Changes for page NDDS75 -- NB-IoT Distance Detect Sensor User Manual
Last modified by Bei Jinggeng on 2024/05/31 09:53
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 23 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - NSE01NB-IoTSoil Moisture & EC Sensor User Manual1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -20,710 +20,777 @@ 20 20 21 21 22 22 23 += 1. Introduction = 23 23 24 -= 1. Introduction =25 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 25 25 26 -== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 27 - 28 28 ((( 29 29 30 30 31 -((( 32 -Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 30 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 33 33 ))) 34 34 35 35 ((( 36 -It candetect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and uploaditsvalueto the serverwirelessly.34 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 37 37 ))) 38 38 39 39 ((( 40 -The wireless technology used in NSE01 allowsthedevice to send data at a low data rate and reachultra-longdistances,providingultra-long-distance spread spectrumCommunication.38 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 41 41 ))) 42 42 43 43 ((( 44 - NSE01arepowered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%)batteries,whichcanbe usedforup to5years.42 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 45 45 ))) 46 46 47 - 45 +((( 46 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 48 48 ))) 49 49 49 + 50 50 [[image:1654503236291-817.png]] 51 51 52 52 53 -[[image:165 7245163077-232.png]]53 +[[image:1654503265560-120.png]] 54 54 55 55 56 56 57 -== 1.2 57 +== 1.2 Features == 58 58 59 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 59 +* LoRaWAN 1.0.3 Class A 60 +* Ultra low power consumption 60 60 * Monitor Soil Moisture 61 61 * Monitor Soil Temperature 62 62 * Monitor Soil Conductivity 64 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 63 63 * AT Commands to change parameters 64 64 * Uplink on periodically 65 65 * Downlink to change configure 66 66 * IP66 Waterproof Enclosure 67 -* Ultra-Low Power consumption 68 -* AT Commands to change parameters 69 -* Micro SIM card slot for NB-IoT SIM 70 -* 8500mAh Battery for long term use 69 +* 4000mAh or 8500mAh Battery for long term use 71 71 72 72 73 73 73 +== 1.3 Specification == 74 74 75 - ==1.3Specification==75 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 76 76 77 +[[image:image-20220606162220-5.png]] 77 77 78 -(% style="color:#037691" %)**Common DC Characteristics:** 79 79 80 -* Supply Voltage: 2.1v ~~ 3.6v 81 -* Operating Temperature: -40 ~~ 85°C 82 82 83 - (% style="color:#037691"%)**NB-IoT Spec:**81 +== 1.4 Applications == 84 84 85 -* - B1 @H-FDD: 2100MHz 86 -* - B3 @H-FDD: 1800MHz 87 -* - B8 @H-FDD: 900MHz 88 -* - B5 @H-FDD: 850MHz 89 -* - B20 @H-FDD: 800MHz 90 -* - B28 @H-FDD: 700MHz 83 +* Smart Agriculture 91 91 92 -Probe(% style="color:#037691" %)** Specification:** 85 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 86 + 93 93 94 - MeasureVolume:Base on the centrapin of the probe,a cylinder with7cm diameter and 10cm height.88 +== 1.5 Firmware Change log == 95 95 96 -[[image:image-20220708101224-1.png]] 97 97 91 +**LSE01 v1.0 :** Release 98 98 99 99 100 -== 1.4 Applications == 101 101 102 - *SmartAgriculture95 += 2. Configure LSE01 to connect to LoRaWAN network = 103 103 104 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 105 - 97 +== 2.1 How it works == 106 106 107 -== 1.5 Pin Definitions == 99 +((( 100 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 101 +))) 108 108 103 +((( 104 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 105 +))) 109 109 110 -[[image:1657246476176-652.png]] 111 111 112 112 109 +== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 113 113 114 - =2. UseNSE01to communicate withIoTServer=111 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 115 115 116 -== 2.1 How it works == 117 117 114 +[[image:1654503992078-669.png]] 118 118 116 + 117 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 118 + 119 + 120 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSE01. 121 + 122 +Each LSE01 is shipped with a sticker with the default device EUI as below: 123 + 124 +[[image:image-20220606163732-6.jpeg]] 125 + 126 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 127 + 128 +**Add APP EUI in the application** 129 + 130 + 131 +[[image:1654504596150-405.png]] 132 + 133 + 134 + 135 +**Add APP KEY and DEV EUI** 136 + 137 +[[image:1654504683289-357.png]] 138 + 139 + 140 + 141 +(% style="color:blue" %)**Step 2**(%%): Power on LSE01 142 + 143 + 144 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 145 + 146 +[[image:image-20220606163915-7.png]] 147 + 148 + 149 +(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 150 + 151 +[[image:1654504778294-788.png]] 152 + 153 + 154 + 155 +== 2.3 Uplink Payload == 156 + 157 + 158 +=== 2.3.1 MOD~=0(Default Mode) === 159 + 160 +LSE01 will uplink payload via LoRaWAN with below payload format: 161 + 119 119 ((( 120 - The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware inNSE01 will get environment data from sensors and send the value to local NB-IoT networkviathe NB-IoT module. The NB-IoT network will forwardthis valueto IoTserverviathe protocoldefinedbyNSE01.163 +Uplink payload includes in total 11 bytes. 