Last modified by Bei Jinggeng on 2024/05/31 09:53

From version 65.21
edited by Xiaoling
on 2022/07/08 16:06
Change comment: There is no comment for this version
To version 40.1
edited by Edwin Chen
on 2022/06/29 19:12
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.Edwin
Content
... ... @@ -20,710 +20,769 @@
20 20  
21 21  
22 22  
23 += 1. Introduction =
23 23  
24 -= 1.  Introduction =
25 +== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
25 25  
26 -== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
27 -
28 28  (((
29 29  
30 30  
31 -(((
32 -Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
30 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
33 33  )))
34 34  
35 35  (((
36 -It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
34 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
37 37  )))
38 38  
39 39  (((
40 -The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
38 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
41 41  )))
42 42  
43 43  (((
44 -NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
42 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
45 45  )))
46 46  
47 -
45 +(((
46 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
48 48  )))
49 49  
49 +
50 50  [[image:1654503236291-817.png]]
51 51  
52 52  
53 -[[image:1657245163077-232.png]]
53 +[[image:1654503265560-120.png]]
54 54  
55 55  
56 56  
57 -== 1.2 ​ Features ==
57 +== 1.2 ​Features ==
58 58  
59 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
59 +* LoRaWAN 1.0.3 Class A
60 +* Ultra low power consumption
60 60  * Monitor Soil Moisture
61 61  * Monitor Soil Temperature
62 62  * Monitor Soil Conductivity
64 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
63 63  * AT Commands to change parameters
64 64  * Uplink on periodically
65 65  * Downlink to change configure
66 66  * IP66 Waterproof Enclosure
67 -* Ultra-Low Power consumption
68 -* AT Commands to change parameters
69 -* Micro SIM card slot for NB-IoT SIM
70 -* 8500mAh Battery for long term use
69 +* 4000mAh or 8500mAh Battery for long term use
71 71  
71 +== 1.3 Specification ==
72 72  
73 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
73 73  
75 +[[image:image-20220606162220-5.png]]
74 74  
75 -== 1.3  Specification ==
76 76  
77 77  
78 -(% style="color:#037691" %)**Common DC Characteristics:**
79 +== ​1.4 Applications ==
79 79  
80 -* Supply Voltage: 2.1v ~~ 3.6v
81 -* Operating Temperature: -40 ~~ 85°C
81 +* Smart Agriculture
82 82  
83 -(% style="color:#037691" %)**NB-IoT Spec:**
83 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
84 +​
84 84  
85 -* - B1 @H-FDD: 2100MHz
86 -* - B3 @H-FDD: 1800MHz
87 -* - B8 @H-FDD: 900MHz
88 -* - B5 @H-FDD: 850MHz
89 -* - B20 @H-FDD: 800MHz
90 -* - B28 @H-FDD: 700MHz
86 +== 1.5 Firmware Change log ==
91 91  
92 -Probe(% style="color:#037691" %)** Specification:**
93 93  
94 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
89 +**LSE01 v1.0 :**  Release
95 95  
96 -[[image:image-20220708101224-1.png]]
97 97  
98 98  
93 += 2. Configure LSE01 to connect to LoRaWAN network =
99 99  
100 -== ​1. Applications ==
95 +== 2.1 How it works ==
101 101  
102 -* Smart Agriculture
97 +(((
98 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
99 +)))
103 103  
104 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
105 -​
101 +(((
102 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
103 +)))
106 106  
107 -== 1.5  Pin Definitions ==
108 108  
109 109  
110 -[[image:1657246476176-652.png]]
107 +== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
111 111  
109 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
112 112  
113 113  
114 -= 2.  Use NSE01 to communicate with IoT Server =
112 +[[image:1654503992078-669.png]]
115 115  
116 -== 2.1  How it works ==
117 117  
115 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
118 118  
117 +
118 +(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
119 +
120 +Each LSE01 is shipped with a sticker with the default device EUI as below:
121 +
122 +[[image:image-20220606163732-6.jpeg]]
123 +
124 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
125 +
126 +**Add APP EUI in the application**
127 +
128 +
129 +[[image:1654504596150-405.png]]
130 +
131 +
132 +
133 +**Add APP KEY and DEV EUI**
134 +
135 +[[image:1654504683289-357.png]]
136 +
137 +
138 +
139 +(% style="color:blue" %)**Step 2**(%%): Power on LSE01
140 +
141 +
142 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
143 +
144 +[[image:image-20220606163915-7.png]]
145 +
146 +
147 +(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
148 +
149 +[[image:1654504778294-788.png]]
150 +
151 +
152 +
153 +== 2.3 Uplink Payload ==
154 +
155 +
156 +=== 2.3.1 MOD~=0(Default Mode) ===
157 +
158 +LSE01 will uplink payload via LoRaWAN with below payload format: 
159 +
119 119  (((
120 -The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
161 +Uplink payload includes in total 11 bytes.
