 176 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 177 177 178 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD292 +**Examples:** 179 179 180 180 181 - InthePC, use below serialtoolsettings:295 +* **Set TDC** 182 182 183 -* Baud: (% style="color:green" %)**9600** 184 -* Data bits:** (% style="color:green" %)8(%%)** 185 -* Stop bits: (% style="color:green" %)**1** 186 -* Parity: (% style="color:green" %)**None** 187 -* Flow Control: (% style="color:green" %)**None** 297 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 188 188 189 -((( 190 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 191 -))) 299 +Payload: 01 00 00 1E TDC=30S 192 192 193 - [[image:image-20220708110657-3.png]]301 +Payload: 01 00 00 3C TDC=60S 194 194 195 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 196 196 304 +* **Reset** 197 197 306 +If payload = 0x04FF, it will reset the LSE01 198 198 199 -=== 2.2.4 Use CoAP protocol to uplink data === 200 200 201 - (%style="color:red" %)Note: if you don't haveCoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]309 +* **CFM** 202 202 311 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 203 203 204 -**Use below commands:** 205 205 206 -* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 207 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 208 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 209 209 210 - Forparameterdescription,pleaserefer toATcommand set315 +== 2.6 Show Data in DataCake IoT Server == 211 211 212 -[[ima ge:1657249793983-486.png]]317 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 213 213 214 214 215 - Afterconfigure theserveraddressand(% style="color:green" %)**reset thedevice**(%%) (via AT+ATZ ), NSE01willstart to uplinksensorvaluesto CoAP server.320 +**Step 1**: Be sure that your device is programmed and properly connected to the network at this time. 216 216 217 - [[image:1657249831934-534.png]]322 +**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 218 218 219 219 325 +[[image:1654505857935-743.png]] 220 220 221 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 222 222 223 - This feature is supported since firmwareversion v1.0.1328 +[[image:1654505874829-548.png]] 224 224 330 +Step 3: Create an account or log in Datacake. 225 225 226 -* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 227 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 228 -* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 332 +Step 4: Search the LSE01 and add DevEUI. 229 229 230 -[[image:1657249864775-321.png]] 231 231 335 +[[image:1654505905236-553.png]] 232 232 233 -[[image:1657249930215-289.png]] 234 234 338 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 235 235 340 +[[image:1654505925508-181.png]] 236 236 237 -=== 2.2.6 Use MQTT protocol to uplink data === 238 238 239 -This feature is supported since firmware version v110 240 240 344 +== 2.7 Frequency Plans == 241 241 242 -* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 243 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 244 -* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 245 -* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 246 -* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 247 -* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 248 -* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 346 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 249 249 250 -[[image:1657249978444-674.png]] 251 251 349 +=== 2.7.1 EU863-870 (EU868) === 252 252 253 - [[image:1657249990869-686.png]]351 +(% style="color:#037691" %)** Uplink:** 254 254 353 +868.1 - SF7BW125 to SF12BW125 255 255 256 -((( 257 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 258 -))) 355 +868.3 - SF7BW125 to SF12BW125 and SF7BW250 259 259 357 +868.5 - SF7BW125 to SF12BW125 260 260 359 +867.1 - SF7BW125 to SF12BW125 