121 121 ))) 122 122 166 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 167 +|((( 168 +**Size** 123 123 170 +**(bytes)** 171 +)))|**2**|**2**|**2**|**2**|**2**|**1** 172 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 173 +Temperature 174 + 175 +(Reserve, Ignore now) 176 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 177 +MOD & Digital Interrupt 178 + 179 +(Optional) 180 +))) 181 + 182 + 183 + 184 +=== 2.3.2 MOD~=1(Original value) === 185 + 186 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 187 + 188 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 189 +|((( 190 +**Size** 191 + 192 +**(bytes)** 193 +)))|**2**|**2**|**2**|**2**|**2**|**1** 194 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 195 +Temperature 196 + 197 +(Reserve, Ignore now) 198 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 199 +MOD & Digital Interrupt 200 + 201 +(Optional) 202 +))) 203 + 204 + 205 + 206 +=== 2.3.3 Battery Info === 207 + 124 124 ((( 125 - Thediagram below showstheworkingflow in defaultfirmwareofNSE01:209 +Check the battery voltage for LSE01. 126 126 ))) 127 127 128 -[[image:image-20220708101605-2.png]] 212 +((( 213 +Ex1: 0x0B45 = 2885mV 214 +))) 129 129 130 130 ((( 217 +Ex2: 0x0B49 = 2889mV 218 +))) 219 + 220 + 221 + 222 +=== 2.3.4 Soil Moisture === 223 + 224 +((( 225 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 226 +))) 227 + 228 +((( 229 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 230 +))) 231 + 232 +((( 131 131 132 132 ))) 133 133 236 +((( 237 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 238 +))) 134 134 135 135 136 -== 2.2 Configure the NSE01 == 137 137 242 +=== 2.3.5 Soil Temperature === 138 138 139 -=== 2.2.1 Test Requirement === 244 +((( 245 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 246 +))) 140 140 248 +((( 249 +**Example**: 250 +))) 141 141 142 142 ((( 143 - TouseNSE01inyourcity,makesureeetbelowrequirements:253 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 144 144 ))) 145 145 146 - * Your local operator has already distributed a NB-IoT Network there.147 - *ThelocalNB-IoTnetworkusedthebandthatNSE01supports.148 - * Your operator is able to distribute the data received in their NB-IoT network to your IoT server.256 +((( 257 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 258 +))) 149 149 260 + 261 + 262 +=== 2.3.6 Soil Conductivity (EC) === 263 + 150 150 ((( 151 - Below figureshows our testingstructure.Here we have NB-IoTnetwork coverage by ChinaMobile, the bandthey useis B8. The NSE01 willuse CoAP((% style="color:red" %)120.24.4.116:5683)(%%)orrawUDP((%style="color:red" %)120.24.4.116:5601)(%%) orMQTT((% style="color:red" %)120.24.4.116:1883)(%%)orTCP((%style="color:red"%)120.24.4.116:5600)(%%)protocoltosenddatato thetest server265 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 152 152 ))) 153 153 268 +((( 269 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 270 +))) 154 154 155 -[[image:1657249419225-449.png]] 272 +((( 273 +Generally, the EC value of irrigation water is less than 800uS / cm. 274 +))) 156 156 276 +((( 277 + 278 +))) 157 157 280 +((( 281 + 282 +))) 158 158 159 -=== 2. 2.2Insert SIMcard===284 +=== 2.3.7 MOD === 160 160 286 +Firmware version at least v2.1 supports changing mode. 287 + 288 +For example, bytes[10]=90 289 + 290 +mod=(bytes[10]>>7)&0x01=1. 291 + 292 + 293 +**Downlink Command:** 294 + 295 +If payload = 0x0A00, workmode=0 296 + 297 +If** **payload =** **0x0A01, workmode=1 298 + 299 + 300 + 301 +=== 2.3.8 Decode payload in The Things Network === 302 + 303 +While using TTN network, you can add the payload format to decode the payload. 304 + 305 + 306 +[[image:1654505570700-128.png]] 307 + 161 161 ((( 162 - Insert theNB-IoT Cardgetfromyourprovider.309 +The payload decoder function for TTN is here: 163 163 ))) 164 164 165 165 ((( 166 - Userneedtotakeout theNB-IoT moduleandinsertthe SIM cardkebelow:313 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]] 167 167 ))) 168 168 169 169 170 - [[image:1657249468462-536.png]]317 +== 2.4 Uplink Interval == 171 171 319 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 172 172 173 173 174 -=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 175 175 323 +== 2.5 Downlink Payload == 324 + 325 +By default, LSE50 prints the downlink payload to console port. 326 + 327 +[[image:image-20220606165544-8.png]] 328 + 329 + 176 176 ((( 331 +**Examples:** 332 +))) 333 + 177 177 ((( 178 - Userneed to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.335 + 179 179 ))) 337 + 338 +* ((( 339 +**Set TDC** 180 180 ))) 181 181 342 +((( 343 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 344 +))) 182 182 183 -**Connection:** 346 +((( 347 +Payload: 01 00 00 1E TDC=30S 348 +))) 184 184 185 - (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 350 +((( 351 +Payload: 01 00 00 3C TDC=60S 352 +))) 186 186 187 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 354 +((( 355 + 356 +))) 188 188 189 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 358 +* ((( 359 +**Reset** 360 +))) 190 190 362 +((( 363 +If payload = 