121 121  )))
122 122  
164 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
165 +|(((
166 +**Size**
123 123  
168 +**(bytes)**
169 +)))|**2**|**2**|**2**|**2**|**2**|**1**
170 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
171 +Temperature
172 +
173 +(Reserve, Ignore now)
174 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
175 +MOD & Digital Interrupt
176 +
177 +(Optional)
178 +)))
179 +
180 +=== 2.3.2 MOD~=1(Original value) ===
181 +
182 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
183 +
184 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
185 +|(((
186 +**Size**
187 +
188 +**(bytes)**
189 +)))|**2**|**2**|**2**|**2**|**2**|**1**
190 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
191 +Temperature
192 +
193 +(Reserve, Ignore now)
194 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
195 +MOD & Digital Interrupt
196 +
197 +(Optional)
198 +)))
199 +
200 +=== 2.3.3 Battery Info ===
201 +
124 124  (((
125 -The diagram below shows the working flow in default firmware of NSE01:
203 +Check the battery voltage for LSE01.
126 126  )))
127 127  
128 -[[image:image-20220708101605-2.png]]
206 +(((
207 +Ex1: 0x0B45 = 2885mV
208 +)))
129 129  
130 130  (((
211 +Ex2: 0x0B49 = 2889mV
212 +)))
213 +
214 +
215 +
216 +=== 2.3.4 Soil Moisture ===
217 +
218 +(((
219 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
220 +)))
221 +
222 +(((
223 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
224 +)))
225 +
226 +(((
131 131  
132 132  )))
133 133  
230 +(((
231 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
232 +)))
134 134  
135 135  
136 -== 2.2 ​ Configure the NSE01 ==
137 137  
236 +=== 2.3.5 Soil Temperature ===
138 138  
139 -=== 2.2.1 Test Requirement ===
238 +(((
239 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
240 +)))
140 140  
242 +(((
243 +**Example**:
244 +)))
141 141  
142 142  (((
143 -To use NSE01 in your city, make sure meet below requirements:
247 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
144 144  )))
145 145  
146 -* Your local operator has already distributed a NB-IoT Network there.
147 -* The local NB-IoT network used the band that NSE01 supports.
148 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
250 +(((
251 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
252 +)))
149 149  
254 +
255 +
256 +=== 2.3.6 Soil Conductivity (EC) ===
257 +
150 150  (((
151 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
259 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
152 152  )))
153 153  
262 +(((
263 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
264 +)))
154 154  
155 -[[image:1657249419225-449.png]]
266 +(((
267 +Generally, the EC value of irrigation water is less than 800uS / cm.
268 +)))
156 156  
270 +(((
271 +
272 +)))
157 157  
274 +(((
275 +
276 +)))
158 158  
159 -=== 2.2.2 Insert SIM card ===
278 +=== 2.3.7 MOD ===
160 160  
280 +Firmware version at least v2.1 supports changing mode.
281 +
282 +For example, bytes[10]=90
283 +
284 +mod=(bytes[10]>>7)&0x01=1.
285 +
286 +
287 +**Downlink Command:**
288 +
289 +If payload = 0x0A00, workmode=0
290 +
291 +If** **payload =** **0x0A01, workmode=1
292 +
293 +
294 +
295 +=== 2.3.8 ​Decode payload in The Things Network ===
296 +
297 +While using TTN network, you can add the payload format to decode the payload.
298 +
299 +
300 +[[image:1654505570700-128.png]]
301 +
161 161  (((
162 -Insert the NB-IoT Card get from your provider.