261 261 262 - === 2.2.7UseTCP protocolto uplink data ===361 +867.3 - SF7BW125 to SF12BW125 263 263 264 - Thisfeatureissupported since firmware versionv110363 +867.5 - SF7BW125 to SF12BW125 265 265 365 +867.7 - SF7BW125 to SF12BW125 266 266 267 -* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 268 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 367 +867.9 - SF7BW125 to SF12BW125 269 269 270 - [[image:1657250217799-140.png]]369 +868.8 - FSK 271 271 272 272 273 - [[image:1657250255956-604.png]]372 +(% style="color:#037691" %)** Downlink:** 274 274 374 +Uplink channels 1-9 (RX1) 275 275 376 +869.525 - SF9BW125 (RX2 downlink only) 276 276 277 -=== 2.2.8 Change Update Interval === 278 278 279 -User can use below command to change the (% style="color:green" %)**uplink interval**. 280 280 281 - * (% style="color:blue" %)**AT+TDC=600**%%)~/~/Set Update Interval to 600s380 +=== 2.7.2 US902-928(US915) === 282 282 283 -((( 284 -(% style="color:red" %)**NOTE:** 285 -))) 382 +Used in USA, Canada and South America. Default use CHE=2 286 286 287 -((( 288 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 289 -))) 384 +(% style="color:#037691" %)**Uplink:** 290 290 386 +903.9 - SF7BW125 to SF10BW125 291 291 388 +904.1 - SF7BW125 to SF10BW125 292 292 293 - == 2.3UplinkPayload==390 +904.3 - SF7BW125 to SF10BW125 294 294 295 - Inthismode,uplink payload includes intotal18 bytes392 +904.5 - SF7BW125 to SF10BW125 296 296 297 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 298 -|=(% style="width: 50px;" %)((( 299 -**Size(bytes)** 300 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1** 301 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]] 394 +904.7 - SF7BW125 to SF10BW125 302 302 303 - Ifweusethe MQTT client tosubscribe to this MQTT topic, we can see the following information when the NSE01uplink data.396 +904.9 - SF7BW125 to SF10BW125 304 304 398 +905.1 - SF7BW125 to SF10BW125 305 305 306 - [[image:image-20220708111918-4.png]]400 +905.3 - SF7BW125 to SF10BW125 307 307 308 308 309 - Thepayload is ASCII string,representative same HEX:403 +(% style="color:#037691" %)**Downlink:** 310 310 311 - 0x72403155615900640c7817075e0a8c02f900 where:405 +923.3 - SF7BW500 to SF12BW500 312 312 313 -* Device ID: 0x 724031556159 = 724031556159 314 -* Version: 0x0064=100=1.0.0 407 +923.9 - SF7BW500 to SF12BW500 315 315 316 -* BAT: 0x0c78 = 3192 mV = 3.192V 317 -* Singal: 0x17 = 23 318 -* Soil Moisture: 0x075e= 1886 = 18.86 % 319 -* Soil Temperature:0x0a8c =2700=27 °C 320 -* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 321 -* Interrupt: 0x00 = 0 409 +924.5 - SF7BW500 to SF12BW500 322 322 411 +925.1 - SF7BW500 to SF12BW500 323 323 413 +925.7 - SF7BW500 to SF12BW500 324 324 415 +926.3 - SF7BW500 to SF12BW500 325 325 326 - ==2.4PayloadExplanation andSensorInterface==417 +926.9 - SF7BW500 to SF12BW500 327 327 419 +927.5 - SF7BW500 to SF12BW500 328 328 329 - ===2.4.1DeviceID ===421 +923.3 - SF12BW500(RX2 downlink only) 330 330 331 -By default, the Device ID equal to the last 6 bytes of IMEI. 332 332 333 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 334 334 335 - **Example:**425 +=== 2.7.3 CN470-510 (CN470) === 336 336 337 - AT+DEUI=A84041F15612427 +Used in China, Default use CHE=1 338 338 339 - TheDevice ID isstored in a none-erasearea,Upgrade the firmware or runAT+FDR won't erase Device ID.429 +(% style="color:#037691" %)**Uplink:** 340 340 431 +486.3 - SF7BW125 to SF12BW125 341 341 433 +486.5 - SF7BW125 to SF12BW125 342 342 343 - === 2.4.2VersionInfo ===435 +486.7 - SF7BW125 to SF12BW125 344 344 345 - Specifythesoftware version: 0x64=100,means firmware version1.00.437 +486.9 - SF7BW125 to SF12BW125 346 346 347 - For example: 0x00 64:this device is NSE01with firmware version1.0.0.439 +487.1 - SF7BW125 to SF12BW125 348 348 441 +487.3 - SF7BW125 to SF12BW125 349 349 443 +487.5 - SF7BW125 to SF12BW125 350 350 351 - === 2.4.3BatteryInfo===445 +487.7 - SF7BW125 to SF12BW125 352 352 353 -((( 354 -Check the battery voltage for LSE01. 