0x04FF, it will reset the LSE01 364 +))) 191 191 192 -In the PC, use below serial tool settings: 193 193 194 -* Baud: (% style="color:green" %)**9600** 195 -* Data bits:** (% style="color:green" %)8(%%)** 196 -* Stop bits: (% style="color:green" %)**1** 197 -* Parity: (% style="color:green" %)**None** 198 -* Flow Control: (% style="color:green" %)**None** 367 +* **CFM** 199 199 369 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 370 + 371 + 372 + 373 +== 2.6 Show Data in DataCake IoT Server == 374 + 200 200 ((( 201 - Make sure the switch is in FLASHposition,thenpowern devicebyconnectingthejumper onNSE01. NSE01willoutputsystem info oncepoweronasbelow, we can enterthe (%style="color:green"%)**password:12345678**(%%)toaccessATmmandinput.376 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 202 202 ))) 203 203 204 -[[image:image-20220708110657-3.png]] 379 +((( 380 + 381 +))) 205 205 206 206 ((( 207 -(% style="color: red" %)Note: thevalidATCommandscanbe foundat: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]384 +(% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time. 208 208 ))) 209 209 387 +((( 388 +(% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 389 +))) 210 210 211 211 212 - === 2.2.4 UseCoAPprotocol to uplink data ===392 +[[image:1654505857935-743.png]] 213 213 214 -(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 215 215 395 +[[image:1654505874829-548.png]] 216 216 217 -**Use below commands:** 218 218 219 -* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 220 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 221 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 398 +(% style="color:blue" %)**Step 3**(%%)**:** Create an account or log in Datacake. 222 222 223 - Forparameterdescription,pleaserefertoATcommandset400 +(% style="color:blue" %)**Step 4**(%%)**:** Search the LSE01 and add DevEUI. 224 224 225 -[[image:1657249793983-486.png]] 226 226 403 +[[image:1654505905236-553.png]] 227 227 228 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 229 229 230 - [[image:1657249831934-534.png]]406 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 231 231 408 +[[image:1654505925508-181.png]] 232 232 233 233 234 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 235 235 236 - Thisfeatureis supported sincefirmware versionv1.0.1412 +== 2.7 Frequency Plans == 237 237 414 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 238 238 239 -* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 240 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 241 -* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 242 242 243 - [[image:1657249864775-321.png]]417 +=== 2.7.1 EU863-870 (EU868) === 244 244 419 +(% style="color:#037691" %)** Uplink:** 245 245 246 - [[image:1657249930215-289.png]]421 +868.1 - SF7BW125 to SF12BW125 247 247 423 +868.3 - SF7BW125 to SF12BW125 and SF7BW250 248 248 425 +868.5 - SF7BW125 to SF12BW125 249 249 250 - === 2.2.6UseMQTT protocolto uplink data ===427 +867.1 - SF7BW125 to SF12BW125 251 251 252 - Thisfeatureissupported since firmware versionv110429 +867.3 - SF7BW125 to SF12BW125 253 253 431 +867.5 - SF7BW125 to SF12BW125 254 254 255 -* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 256 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 257 -* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 258 -* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 259 -* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 260 -* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 261 -* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 433 +867.7 - SF7BW125 to SF12BW125 262 262 263 - [[image:1657249978444-674.png]]435 +867.9 - SF7BW125 to SF12BW125 264 264 437 +868.8 - FSK 265 265 266 -[[image:1657249990869-686.png]] 267 267 440 +(% style="color:#037691" %)** Downlink:** 268 268 269 -((( 270 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 271 -))) 442 +Uplink channels 1-9 (RX1) 272 272 444 +869.525 - SF9BW125 (RX2 downlink only) 273 273 274 274 275 -=== 2.2.7 Use TCP protocol to uplink data === 276 276 277 - Thisfeatureis supported since firmware version v110448 +=== 2.7.2 US902-928(US915) === 278 278 450 +Used in USA, Canada and South America. Default use CHE=2 279 279 280 -* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 281 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 452 +(% style="color:#037691" %)**Uplink:** 282 282 283 - [[image:1657250217799-140.png]]454 +903.9 - SF7BW125 to SF10BW125 284 284 456 +904.1 - SF7BW125 to SF10BW125 285 285 286 - [[image:1657250255956-604.png]]458 +904.3 - SF7BW125 to SF10BW125 287 287 460 +904.5 - SF7BW125 to SF10BW125 288 288 462 +904.7 - SF7BW125 to SF10BW125 289 289 290 - === 2.2.8ChangeUpdateInterval ===464 +904.9 - SF7BW125 to SF10BW125 291 291 292 - Usercanusebelow commandtochange the (% style="color:green" %)**uplink interval**.466 +905.1 - SF7BW125 to SF10BW125 293 293 294 - * (% style="color:blue" %)**AT+TDC=600**(%%)~/~/SetUpdate Interval to600s468 +905.3 - SF7BW125 to SF10BW125 295 295 296 -((( 297 -(% style="color:red" %)**NOTE:** 298 -))) 299 299 300 -((( 301 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 302 -))) 471 +(% style="color:#037691" %)**Downlink:** 303 303 473 +923.3 - SF7BW500 to SF12BW500 304 304 475 +923.9 - SF7BW500 to SF12BW500 305 305 306 - ==2.3UplinkPayload==477 +924.5 - SF7BW500 to SF12BW500 307 307 308 - Inthismode,uplink payload includes intotal18 bytes479 +925.1 - SF7BW500 to SF12BW500 309 309 310 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 311 -|=(% style="width: 60px;" %)((( 312 -**Size(bytes)** 313 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1** 314 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 481 +925.7 - SF7BW500 to SF12BW500 315 315 316 -((( 317 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 318 -))) 483 +926.3 - SF7BW500 to SF12BW500 319 319 485 +926.9 - SF7BW500 to SF12BW500 320 320 321 - [[image:image-20220708111918-4.png]]487 +927.5 - SF7BW500 to SF12BW500 322 322 489 +923.3 - SF12BW500(RX2 downlink only) 323 323 324 -The payload is ASCII string, representative same HEX: 325 325 326 -0x72403155615900640c7817075e0a8c02f900 where: 327 327 328 -* Device ID: 0x 724031556159 = 724031556159 329 -* Version: 0x0064=100=1.0.0 493 +=== 2.7.3 CN470-510 (CN470) === 330 330 331 -* BAT: 0x0c78 = 3192 mV = 3.192V 332 -* Singal: 0x17 = 23 333 -* Soil Moisture: 0x075e= 1886 = 18.86 % 334 -* Soil Temperature:0x0a8c =2700=27 °C 335 -* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 336 -* Interrupt: 0x00 = 0 495 +Used in China, Default use CHE=1 337 337 497 +(% style="color:#037691" %)**Uplink:** 338 338 499 +486.3 - SF7BW125 to SF12BW125 339 339 501 +486.5 - SF7BW125 to SF12BW125 340 340 341 - == 2.4PayloadExplanation andSensorInterface==503 +486.7 - SF7BW125 to SF12BW125 342 342 505 +486.9 - SF7BW125 to SF12BW125 343 343 344 - === 2.4.1DeviceID===507 +487.1 - SF7BW125 to SF12BW125 345 345 346 -((( 347 -By default, the Device ID equal to the last 6 bytes of IMEI. 348 -))) 509 +487.3 - SF7BW125 to SF12BW125 349 349 350 -((( 351 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 352 -))) 511 +487.5 - SF7BW125 to SF12BW125 353 353 354 -((( 355 -**Example:** 356 -))) 513 +487.7 - SF7BW125 to SF12BW125 357 357 358 -((( 359 -AT+DEUI=A84041F15612 360 -))) 361 361 362 -((( 363 -The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 364 -))) 516 +(% style="color:#037691" %)**Downlink:** 365 365 518 +506.7 - SF7BW125 to SF12BW125 366 366 520 +506.9 - SF7BW125 to SF12BW125 367 367 368 - ===2.4.2VersionInfo ===522 +507.1 - SF7BW125 to SF12BW125 369 369 370 -((( 371 -Specify the software version: 0x64=100, means firmware version 1.00. 372 -))) 524 +507.3 - SF7BW125 to SF12BW125 373 373 374 -((( 375 -For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 376 -))) 526 +507.5 - SF7BW125 to SF12BW125 377 377 528 +507.7 - SF7BW125 to SF12BW125 378 378 530 +507.9 - SF7BW125 to SF12BW125 379 379 380 - === 2.4.3BatteryInfo===532 +508.1 - SF7BW125 to SF12BW125 381 381 382 -((( 383 -Check the battery voltage for LSE01. 384 -))) 534 +505.3 - SF12BW125 (RX2 downlink only) 385 385 386 -((( 387 -Ex1: 0x0B45 = 2885mV 388 -))) 389 389 390 -((( 391 -Ex2: 0x0B49 = 2889mV 392 -))) 393 393 538 +=== 2.7.4 AU915-928(AU915) === 394 394 540 +Default use CHE=2 395 395 396 - ===2.4.4 Signal Strength===542 +(% style="color:#037691" %)**Uplink:** 397 397 398 -((( 399 -NB-IoT Network signal Strength. 400 -))) 544 +916.8 - SF7BW125 to SF12BW125 401 401 402 -((( 403 -**Ex1: 0x1d = 29** 404 -))) 546 +917.0 - SF7BW125 to SF12BW125 405 405 406 -((( 407 -(% style="color:blue" %)**0**(%%) -113dBm or less 408 -))) 548 +917.2 - SF7BW125 to SF12BW125 409 409 410 -((( 411 -(% style="color:blue" %)**1**(%%) -111dBm 412 -))) 550 +917.4 - SF7BW125 to SF12BW125 413 413 414 -((( 415 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 416 -))) 552 +917.6 - SF7BW125 to SF12BW125 417 417 418 -((( 419 -(% style="color:blue" %)**31** (%%) -51dBm or greater 420 -))) 554 +917.8 - SF7BW125 to SF12BW125 421 421 422 -((( 423 -(% style="color:blue" %)**99** (%%) Not known or not detectable 424 -))) 556 +918.0 - SF7BW125 to SF12BW125 425 425 558 +918.2 - SF7BW125 to SF12BW125 426 426 427 427 428 - ===2.4.5 SoilMoisture===561 +(% style="color:#037691" %)**Downlink:** 429 429 430 -((( 431 -((( 432 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 433 -))) 434 -))) 563 +923.3 - SF7BW500 to SF12BW500 435 435 436 -((( 437 -((( 438 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 439 -))) 440 -))) 565 +923.9 - SF7BW500 to SF12BW500 441 441 442 -((( 443 - 444 -))) 567 +924.5 - SF7BW500 to SF12BW500 445 445 446 -((( 447 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 448 -))) 569 +925.1 - SF7BW500 to SF12BW500 449 449 571 +925.7 - SF7BW500 to SF12BW500 450 450 573 +926.3 - SF7BW500 to SF12BW500 451 451 452 - ===2.4.6oilTemperature===575 +926.9 - SF7BW500 to SF12BW500 453 453 454 -((( 455 -Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 456 -))) 577 +927.5 - SF7BW500 to SF12BW500 457 457 458 -((( 459 -**Example**: 460 -))) 579 +923.3 - SF12BW500(RX2 downlink only) 461 461 462 -((( 463 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 464 -))) 465 465 466 -((( 467 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 468 -))) 469 469 583 +=== 2.7.5 AS920-923 & AS923-925 (AS923) === 470 470 585 +(% style="color:#037691" %)**Default Uplink channel:** 471 471 472 - ===2.4.7SoilConductivity(EC) ===587 +923.2 - SF7BW125 to SF10BW125 473 473 474 -((( 475 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 476 -))) 589 +923.4 - SF7BW125 to SF10BW125 477 477 478 -((( 479 -For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 480 -))) 481 481 482 -((( 483 -Generally, the EC value of irrigation water is less than 800uS / cm. 484 -))) 592 +(% style="color:#037691" %)**Additional Uplink Channel**: 485 485 486 -((( 487 - 488 -))) 594 +(OTAA mode, channel added by JoinAccept message) 489 489 490 -((( 491 - 492 -))) 596 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 493 493 494 - ===2.4.8DigitalInterrupt===598 +922.2 - SF7BW125 to SF10BW125 495 495 496 -((( 497 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 498 -))) 600 +922.4 - SF7BW125 to SF10BW125 499 499 500 -((( 501 -The command is: 502 -))) 602 +922.6 - SF7BW125 to SF10BW125 503 503 504 -((( 505 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 506 -))) 604 +922.8 - SF7BW125 to SF10BW125 507 507 606 +923.0 - SF7BW125 to SF10BW125 508 508 509 -((( 510 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up. 511 -))) 608 +922.0 - SF7BW125 to SF10BW125 512 512 513 513 514 -((( 515 -Example: 516 -))) 611 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 517 517 518 -((( 519 -0x(00): Normal uplink packet. 520 -))) 613 +923.6 - SF7BW125 to SF10BW125 521 521 522 -((( 523 -0x(01): Interrupt Uplink Packet. 524 -))) 615 +923.8 - SF7BW125 to SF10BW125 525 525 617 +924.0 - SF7BW125 to SF10BW125 526 526 619 +924.2 - SF7BW125 to SF10BW125 527 527 528 - ===2.4.9+5VOutput===621 +924.4 - SF7BW125 to SF10BW125 529 529 530 -((( 531 -NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 532 -))) 623 +924.6 - SF7BW125 to SF10BW125 533 533 534 534 535 -((( 536 -The 5V output time can be controlled by AT Command. 537 -))) 626 +(% style="color:#037691" %)** Downlink:** 538 538 539 -((( 540 -(% style="color:blue" %)**AT+5VT=1000** 541 -))) 628 +Uplink channels 1-8 (RX1) 542 542 543 -((( 544 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 545 -))) 630 +923.2 - SF10BW125 (RX2) 546 546 547 547 548 548 549 -== 2. 5DownlinkPayload==634 +=== 2.7.6 KR920-923 (KR920) === 550 550 551 - By default,NSE01 prints the downlink payload to consoleport.636 +Default channel: 552 552 553 - [[image:image-20220708133731-5.png]]638 +922.1 - SF7BW125 to SF12BW125 554 554 640 +922.3 - SF7BW125 to SF12BW125 555 555 556 -((( 557 -(% style="color:blue" %)**Examples:** 558 -))) 642 +922.5 - SF7BW125 to SF12BW125 559 559 560 -((( 561 - 562 -))) 563 563 564 -* ((( 565 -(% style="color:blue" %)**Set TDC** 566 -))) 645 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 567 567 568 -((( 569 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 570 -))) 647 +922.1 - SF7BW125 to SF12BW125 571 571 572 -((( 573 -Payload: 01 00 00 1E TDC=30S 574 -))) 649 +922.3 - SF7BW125 to SF12BW125 575 575 576 -((( 577 -Payload: 01 00 00 3C TDC=60S 578 -))) 651 +922.5 - SF7BW125 to SF12BW125 579 579 580 -((( 581 - 582 -))) 653 +922.7 - SF7BW125 to SF12BW125 583 583 584 -* ((( 585 -(% style="color:blue" %)**Reset** 586 -))) 655 +922.9 - SF7BW125 to SF12BW125 587 587 588 -((( 589 -If payload = 0x04FF, it will reset the NSE01 590 -))) 657 +923.1 - SF7BW125 to SF12BW125 591 591 659 +923.3 - SF7BW125 to SF12BW125 592 592 593 -* (% style="color:blue" %)**INTMOD** 594 594 595 -((( 596 -Downlink Payload: 06000003, Set AT+INTMOD=3 597 -))) 662 +(% style="color:#037691" %)**Downlink:** 598 598 664 +Uplink channels 1-7(RX1) 599 599 666 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 600 600 601 -== 2.6 LED Indicator == 602 602 603 -((( 604 -The NSE01 has an internal LED which is to show the status of different state. 605 605 670 +=== 2.7.7 IN865-867 (IN865) === 606 606 607 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 608 -* Then the LED will be on for 1 second means device is boot normally. 609 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 610 -* For each uplink probe, LED will be on for 500ms. 611 -))) 672 +(% style="color:#037691" %)** Uplink:** 612 612 674 +865.0625 - SF7BW125 to SF12BW125 613 613 676 +865.4025 - SF7BW125 to SF12BW125 614 614 678 +865.9850 - SF7BW125 to SF12BW125 615 615 616 -== 2.7 Installation in Soil == 617 617 618 - __**Measurementthesoilsurface**__681 +(% style="color:#037691" %) **Downlink:** 619 619 620 -((( 621 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 622 -))) 683 +Uplink channels 1-3 (RX1) 623 623 624 - [[image:1657259653666-883.png]]685 +866.550 - SF10BW125 (RX2) 625 625 626 626 627 -((( 628 - 629 629 630 -((( 631 -Dig a hole with diameter > 20CM. 632 -))) 633 633 634 -((( 635 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 636 -))) 637 -))) 690 +== 2.8 LED Indicator == 638 638 639 - [[image:1654506665940-119.png]]692 +The LSE01 has an internal LED which is to show the status of different state. 640 640 641 - (((642 - 643 - )))694 +* Blink once when device power on. 695 +* Solid ON for 5 seconds once device successful Join the network. 696 +* Blink once when device transmit a packet. 