303 +The payload decoder function for TTN is here:
163 163  )))
164 164  
165 165  (((
166 -User need to take out the NB-IoT module and insert the SIM card like below:
307 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
167 167  )))
168 168  
169 169  
170 -[[image:1657249468462-536.png]]
311 +== 2.4 Uplink Interval ==
171 171  
313 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
172 172  
173 173  
174 -=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
175 175  
317 +== 2.5 Downlink Payload ==
318 +
319 +By default, LSE50 prints the downlink payload to console port.
320 +
321 +[[image:image-20220606165544-8.png]]
322 +
323 +
176 176  (((
325 +**Examples:**
326 +)))
327 +
177 177  (((
178 -User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
329 +
179 179  )))
331 +
332 +* (((
333 +**Set TDC**
180 180  )))
181 181  
336 +(((
337 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
338 +)))
182 182  
183 -**Connection:**
340 +(((
341 +Payload:    01 00 00 1E    TDC=30S
342 +)))
184 184  
185 - (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
344 +(((
345 +Payload:    01 00 00 3C    TDC=60S
346 +)))
186 186  
187 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
348 +(((
349 +
350 +)))
188 188  
189 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
352 +* (((
353 +**Reset**
354 +)))
190 190  
356 +(((
357 +If payload = 0x04FF, it will reset the LSE01
358 +)))
191 191  
192 -In the PC, use below serial tool settings:
193 193  
194 -* Baud:  (% style="color:green" %)**9600**
195 -* Data bits:** (% style="color:green" %)8(%%)**
196 -* Stop bits: (% style="color:green" %)**1**
197 -* Parity:  (% style="color:green" %)**None**
198 -* Flow Control: (% style="color:green" %)**None**
361 +* **CFM**
199 199  
363 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
364 +
365 +
366 +
367 +== 2.6 ​Show Data in DataCake IoT Server ==
368 +
200 200  (((
201 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
370 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
202 202  )))
203 203  
204 -[[image:image-20220708110657-3.png]]
373 +(((
374 +
375 +)))
205 205  
206 206  (((
207 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
378 +(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
208 208  )))
209 209  
381 +(((
382 +(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
383 +)))
210 210  
211 211  
212 -=== 2.2.4 Use CoAP protocol to uplink data ===
386 +[[image:1654505857935-743.png]]
213 213  
214 -(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
215 215  
389 +[[image:1654505874829-548.png]]
216 216  
217 -**Use below commands:**
218 218  
219 -* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
220 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
221 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
392 +(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
222 222  
223 -For parameter description, please refer to AT command set
394 +(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
224 224  
225 -[[image:1657249793983-486.png]]
226 226  
397 +[[image:1654505905236-553.png]]
227 227  
228 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
229 229  
230 -[[image:1657249831934-534.png]]
400 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
231 231  
402 +[[image:1654505925508-181.png]]
232 232  
233 233  
234 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
235 235  
236 -This feature is supported since firmware version v1.0.1
406 +== 2.7 Frequency Plans ==
237 237  
408 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
238 238  
239 -* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
240 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
241 -* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
242 242  
243 -[[image:1657249864775-321.png]]
411 +=== 2.7.1 EU863-870 (EU868) ===
244 244  
413 +(% style="color:#037691" %)** Uplink:**
245 245  
246 -[[image:1657249930215-289.png]]
415 +868.1 - SF7BW125 to SF12BW125
247 247  
417 +868.3 - SF7BW125 to SF12BW125 and SF7BW250
248 248  
419 +868.5 - SF7BW125 to SF12BW125
249 249  
250 -=== 2.2.6 Use MQTT protocol to uplink data ===
421 +867.1 - SF7BW125 to SF12BW125
251 251  
252 -This feature is supported since firmware version v110
423 +867.3 - SF7BW125 to SF12BW125
253 253  
425 +867.5 - SF7BW125 to SF12BW125
254 254  
255 -* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
256 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
257 -* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
258 -* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
259 -* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
260 -* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
261 -* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
427 +867.7 - SF7BW125 to SF12BW125
262 262  
263 -[[image:1657249978444-674.png]]
429 +867.9 - SF7BW125 to SF12BW125
264 264  
431 +868.8 - FSK
265 265  
266 -[[image:1657249990869-686.png]]
267 267  
434 +(% style="color:#037691" %)** Downlink:**
268 268  
269 -(((
270 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
271 -)))
436 +Uplink channels 1-9 (RX1)
272 272  
438 +869.525 - SF9BW125 (RX2 downlink only)
273 273  
274 274  
275 -=== 2.2.7 Use TCP protocol to uplink data ===
276 276  
277 -This feature is supported since firmware version v110
442 +=== 2.7.2 US902-928(US915) ===
278 278  
444 +Used in USA, Canada and South America. Default use CHE=2
279 279  
280 -* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
281 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
446 +(% style="color:#037691" %)**Uplink:**
282 282  
283 -[[image:1657250217799-140.png]]
448 +903.9 - SF7BW125 to SF10BW125
284 284  
450 +904.1 - SF7BW125 to SF10BW125
285 285  
286 -[[image:1657250255956-604.png]]
452 +904.3 - SF7BW125 to SF10BW125
287 287  
454 +904.5 - SF7BW125 to SF10BW125
288 288  
456 +904.7 - SF7BW125 to SF10BW125
289 289  
290 -=== 2.2.8 Change Update Interval ===
458 +904.9 - SF7BW125 to SF10BW125
291 291  
292 -User can use below command to change the (% style="color:green" %)**uplink interval**.