355 -))) 356 356 357 -((( 358 -Ex1: 0x0B45 = 2885mV 359 -))) 448 +(% style="color:#037691" %)**Downlink:** 360 360 361 -((( 362 -Ex2: 0x0B49 = 2889mV 363 -))) 450 +506.7 - SF7BW125 to SF12BW125 364 364 452 +506.9 - SF7BW125 to SF12BW125 365 365 454 +507.1 - SF7BW125 to SF12BW125 366 366 367 - === 2.4.4SignalStrength===456 +507.3 - SF7BW125 to SF12BW125 368 368 369 - NB-IoTNetworksignalStrength.458 +507.5 - SF7BW125 to SF12BW125 370 370 371 - **Ex1:0x1d=29**460 +507.7 - SF7BW125 to SF12BW125 372 372 373 - (% style="color:blue" %)**0**(%%)113dBmorless462 +507.9 - SF7BW125 to SF12BW125 374 374 375 - (%style="color:blue"%)**1**(%%)-111dBm464 +508.1 - SF7BW125 to SF12BW125 376 376 377 - (% style="color:blue" %)**2...30**(%%)-109dBm... -53dBm466 +505.3 - SF12BW125 (RX2 downlink only) 378 378 379 -(% style="color:blue" %)**31** (%%) -51dBm or greater 380 380 381 -(% style="color:blue" %)**99** (%%) Not known or not detectable 382 382 470 +=== 2.7.4 AU915-928(AU915) === 383 383 472 +Default use CHE=2 384 384 385 - ===2.4.5 SoilMoisture===474 +(% style="color:#037691" %)**Uplink:** 386 386 387 -((( 388 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 389 -))) 476 +916.8 - SF7BW125 to SF12BW125 390 390 391 -((( 392 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 393 -))) 478 +917.0 - SF7BW125 to SF12BW125 394 394 395 -((( 396 - 397 -))) 480 +917.2 - SF7BW125 to SF12BW125 398 398 399 -((( 400 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 401 -))) 482 +917.4 - SF7BW125 to SF12BW125 402 402 484 +917.6 - SF7BW125 to SF12BW125 403 403 486 +917.8 - SF7BW125 to SF12BW125 404 404 405 - === 2.4.6SoilTemperature===488 +918.0 - SF7BW125 to SF12BW125 406 406 407 -((( 408 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 409 -))) 490 +918.2 - SF7BW125 to SF12BW125 410 410 411 -((( 412 -**Example**: 413 -))) 414 414 415 -((( 416 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 417 -))) 493 +(% style="color:#037691" %)**Downlink:** 418 418 419 -((( 420 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 421 -))) 495 +923.3 - SF7BW500 to SF12BW500 422 422 497 +923.9 - SF7BW500 to SF12BW500 423 423 499 +924.5 - SF7BW500 to SF12BW500 424 424 425 - ===2.4.7SoilConductivity(EC) ===501 +925.1 - SF7BW500 to SF12BW500 426 426 427 -((( 428 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 429 -))) 503 +925.7 - SF7BW500 to SF12BW500 430 430 431 -((( 432 -For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 433 -))) 505 +926.3 - SF7BW500 to SF12BW500 434 434 435 -((( 436 -Generally, the EC value of irrigation water is less than 800uS / cm. 437 -))) 507 +926.9 - SF7BW500 to SF12BW500 438 438 439 -((( 440 - 441 -))) 509 +927.5 - SF7BW500 to SF12BW500 442 442 443 -((( 444 - 445 -))) 511 +923.3 - SF12BW500(RX2 downlink only) 446 446 447 -=== 2.4.8 Digital Interrupt === 448 448 449 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 450 450 451 - Thecommandis:515 +=== 2.7.5 AS920-923 & AS923-925 (AS923) === 452 452 453 -(% style="color: blue" %)**AT+INTMOD=3 **(%%) ~/~/(moreinfoaboutINMODplease refer [[**AT CommandManual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**517 +(% style="color:#037691" %)**Default Uplink channel:** 454 454 519 +923.2 - SF7BW125 to SF10BW125 455 455 456 - The lower four bits of this data field shows if this packet is generated by interrupt or not.