644 644 645 645 646 -== 2.8 Firmware Change Log == 647 647 648 648 649 -Download URL & Firmware Change log 650 650 651 -[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 652 652 703 +== 2.9 Installation in Soil == 653 653 654 - UpgradeInstruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]705 +**Measurement the soil surface** 655 655 656 656 708 +[[image:1654506634463-199.png]] 657 657 658 -== 2.9 Battery Analysis == 710 +((( 711 +((( 712 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 713 +))) 714 +))) 659 659 660 -=== 2.9.1 Battery Type === 661 661 662 662 718 +[[image:1654506665940-119.png]] 719 + 663 663 ((( 664 - The NSE01 batteryisacombination of an 8500mAhLi/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeablebattery typewitha lowdischarge rate (<2% per year). This type of battery is commonly used in IoT devices such as watermeter.721 +Dig a hole with diameter > 20CM. 665 665 ))) 666 666 667 - 668 668 ((( 669 - The batteryis designedto lastforseveralyearsdependsonthe actuallyuse environment andupdateinterval.725 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 670 670 ))) 671 671 672 672 729 +== 2.10 Firmware Change Log == 730 + 673 673 ((( 674 - The battery relateddocumentsasbelow:732 +**Firmware download link:** 675 675 ))) 676 676 677 - * [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]678 - *[[Lithium-ThionylChlorideBattery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]679 - * [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]735 +((( 736 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 737 +))) 680 680 681 681 ((( 682 - [[image:image-20220708140453-6.png]]740 + 683 683 ))) 684 684 743 +((( 744 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 745 +))) 685 685 747 +((( 748 + 749 +))) 686 686 687 -=== 2.9.2 Power consumption Analyze === 751 +((( 752 +**V1.0.** 753 +))) 688 688 689 689 ((( 690 - Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which baseon the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.756 +Release 691 691 ))) 692 692 693 693 760 +== 2.11 Battery Analysis == 761 + 762 +=== 2.11.1 Battery Type === 763 + 694 694 ((( 695 - Instruction touse as below:765 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 696 696 ))) 697 697 698 698 ((( 699 - (% style="color:blue" %)**Step 1: **(%%)Downlink theup-to-date DRAGINO_Battery_Life_Prediction_Table.xlsxfrom: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]769 +The battery is designed to last for more than 5 years for the LSN50. 700 700 ))) 701 701 702 - 703 703 ((( 704 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose 773 +((( 774 +The battery-related documents are as below: 705 705 ))) 776 +))) 706 706 707 707 * ((( 708 - ProductModel779 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 709 709 ))) 710 710 * ((( 711 - UplinkInterval782 +[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 712 712 ))) 713 713 * ((( 714 - WorkingMode785 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 715 715 ))) 716 716 717 -((( 718 -And the Life expectation in difference case will be shown on the right. 719 -))) 788 + [[image:image-20220610172436-1.png]] 720 720 721 -[[image:image-20220708141352-7.jpeg]] 722 722 723 723 792 +=== 2.11.2 Battery Note === 724 724 725 -=== 2.9.3 Battery Note === 726 - 727 727 ((( 728 728 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 729 729 ))) ... ... @@ -730,176 +730,298 @@ 730 730 731 731 732 732 733 -=== 2. 9.4Replace the battery ===800 +=== 2.11.3 Replace the battery === 734 734 735 735 ((( 736 - The defaultbatterypack of NSE01includesa ER26500 plus super capacitor. If usercan'tfind this pack locally, they canfind ER26500or equivalencewithouttheSPC1520 capacitor, which willalso work in mostcase.The SPC can enlargethe batterylife for highfrequencyuse (update period below 5 minutes).803 +If Battery is lower than 2.7v, user should replace the battery of LSE01. 737 737 ))) 738 738 739 - 740 - 741 -= 3. Access NB-IoT Module = 742 - 743 743 ((( 744 - Userscan directly accesstheATcommand set of theNB-IoTmodule.807 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 745 745 ))) 746 746 747 747 ((( 748 -The ATCommand setcanrefer theBC35-GNB-IoTModuleATCommand: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]]811 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 749 749 ))) 750 750 751 -[[image:1657261278785-153.png]] 752 752 753 753 816 += 3. Using the AT Commands = 754 754 755 -= 4.UsingtheAT Commands =818 +== 3.1 Access AT Commands == 756 756 757 -== 4.1 Access AT Commands == 758 758 759 -S eethislinkfordetail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]821 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 760 760 823 +[[image:1654501986557-872.png||height="391" width="800"]] 761 761 762 -AT+<CMD>? : Help on <CMD> 763 763 764 - AT+<CMD>: Run<CMD>826 +Or if you have below board, use below connection: 765 765 766 -AT+<CMD>=<value> : Set the value 767 767 768 - AT+<CMD>=?:Get the value829 +[[image:1654502005655-729.png||height="503" width="801"]] 769 769 770 770 832 + 833 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 834 + 835 + 836 + [[image:1654502050864-459.png||height="564" width="806"]] 837 + 838 + 839 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]] 840 + 841 + 842 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 843 + 844 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 845 + 846 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 847 + 848 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 849 + 850 + 771 771 (% style="color:#037691" %)**General Commands**(%%) 772 772 773 -AT 853 +(% style="background-color:#dcdcdc" %)**AT**(%%) : Attention 774 774 775 -AT? 855 +(% style="background-color:#dcdcdc" %)**AT?