460 +905.1 - SF7BW125 to SF10BW125
293 293  
294 -* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
462 +905.3 - SF7BW125 to SF10BW125
295 295  
296 -(((
297 -(% style="color:red" %)**NOTE:**
298 -)))
299 299  
300 -(((
301 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
302 -)))
465 +(% style="color:#037691" %)**Downlink:**
303 303  
467 +923.3 - SF7BW500 to SF12BW500
304 304  
469 +923.9 - SF7BW500 to SF12BW500
305 305  
306 -== 2. Uplink Payload ==
471 +924.5 - SF7BW500 to SF12BW500
307 307  
308 -In this mode, uplink payload includes in total 18 bytes
473 +925.1 - SF7BW500 to SF12BW500
309 309  
310 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
311 -|=(% style="width: 60px;" %)(((
312 -**Size(bytes)**
313 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1**
314 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
475 +925.7 - SF7BW500 to SF12BW500
315 315  
316 -(((
317 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
318 -)))
477 +926.3 - SF7BW500 to SF12BW500
319 319  
479 +926.9 - SF7BW500 to SF12BW500
320 320  
321 -[[image:image-20220708111918-4.png]]
481 +927.5 - SF7BW500 to SF12BW500
322 322  
483 +923.3 - SF12BW500(RX2 downlink only)
323 323  
324 -The payload is ASCII string, representative same HEX:
325 325  
326 -0x72403155615900640c7817075e0a8c02f900 where:
327 327  
328 -* Device ID: 0x 724031556159 = 724031556159
329 -* Version: 0x0064=100=1.0.0
487 +=== 2.7.3 CN470-510 (CN470) ===
330 330  
331 -* BAT: 0x0c78 = 3192 mV = 3.192V
332 -* Singal: 0x17 = 23
333 -* Soil Moisture: 0x075e= 1886 = 18.86  %
334 -* Soil Temperature:0x0a8c =2700=27 °C
335 -* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
336 -* Interrupt: 0x00 = 0
489 +Used in China, Default use CHE=1
337 337  
491 +(% style="color:#037691" %)**Uplink:**
338 338  
493 +486.3 - SF7BW125 to SF12BW125
339 339  
495 +486.5 - SF7BW125 to SF12BW125
340 340  
341 -== 2.4  Payload Explanation and Sensor Interface ==
497 +486.7 - SF7BW125 to SF12BW125
342 342  
499 +486.9 - SF7BW125 to SF12BW125
343 343  
344 -=== 2.4.1  Device ID ===
501 +487.1 - SF7BW125 to SF12BW125
345 345  
346 -(((
347 -By default, the Device ID equal to the last 6 bytes of IMEI.
348 -)))
503 +487.3 - SF7BW125 to SF12BW125
349 349  
350 -(((
351 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
352 -)))
505 +487.5 - SF7BW125 to SF12BW125
353 353  
354 -(((
355 -**Example:**
356 -)))
507 +487.7 - SF7BW125 to SF12BW125
357 357  
358 -(((
359 -AT+DEUI=A84041F15612
360 -)))
361 361  
362 -(((
363 -The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
364 -)))
510 +(% style="color:#037691" %)**Downlink:**
365 365  
512 +506.7 - SF7BW125 to SF12BW125
366 366  
514 +506.9 - SF7BW125 to SF12BW125
367 367  
368 -=== 2.4.2  Version Info ===
516 +507.1 - SF7BW125 to SF12BW125
369 369  
370 -(((
371 -Specify the software version: 0x64=100, means firmware version 1.00.