[[Clickhere>>||anchor="H"]]forthe hardware and softwareset up.521 +923.4 - SF7BW125 to SF10BW125 457 457 458 458 459 - Example:524 +(% style="color:#037691" %)**Additional Uplink Channel**: 460 460 461 - 0x(00):Normaluplink packet.526 +(OTAA mode, channel added by JoinAccept message) 462 462 463 - 0x(01):InterruptUplinkPacket.528 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 464 464 530 +922.2 - SF7BW125 to SF10BW125 465 465 532 +922.4 - SF7BW125 to SF10BW125 466 466 467 - ===2.4.9+5VOutput===534 +922.6 - SF7BW125 to SF10BW125 468 468 469 - NSE01willenable +5Voutput beforeall sampling and disable the +5v after all sampling.536 +922.8 - SF7BW125 to SF10BW125 470 470 538 +923.0 - SF7BW125 to SF10BW125 471 471 472 - The5Voutput time can be controlledby AT Command.540 +922.0 - SF7BW125 to SF10BW125 473 473 474 -(% style="color:blue" %)**AT+5VT=1000** 475 475 476 - Meansset5V valid timetohave1000ms.Sothereal5Voutputwillactuallyhave 1000ms+samplingtimefor other sensors.543 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 477 477 545 +923.6 - SF7BW125 to SF10BW125 478 478 547 +923.8 - SF7BW125 to SF10BW125 479 479 480 - ==2.5DownlinkPayload ==549 +924.0 - SF7BW125 to SF10BW125 481 481 482 - Bydefault,NSE01prints the downlinkpayload to console port.551 +924.2 - SF7BW125 to SF10BW125 483 483 484 - [[image:image-20220708133731-5.png]]553 +924.4 - SF7BW125 to SF10BW125 485 485 555 +924.6 - SF7BW125 to SF10BW125 486 486 487 -((( 488 -(% style="color:blue" %)**Examples:** 489 -))) 490 490 491 -((( 492 - 493 -))) 558 +(% style="color:#037691" %)** Downlink:** 494 494 495 -* ((( 496 -(% style="color:blue" %)**Set TDC** 497 -))) 560 +Uplink channels 1-8 (RX1) 498 498 499 -((( 500 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 501 -))) 562 +923.2 - SF10BW125 (RX2) 502 502 503 -((( 504 -Payload: 01 00 00 1E TDC=30S 505 -))) 506 506 507 -((( 508 -Payload: 01 00 00 3C TDC=60S 509 -))) 510 510 511 -((( 512 - 513 -))) 566 +=== 2.7.6 KR920-923 (KR920) === 514 514 515 -* ((( 516 -(% style="color:blue" %)**Reset** 517 -))) 568 +Default channel: 518 518 519 -((( 520 -If payload = 0x04FF, it will reset the NSE01 521 -))) 570 +922.1 - SF7BW125 to SF12BW125 522 522 572 +922.3 - SF7BW125 to SF12BW125 523 523 524 - *(%style="color:blue"%)**INTMOD**574 +922.5 - SF7BW125 to SF12BW125 525 525 526 -Downlink Payload: 06000003, Set AT+INTMOD=3 527 527 577 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 528 528 579 +922.1 - SF7BW125 to SF12BW125 529 529 530 - ==2.6LEDIndicator==581 +922.3 - SF7BW125 to SF12BW125 531 531 532 -((( 533 -The NSE01 has an internal LED which is to show the status of different state. 583 +922.5 - SF7BW125 to SF12BW125 534 534 585 +922.7 - SF7BW125 to SF12BW125 535 535 536 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 537 -* Then the LED will be on for 1 second means device is boot normally. 538 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 539 -* For each uplink probe, LED will be on for 500ms. 540 -))) 587 +922.9 - SF7BW125 to SF12BW125 541 541 589 +923.1 - SF7BW125 to SF12BW125 542 542 591 +923.3 - SF7BW125 to SF12BW125 543 543 544 544 545 - ==2.7 Installationin Soil==594 +(% style="color:#037691" %)**Downlink:** 546 546 547 - __**Measurementthesoilurface**__596 +Uplink channels 1-7(RX1) 548 548 549 - Choose the proper measuring position.Avoidtheprobeto touch rocks or hardthings. Split the surface soil accordingtothe measured deep. Keep the measured as originaldensity.Verticalinsert the probe intothe soil tobemeasured. Make sure not shake wheninserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]598 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 550 550 551 -[[image:1657259653666-883.png]] 552 552 553 553 554 -((( 555 - 602 +=== 2.7.7 IN865-867 (IN865) === 556 556 557 -((( 558 -Dig a hole with diameter > 20CM. 559 -))) 604 +(% style="color:#037691" %)** Uplink:** 560 560 561 -((( 562 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 563 -))) 564 -))) 606 +865.0625 - SF7BW125 to SF12BW125 565 565 566 - [[image:1654506665940-119.png]]608 +865.4025 - SF7BW125 to SF12BW125 567 567 568 -((( 569 - 570 -))) 610 +865.9850 - SF7BW125 to SF12BW125 571 571 572 572 573 - ==2.8 FirmwareChangeLog ==613 +(% style="color:#037691" %) **Downlink:** 574 574 615 +Uplink channels 1-3 (RX1) 575 575 576 - DownloadURL&FirmwareChange log617 +866.550 - SF10BW125 (RX2) 577 577 578 -[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 579 579 580 580 581 -Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]] 582 582 622 +== 2.8 LED Indicator == 583 583 624 +The LSE01 has an internal LED which is to show the status of different state. 