**(%%) : Short Help 776 776 777 -ATZ 857 +(% style="background-color:#dcdcdc" %)**ATZ**(%%) : MCU Reset 778 778 779 -AT+TDC 859 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%) : Application Data Transmission Interval 780 780 781 -AT+CFG : Print all configurations 782 782 783 - AT+CFGMOD: Workingmode selection862 +(% style="color:#037691" %)**Keys, IDs and EUIs management** 784 784 785 -AT+I NTMOD:Setthe trigger interruptmode864 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%) : Application EUI 786 786 787 -AT+ 5VTSetextend the timeof5V power866 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%) : Application Key 788 788 789 -AT+P ROChooseagreement868 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%) : Application Session Key 790 790 791 -AT+ WEIGREGet weightorsetweight to 0870 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%) : Device Address 792 792 793 -AT+ WEIGAPGet or SettheGapValue of weight872 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%) : Device EUI 794 794 795 -AT+ RXDL: Extendthe sendingandreceivingtime874 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%) : Network ID (You can enter this command change only after successful network connection) 796 796 797 -AT+ CNTFACGettcountingparameters876 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%) : Network Session Key Joining and sending date on LoRa network 798 798 799 -AT+ SERVADDR:ServerAddress878 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%) : Confirm Mode 800 800 880 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 801 801 802 -(% style="color:# 037691" %)**COAPManagement**882 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%) : Join LoRa? Network 803 803 804 -AT+ URIsourceparameters884 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%) : LoRa? Network Join Mode 805 805 886 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 806 806 807 -(% style="color:# 037691" %)**UDPManagement**888 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%) : Print Last Received Data in Raw Format 808 808 809 -AT+C FM:Uploadconfirmationmode (onlyvalid forUDP)890 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%) : Print Last Received Data in Binary Format 810 810 892 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 811 811 812 -(% style="color:# 037691" %)**MQTTManagement**894 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%) : Send Hexadecimal Data 813 813 814 -AT+CLIENT : Get or Set MQTT client 815 815 816 - AT+UNAMEGetSetMQTT Username897 +(% style="color:#037691" %)**LoRa Network Management** 817 817 818 -AT+ PWDGetor SetMQTT password899 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%) : Adaptive Rate 819 819 820 -AT+ PUBTOPICGetorSetMQTTpublishtopic901 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%) : LoRa Class(Currently only support class A 821 821 822 -AT+ SUBTOPIC :GetorSetMQTT subscriptiontopic903 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%) : Duty Cycle Setting 823 823 905 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 824 824 825 -(% style="color:# 037691" %)**Information**907 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink 826 826 827 -AT+F DRctoryDataReset909 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%) : Frame Counter Uplink 828 828 829 -AT+ PWORDSerialAccessPassword911 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%) : Join Accept Delay1 830 830 913 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 831 831 915 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 832 832 833 -= 5.FAQ=917 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%) : Receive Delay1 834 834 835 -= =5.1HowtoUpgradeFirmware==919 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%) : Receive Delay2 836 836 921 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 837 837 923 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 924 + 925 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 926 + 927 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 928 + 929 + 930 +(% style="color:#037691" %)**Information** 931 + 932 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 933 + 934 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 935 + 936 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 937 + 938 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 939 + 940 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 941 + 942 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 943 + 944 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 945 + 946 + 947 += 4. FAQ = 948 + 949 +== 4.1 How to change the LoRa Frequency Bands/Region? == 950 + 838 838 ((( 839 -User can upgrade the firmware for 1) bug fix, 2) new feature release. 