372 -)))
518 +507.3 - SF7BW125 to SF12BW125
373 373  
374 -(((
375 -For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
376 -)))
520 +507.5 - SF7BW125 to SF12BW125
377 377  
522 +507.7 - SF7BW125 to SF12BW125
378 378  
524 +507.9 - SF7BW125 to SF12BW125
379 379  
380 -=== 2.4.3  Battery Info ===
526 +508.1 - SF7BW125 to SF12BW125
381 381  
382 -(((
383 -Check the battery voltage for LSE01.
384 -)))
528 +505.3 - SF12BW125 (RX2 downlink only)
385 385  
386 -(((
387 -Ex1: 0x0B45 = 2885mV
388 -)))
389 389  
390 -(((
391 -Ex2: 0x0B49 = 2889mV
392 -)))
393 393  
532 +=== 2.7.4 AU915-928(AU915) ===
394 394  
534 +Default use CHE=2
395 395  
396 -=== 2.4.4  Signal Strength ===
536 +(% style="color:#037691" %)**Uplink:**
397 397  
398 -(((
399 -NB-IoT Network signal Strength.
400 -)))
538 +916.8 - SF7BW125 to SF12BW125
401 401  
402 -(((
403 -**Ex1: 0x1d = 29**
404 -)))
540 +917.0 - SF7BW125 to SF12BW125
405 405  
406 -(((
407 -(% style="color:blue" %)**0**(%%)  -113dBm or less
408 -)))
542 +917.2 - SF7BW125 to SF12BW125
409 409  
410 -(((
411 -(% style="color:blue" %)**1**(%%)  -111dBm
412 -)))
544 +917.4 - SF7BW125 to SF12BW125
413 413  
414 -(((
415 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
416 -)))
546 +917.6 - SF7BW125 to SF12BW125
417 417  
418 -(((
419 -(% style="color:blue" %)**31**  (%%) -51dBm or greater
420 -)))
548 +917.8 - SF7BW125 to SF12BW125
421 421  
422 -(((
423 -(% style="color:blue" %)**99**   (%%) Not known or not detectable
424 -)))
550 +918.0 - SF7BW125 to SF12BW125
425 425  
552 +918.2 - SF7BW125 to SF12BW125
426 426  
427 427  
428 -=== 2.4.5  Soil Moisture ===
555 +(% style="color:#037691" %)**Downlink:**
429 429  
430 -(((
431 -(((
432 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
433 -)))
434 -)))
557 +923.3 - SF7BW500 to SF12BW500
435 435  
436 -(((
437 -(((
438 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
439 -)))
440 -)))
559 +923.9 - SF7BW500 to SF12BW500
441 441  
442 -(((
443 -
444 -)))
561 +924.5 - SF7BW500 to SF12BW500
445 445  
446 -(((
447 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
448 -)))
563 +925.1 - SF7BW500 to SF12BW500
449 449  
565 +925.7 - SF7BW500 to SF12BW500
450 450  
567 +926.3 - SF7BW500 to SF12BW500
451 451  
452 -=== 2.4.6  Soil Temperature ===
569 +926.9 - SF7BW500 to SF12BW500
453 453  
454 -(((
455 -Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
456 -)))
571 +927.5 - SF7BW500 to SF12BW500
457 457  
458 -(((
459 -**Example**:
460 -)))
573 +923.3 - SF12BW500(RX2 downlink only)
461 461  
462 -(((
463 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
464 -)))
465 465  
466 -(((
467 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
468 -)))
469 469  
577 +=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
470 470  
579 +(% style="color:#037691" %)**Default Uplink channel:**
471 471  
472 -=== 2.4.7  Soil Conductivity (EC) ===
581 +923.2 - SF7BW125 to SF10BW125
473 473  
474 -(((
475 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
476 -)))
583 +923.4 - SF7BW125 to SF10BW125
477 477  
478 -(((
479 -For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
480 -)))
481 481  
482 -(((
483 -Generally, the EC value of irrigation water is less than 800uS / cm.