584 584 585 -== 2.9 Battery Analysis == 626 +* Blink once when device power on. 627 +* Solid ON for 5 seconds once device successful Join the network. 628 +* Blink once when device transmit a packet. 586 586 587 -== =2.9.1BatteryType===630 +== 2.9 Installation in Soil == 588 588 632 +**Measurement the soil surface** 589 589 590 -The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 591 591 635 +[[image:1654506634463-199.png]] 592 592 593 -The battery is designed to last for several years depends on the actually use environment and update interval. 637 +((( 638 +((( 639 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 640 +))) 641 +))) 594 594 595 595 596 - The battery related documentsas below:644 +[[image:1654506665940-119.png]] 597 597 598 - * [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]599 - * [[Lithium-ThionylChlorideBattery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]600 - * [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]646 +((( 647 +Dig a hole with diameter > 20CM. 648 +))) 601 601 602 602 ((( 603 - [[image:image-20220708140453-6.png]]651 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 604 604 ))) 605 605 606 606 655 +== 2.10 Firmware Change Log == 607 607 608 -=== 2.9.2 Power consumption Analyze === 657 +((( 658 +**Firmware download link:** 659 +))) 609 609 610 610 ((( 611 - Dragino batterypoweredproductare all runsinLow Powermode.Wehave an update battery calculator which base ontheeasurementofthereal device.Usercanuse this calculator to check the battery life andcalculatethe battery life if want tousedifferent transmit interval.662 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 612 612 ))) 613 613 665 +((( 666 + 667 +))) 614 614 615 615 ((( 616 -Instruction to useasbelow:670 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 617 617 ))) 618 618 619 619 ((( 620 - (%style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]674 + 621 621 ))) 622 622 677 +((( 678 +**V1.0.** 679 +))) 623 623 624 624 ((( 625 - (% style="color:blue" %)**Step 2: **(%%) Open itand choose682 +Release 626 626 ))) 627 627 685 + 686 +== 2.11 Battery Analysis == 687 + 688 +=== 2.11.1 Battery Type === 689 + 690 +((( 691 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 692 +))) 693 + 694 +((( 695 +The battery is designed to last for more than 5 years for the LSN50. 696 +))) 697 + 698 +((( 699 +((( 700 +The battery-related documents are as below: 701 +))) 702 +))) 703 + 628 628 * ((( 629 - ProductModel705 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 630 630 ))) 631 631 * ((( 632 - UplinkInterval708 +[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 633 633 ))) 634 634 * ((( 635 - WorkingMode711 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 636 636 ))) 637 637 638 -((( 639 -And the Life expectation in difference case will be shown on the right. 640 -))) 714 + [[image:image-20220606171726-9.png]] 641 641 642 -[[image:image-20220708141352-7.jpeg]] 643 643 644 644 718 +=== 2.11.2 Battery Note === 645 645 646 -=== 2.9.3 Battery Note === 647 - 648 648 ((( 649 649 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 650 650 ))) ... ... @@ -651,186 +651,299 @@ 651 651 652 652 653 653 654 -=== 2. 