952 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 953 +When downloading the images, choose the required image file for download. 840 840 ))) 841 841 842 842 ((( 843 - Pleasesee this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]957 + 844 844 ))) 845 845 846 846 ((( 847 - (%style="color:red"%)Notice,NSE01andLSE01share thememotherboard.Theyuse thesameconnection andmethodto update.961 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 848 848 ))) 849 849 964 +((( 965 + 966 +))) 850 850 968 +((( 969 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 970 +))) 851 851 852 -== 5.2 Can I calibrate NSE01 to different soil types? == 972 +((( 973 + 974 +))) 853 853 854 854 ((( 855 - NSE01is calibratedforsaline-alkalisoilandloamy soil.Ifusers want touseit for othersoil,theycancalibrate thevalue intheIoTplatform base on thevaluemeasuredby saline-alkalisoilandloamysoil.Theformula canbefoundat [[thislink>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]].977 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 856 856 ))) 857 857 980 +[[image:image-20220606154726-3.png]] 858 858 859 -= 6. Trouble Shooting = 860 860 861 - ==6.1 Connection problemwhenuploadingfirmware==983 +When you use the TTN network, the US915 frequency bands use are: 862 862 985 +* 903.9 - SF7BW125 to SF10BW125 986 +* 904.1 - SF7BW125 to SF10BW125 987 +* 904.3 - SF7BW125 to SF10BW125 988 +* 904.5 - SF7BW125 to SF10BW125 989 +* 904.7 - SF7BW125 to SF10BW125 990 +* 904.9 - SF7BW125 to SF10BW125 991 +* 905.1 - SF7BW125 to SF10BW125 992 +* 905.3 - SF7BW125 to SF10BW125 993 +* 904.6 - SF8BW500 863 863 864 864 ((( 865 -**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]] 996 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 997 + 998 +* (% style="color:#037691" %)**AT+CHE=2** 999 +* (% style="color:#037691" %)**ATZ** 866 866 ))) 867 867 868 -(% class="wikigeneratedid" %) 869 869 ((( 870 870 1004 + 1005 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 871 871 ))) 872 872 1008 +((( 1009 + 1010 +))) 873 873 874 -== 6.2 AT Command input doesn't work == 1012 +((( 1013 +The **AU915** band is similar. Below are the AU915 Uplink Channels. 1014 +))) 875 875 1016 +[[image:image-20220606154825-4.png]] 1017 + 1018 + 1019 + 1020 += 5. Trouble Shooting = 1021 + 1022 +== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 1023 + 1024 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 1025 + 1026 + 1027 +== 5.2 AT Command input doesn’t work == 1028 + 876 876 ((( 877 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1030 +In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1031 +))) 878 878 879 - 1033 + 1034 +== 5.3 Device rejoin in at the second uplink packet == 1035 + 1036 +(% style="color:#4f81bd" %)**Issue describe as below:** 1037 + 1038 +[[image:1654500909990-784.png]] 1039 + 1040 + 1041 +(% style="color:#4f81bd" %)**Cause for this issue:** 1042 + 1043 +((( 1044 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 880 880 ))) 881 881 882 882 883 - =7. OrderInfo=1048 +(% style="color:#4f81bd" %)**Solution: ** 884 884 1050 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 885 885 886 - Part Number**:** (% style="color:#4f81bd"%)**NSE01**1052 +[[image:1654500929571-736.png||height="458" width="832"]] 887 887 888 888 1055 += 6. Order Info = 1056 + 1057 + 1058 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 1059 + 1060 + 1061 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 1062 + 1063 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 1064 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 1065 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 1066 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 1067 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1068 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1069 +* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1070 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1071 + 1072 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1073 + 1074 +* (% style="color:red" %)**4**(%%): 4000mAh battery 1075 +* (% style="color:red" %)**8**(%%): 8500mAh battery 1076 + 889 889 (% class="wikigeneratedid" %) 890 890 ((( 891 891 892 892 ))) 893 893 894 -= 8.1082 += 7. Packing Info = 895 895 896 896 ((( 897 897 898 898 899 899 (% style="color:#037691" %)**Package Includes**: 1088 +))) 900 900 901 -* NSE01 NB-IoT Soil Moisture & EC Sensor x 1902 - *Externalantennax 11090 +* ((( 1091 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 903 903 ))) 904 904 905 905 ((( ... ... @@ -906,19 +906,24 @@ 906 906 907 907 908 908 (% style="color:#037691" %)**Dimension and weight**: 1098 +))) 909 909 910 -* Size: 195 x 125 x 55 mm911 - * Weight:420g1100 +* ((( 1101 +Device Size: cm 912 912 ))) 1103 +* ((( 1104 +Device Weight: g 1105 +))) 1106 +* ((( 1107 +Package Size / pcs : cm 1108 +))) 1109 +* ((( 1110 +Weight / pcs : g 913 913 914 -((( 915 915 916 - 917 - 918 - 919 919 ))) 920 920 921 -= 9.1115 += 8. Support = 922 922 923 923 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 924 924 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -102.7 KB - Content