484 -)))
586 +(% style="color:#037691" %)**Additional Uplink Channel**:
485 485  
486 -(((
487 -
488 -)))
588 +(OTAA mode, channel added by JoinAccept message)
489 489  
490 -(((
491 -
492 -)))
590 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
493 493  
494 -=== 2.4.8  Digital Interrupt ===
592 +922.2 - SF7BW125 to SF10BW125
495 495  
496 -(((
497 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
498 -)))
594 +922.4 - SF7BW125 to SF10BW125
499 499  
500 -(((
501 -The command is:
502 -)))
596 +922.6 - SF7BW125 to SF10BW125
503 503  
504 -(((
505 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
506 -)))
598 +922.8 - SF7BW125 to SF10BW125
507 507  
600 +923.0 - SF7BW125 to SF10BW125
508 508  
509 -(((
510 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
511 -)))
602 +922.0 - SF7BW125 to SF10BW125
512 512  
513 513  
514 -(((
515 -Example:
516 -)))
605 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
517 517  
518 -(((
519 -0x(00): Normal uplink packet.
520 -)))
607 +923.6 - SF7BW125 to SF10BW125
521 521  
522 -(((
523 -0x(01): Interrupt Uplink Packet.
524 -)))
609 +923.8 - SF7BW125 to SF10BW125
525 525  
611 +924.0 - SF7BW125 to SF10BW125
526 526  
613 +924.2 - SF7BW125 to SF10BW125
527 527  
528 -=== 2.4. ​+5V Output ===
615 +924.4 - SF7BW125 to SF10BW125
529 529  
530 -(((
531 -NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
532 -)))
617 +924.6 - SF7BW125 to SF10BW125
533 533  
534 534  
535 -(((
536 -The 5V output time can be controlled by AT Command.
537 -)))
620 +(% style="color:#037691" %)** Downlink:**
538 538  
539 -(((
540 -(% style="color:blue" %)**AT+5VT=1000**
541 -)))
622 +Uplink channels 1-8 (RX1)
542 542  
543 -(((
544 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
545 -)))
624 +923.2 - SF10BW125 (RX2)
546 546  
547 547  
548 548  
549 -== 2. Downlink Payload ==
628 +=== 2.7.6 KR920-923 (KR920) ===
550 550  
551 -By default, NSE01 prints the downlink payload to console port.
630 +Default channel:
552 552  
553 -[[image:image-20220708133731-5.png]]
632 +922.1 - SF7BW125 to SF12BW125
554 554  
634 +922.3 - SF7BW125 to SF12BW125
555 555  
556 -(((
557 -(% style="color:blue" %)**Examples:**
558 -)))
636 +922.5 - SF7BW125 to SF12BW125
559 559  
560 -(((
561 -
562 -)))
563 563  
564 -* (((
565 -(% style="color:blue" %)**Set TDC**
566 -)))
639 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
567 567  
568 -(((
569 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
570 -)))
641 +922.1 - SF7BW125 to SF12BW125
571 571  
572 -(((
573 -Payload:    01 00 00 1E    TDC=30S
574 -)))
643 +922.3 - SF7BW125 to SF12BW125
575 575  
576 -(((
577 -Payload:    01 00 00 3C    TDC=60S
578 -)))
645 +922.5 - SF7BW125 to SF12BW125
579 579  
580 -(((
581 -
582 -)))
647 +922.7 - SF7BW125 to SF12BW125
583 583  
584 -* (((
585 -(% style="color:blue" %)**Reset**
586 -)))
649 +922.9 - SF7BW125 to SF12BW125
587 587  
588 -(((
589 -If payload = 0x04FF, it will reset the NSE01
590 -)))
651 +923.1 - SF7BW125 to SF12BW125
591 591  
653 +923.3 - SF7BW125 to SF12BW125
592 592  
593 -* (% style="color:blue" %)**INTMOD**
594 594  
595 -(((
596 -Downlink Payload: 06000003, Set AT+INTMOD=3
597 -)))
656 +(% style="color:#037691" %)**Downlink:**
598 598  
658 +Uplink channels 1-7(RX1)
599 599  
660 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
600 600  
601 -== 2.6  ​LED Indicator ==
602 602  
603 -(((
604 -The NSE01 has an internal LED which is to show the status of different state.