9.4Replace the battery ===726 +=== 2.11.3 Replace the battery === 655 655 656 656 ((( 657 - The defaultbatterypack of NSE01includesa ER26500 plus super capacitor. If usercan'tfind this pack locally, they canfind ER26500or equivalencewithouttheSPC1520 capacitor, which willalso work in mostcase.The SPC can enlargethe batterylife for highfrequencyuse (update period below 5 minutes).729 +If Battery is lower than 2.7v, user should replace the battery of LSE01. 658 658 ))) 659 659 660 - 661 - 662 -= 3. Access NB-IoT Module = 663 - 664 664 ((( 665 - Userscan directly accesstheATcommand set of theNB-IoTmodule.733 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 666 666 ))) 667 667 668 668 ((( 669 -The ATCommand setcanrefer theBC35-GNB-IoTModuleATCommand: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]]737 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 670 670 ))) 671 671 672 -[[image:1657261278785-153.png]] 673 673 674 674 742 += 3. Using the AT Commands = 675 675 676 -= 4.UsingtheAT Commands =744 +== 3.1 Access AT Commands == 677 677 678 -== 4.1 Access AT Commands == 679 679 680 -S eethislinkfordetail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]747 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 681 681 749 +[[image:1654501986557-872.png]] 682 682 683 -AT+<CMD>? : Help on <CMD> 684 684 685 - AT+<CMD>: Run<CMD>752 +Or if you have below board, use below connection: 686 686 687 -AT+<CMD>=<value> : Set the value 688 688 689 - AT+<CMD>=? : Get the value755 +[[image:1654502005655-729.png]] 690 690 691 691 758 + 759 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 760 + 761 + 762 + [[image:1654502050864-459.png]] 763 + 764 + 765 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]] 766 + 767 + 768 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 769 + 770 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 771 + 772 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 773 + 774 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 775 + 776 + 692 692 (% style="color:#037691" %)**General Commands**(%%) 693 693 694 -AT 779 +(% style="background-color:#dcdcdc" %)**AT**(%%) : Attention 695 695 696 -AT? 781 +(% style="background-color:#dcdcdc" %)**AT?**(%%) : Short Help 697 697 698 -ATZ 783 +(% style="background-color:#dcdcdc" %)**ATZ**(%%) : MCU Reset 699 699 700 -AT+TDC 785 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%) : Application Data Transmission Interval 701 701 702 -AT+CFG : Print all configurations 703 703 704 - AT+CFGMOD: Workingmode selection788 +(% style="color:#037691" %)**Keys, IDs and EUIs management** 705 705 706 -AT+I NTMOD:Setthe trigger interruptmode790 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%) : Application EUI 707 707 708 -AT+ 5VTSetextend the timeof5V power792 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%) : Application Key 709 709 710 -AT+P ROChooseagreement794 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%) : Application Session Key 711 711 712 -AT+ WEIGREGet weightorsetweight to 0796 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%) : Device Address 713 713 714 -AT+ WEIGAPGet or SettheGapValue of weight798 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%) : Device EUI 715 715 716 -AT+ RXDL: Extendthe sendingandreceivingtime800 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%) : Network ID (You can enter this command change only after successful network connection) 717 717 718 -AT+ CNTFACGettcountingparameters802 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%) : Network Session Key Joining and sending date on LoRa network 719 719 720 -AT+ SERVADDR:ServerAddress804 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%) : Confirm Mode 721 721 806 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 722 722 723 -(% style="color:# 037691" %)**COAPManagement**808 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%) : Join LoRa? Network 724 724 725 -AT+ URIsourceparameters810 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%) : LoRa? Network Join Mode 726 726 812 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 727 727 728 -(% style="color:# 037691" %)**UDPManagement**814 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%) : Print Last Received Data in Raw Format 729 729 730 -AT+C FM:Uploadconfirmationmode (onlyvalid forUDP)816 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%) : Print Last Received Data in Binary Format 731 731 818 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 732 732 733 -(% style="color:# 037691" %)**MQTTManagement**820 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%) : Send Hexadecimal Data 734 734 735 -AT+CLIENT : Get or Set MQTT client 736 736 737 - AT+UNAMEGetSetMQTT Username823 +(% style="color:#037691" %)**LoRa Network Management** 738 738 739 -AT+ PWDGetor SetMQTT password825 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%) : Adaptive Rate 740 740 741 -AT+ PUBTOPICGetorSetMQTTpublishtopic827 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%) : LoRa Class(Currently only support class A 742 742 743 -AT+ SUBTOPIC :GetorSetMQTT subscriptiontopic829 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%) : Duty Cycle Setting 744 744 831 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 745 745 746 -(% style="color:# 037691" %)**Information**833 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink 747 747 748 -AT+F DRctoryDataReset835 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%) : Frame Counter Uplink 749 749 750 -AT+ PWORDSerialAccessPassword837 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%) : Join Accept Delay1 751 751 839 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 752 752 841 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 753 753 754 -= 5.FAQ=843 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%) : Receive Delay1 755 755 756 -= =5.1HowtoUpgradeFirmware==845 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%) : Receive Delay2 757 757 847 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 758 758 759 -((( 760 -User can upgrade the firmware for 1) bug fix, 2) new feature release. 761 -))) 849 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 762 762 851 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 852 + 853 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 854 + 855 + 856 +(% style="color:#037691" %)**Information** 857 + 858 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 859 + 860 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 861 + 862 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 863 + 864 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 865 + 866 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 867 + 868 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 869 + 870 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 871 + 872 + 873 += 4. FAQ = 874 + 875 +== 4.1 How to change the LoRa Frequency Bands/Region? == 876 + 877 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10FirmwareChangeLog"]]. 878 +When downloading the images, choose the required image file for download. 879 + 880 + 881 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 882 + 883 + 884 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 885 + 886 + 887 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 888 + 889 +[[image:image-20220606154726-3.png]] 890 + 891 +When you use the TTN network, the US915 frequency bands use are: 892 + 893 +* 903.9 - SF7BW125 to SF10BW125 894 +* 904.1 - SF7BW125 to SF10BW125 895 +* 904.3 - SF7BW125 to SF10BW125 896 +* 904.5 - SF7BW125 to SF10BW125 897 +* 904.7 - SF7BW125 to SF10BW125 898 +* 904.9 - SF7BW125 to SF10BW125 899 +* 905.1 - SF7BW125 to SF10BW125 900 +* 905.3 - SF7BW125 to SF10BW125 901 +* 904.6 - SF8BW500 