605 605  
664 +=== 2.7.7 IN865-867 (IN865) ===
606 606  
607 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
608 -* Then the LED will be on for 1 second means device is boot normally.
609 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
610 -* For each uplink probe, LED will be on for 500ms.
611 -)))
666 +(% style="color:#037691" %)** Uplink:**
612 612  
668 +865.0625 - SF7BW125 to SF12BW125
613 613  
670 +865.4025 - SF7BW125 to SF12BW125
614 614  
672 +865.9850 - SF7BW125 to SF12BW125
615 615  
616 -== 2.7  Installation in Soil ==
617 617  
618 -__**Measurement the soil surface**__
675 +(% style="color:#037691" %) **Downlink:**
619 619  
620 -(((
621 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
622 -)))
677 +Uplink channels 1-3 (RX1)
623 623  
624 -[[image:1657259653666-883.png]]
679 +866.550 - SF10BW125 (RX2)
625 625  
626 626  
627 -(((
628 -
629 629  
630 -(((
631 -Dig a hole with diameter > 20CM.
632 -)))
633 633  
634 -(((
635 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
636 -)))
637 -)))
684 +== 2.8 LED Indicator ==
638 638  
639 -[[image:1654506665940-119.png]]
686 +The LSE01 has an internal LED which is to show the status of different state.
640 640  
641 -(((
642 -
643 -)))
688 +* Blink once when device power on.
689 +* Solid ON for 5 seconds once device successful Join the network.
690 +* Blink once when device transmit a packet.
644 644  
645 645  
646 -== 2.8  ​Firmware Change Log ==
647 647  
648 648  
649 -Download URL & Firmware Change log
695 +== 2.9 Installation in Soil ==
650 650  
651 -[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
697 +**Measurement the soil surface**
652 652  
653 653  
654 -Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
700 +[[image:1654506634463-199.png]]
655 655  
702 +(((
703 +(((
704 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
705 +)))
706 +)))
656 656  
657 657  
658 -== 2.9  ​Battery Analysis ==
659 659  
660 -=== 2.9.1  ​Battery Type ===
710 +[[image:1654506665940-119.png]]
661 661  
712 +(((
713 +Dig a hole with diameter > 20CM.
714 +)))
662 662  
663 663  (((
664 -The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
717 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
665 665  )))
666 666  
667 667  
721 +== 2.10 ​Firmware Change Log ==
722 +
668 668  (((
669 -The battery is designed to last for several years depends on the actually use environment and update interval. 
724 +**Firmware download link:**
670 670  )))
671 671  
727 +(((
728 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
729 +)))
672 672  
673 673  (((
674 -The battery related documents as below:
732 +
675 675  )))
676 676  
677 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
678 -* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
679 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
735 +(((
736 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
737 +)))
680 680  
681 681  (((
682 -[[image:image-20220708140453-6.png]]
740 +
683 683  )))
684 684  
743 +(((
744 +**V1.0.**
745 +)))
685 685  
686 -
687 -=== 2.9.2  Power consumption Analyze ===
688 -
689 689  (((
690 -Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
748 +Release
691 691  )))
692 692  
693 693  
752 +== 2.11 ​Battery Analysis ==
753 +
754 +=== 2.11.1 ​Battery Type ===
755 +
694 694  (((
695 -Instruction to use as below:
757 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
696 696  )))
697 697  
698 698  (((
699 -(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
761 +The battery is designed to last for more than 5 years for the LSN50.
700 700  )))
701 701  
702 -
703 703  (((
704 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose
765 +(((
766 +The battery-related documents are as below:
705 705  )))
768 +)))
706 706  
707 707  * (((
708 -Product Model
771 +[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
709 709  )))
710 710  * (((
711 -Uplink Interval
774 +[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
712 712  )))
713 713  * (((
714 -Working Mode
777 +[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
715 715  )))
716 716  
717 -(((
718 -And the Life expectation in difference case will be shown on the right.
719 -)))
780 + [[image:image-20220610172436-1.png]]
720 720  
721 -[[image:image-20220708141352-7.jpeg]]
722 722  
723 723  
784 +=== 2.11.2 ​Battery Note ===
724 724  
725 -=== 2.9.3  ​Battery Note ===
726 -
727 727  (((
728 728  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
729 729  )))
... ... @@ -730,169 +730,302 @@
730 730  
731 731  
732 732  
733 -=== 2.9. Replace the battery ===
792 +=== 2.11.3 Replace the battery ===
734 734  
735 735  (((
736 -The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
795 +If Battery is lower than 2.7v, user should replace the battery of LSE01.