902 + 903 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 904 + 905 +(% class="box infomessage" %) 763 763 ((( 764 - Please see this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]907 +**AT+CHE=2** 765 765 ))) 766 766 910 +(% class="box infomessage" %) 767 767 ((( 768 - (% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board.They use the same connection and method to update.912 +**ATZ** 769 769 ))) 770 770 915 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 771 771 772 772 773 - =6.TroubleShooting=918 +The **AU915** band is similar. Below are the AU915 Uplink Channels. 774 774 775 - == 6.1 Connection problemwhen uploadingfirmware==920 +[[image:image-20220606154825-4.png]] 776 776 777 777 778 -(% class="wikigeneratedid" %) 779 -((( 780 -(% style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]] 781 -))) 782 782 924 += 5. Trouble Shooting = 783 783 926 +== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 784 784 785 - ==6.2ATCommandinputdoesn'twork==928 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 786 786 787 -((( 788 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 789 -))) 790 790 931 +== 5.2 AT Command input doesn’t work == 791 791 933 +In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 792 792 793 -= 7. Order Info = 794 794 936 +== 5.3 Device rejoin in at the second uplink packet == 795 795 796 - Part Number**:**(% style="color:#4f81bd" %)**NSE01**938 +(% style="color:#4f81bd" %)**Issue describe as below:** 797 797 940 +[[image:1654500909990-784.png]] 798 798 799 -(% class="wikigeneratedid" %) 800 -((( 801 - 802 -))) 803 803 804 - =8.PackingInfo=943 +(% style="color:#4f81bd" %)**Cause for this issue:** 805 805 806 -((( 807 - 945 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 808 808 809 -(% style="color:#037691" %)**Package Includes**: 810 810 948 +(% style="color:#4f81bd" %)**Solution: ** 811 811 812 -* NSE01 NB-IoT Soil Moisture & EC Sensor x 1 813 -* External antenna x 1 814 -))) 950 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 815 815 952 +[[image:1654500929571-736.png]] 953 + 954 + 955 += 6. Order Info = 956 + 957 + 958 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 959 + 960 + 961 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 962 + 963 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 964 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 965 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 966 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 967 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 968 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 969 +* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 970 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 971 + 972 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 973 + 974 +* (% style="color:red" %)**4**(%%): 4000mAh battery 975 +* (% style="color:red" %)**8**(%%): 8500mAh battery 976 + 977 +(% class="wikigeneratedid" %) 816 816 ((( 817 817 980 +))) 818 818 819 - (% style="color:#037691"%)**Dimensionandweight**:982 += 7. Packing Info = 820 820 984 +((( 985 +**Package Includes**: 986 +))) 821 821 822 -* Size: 195 x 125 x 55 mm823 - *Weight:420g988 +* ((( 989 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 824 824 ))) 825 825 826 826 ((( 827 827 994 +))) 828 828 996 +((( 997 +**Dimension and weight**: 998 +))) 829 829 1000 +* ((( 1001 +Device Size: cm 1002 +))) 1003 +* ((( 1004 +Device Weight: g 1005 +))) 1006 +* ((( 1007 +Package Size / pcs : cm 1008 +))) 1009 +* ((( 1010 +Weight / pcs : g 1011 + 1012 + 830 830 831 831 ))) 832 832 833 -= 9.1016 += 8. Support = 834 834 835 835 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 836 836 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1020 + 1021 +
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -102.7 KB - Content