737 737  )))
738 738  
739 -
740 -
741 -= 3. ​ Access NB-IoT Module =
742 -
743 743  (((
744 -Users can directly access the AT command set of the NB-IoT module.
799 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
745 745  )))
746 746  
747 747  (((
748 -The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
803 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
749 749  )))
750 750  
751 -[[image:1657261278785-153.png]]
752 752  
753 753  
808 += 3. ​Using the AT Commands =
754 754  
755 -= 4.  Using the AT Commands =
810 +== 3.1 Access AT Commands ==
756 756  
757 -== 4.1  Access AT Commands ==
758 758  
759 -See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
813 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
760 760  
815 +[[image:1654501986557-872.png||height="391" width="800"]]
761 761  
762 -AT+<CMD>?  : Help on <CMD>
763 763  
764 -AT+<CMD>         : Run <CMD>
818 +Or if you have below board, use below connection:
765 765  
766 -AT+<CMD>=<value> : Set the value
767 767  
768 -AT+<CMD>=?  : Get the value
821 +[[image:1654502005655-729.png||height="503" width="801"]]
769 769  
770 770  
824 +
825 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
826 +
827 +
828 + [[image:1654502050864-459.png||height="564" width="806"]]
829 +
830 +
831 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
832 +
833 +
834 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
835 +
836 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
837 +
838 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
839 +
840 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
841 +
842 +
771 771  (% style="color:#037691" %)**General Commands**(%%)      
772 772  
773 -AT  : Attention       
845 +(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
774 774  
775 -AT?  : Short Help     
847 +(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
776 776  
777 -ATZ  : MCU Reset    
849 +(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
778 778  
779 -AT+TDC  : Application Data Transmission Interval
851 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
780 780  
781 -AT+CFG  : Print all configurations
782 782  
783 -AT+CFGMOD           : Working mode selection
854 +(% style="color:#037691" %)**Keys, IDs and EUIs management**
784 784  
785 -AT+INTMOD            : Set the trigger interrupt mode
856 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
786 786  
787 -AT+5VT  : Set extend the time of 5V power  
858 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
788 788  
789 -AT+PRO  : Choose agreement
860 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
790 790  
791 -AT+WEIGRE  : Get weight or set weight to 0
862 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
792 792  
793 -AT+WEIGAP  : Get or Set the GapValue of weight
864 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
794 794  
795 -AT+RXDL  : Extend the sending and receiving time
866 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
796 796  
797 -AT+CNTFAC  : Get or set counting parameters
868 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
798 798  
799 -AT+SERVADDR  : Server Address
870 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
800 800  
872 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
801 801  
802 -(% style="color:#037691" %)**COAP Management**      
874 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
803 803  
804 -AT+URI            : Resource parameters
876 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
805 805  
878 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
806 806  
807 -(% style="color:#037691" %)**UDP Management**
880 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
808 808  
809 -AT+CFM          : Upload confirmation mode (only valid for UDP)
882 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
810 810  
884 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
811 811  
812 -(% style="color:#037691" %)**MQTT Management**
886 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
813 813  
814 -AT+CLIENT               : Get or Set MQTT client
815 815  
816 -AT+UNAME  : Get or Set MQTT Username
889 +(% style="color:#037691" %)**LoRa Network Management**
817 817  
818 -AT+PWD                  : Get or Set MQTT password
891 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
819 819  
820 -AT+PUBTOPI : Get or Set MQTT publish topic
893 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
821 821  
822 -AT+SUBTOPIC  : Get or Set MQTT subscription topic
895 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
823 823  
897 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
824 824  
825 -(% style="color:#037691" %)**Information**          
899 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
826 826  
827 -AT+FDR  : Factory Data Reset
901 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
828 828  
829 -AT+PWOR : Serial Access Password
903 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
830 830  
905 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
831 831  
907 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
832 832  
833 -= ​5.  FAQ =
909 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
834 834  
835 -== 5.1 How to Upgrade Firmware ==
911 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
836 836  
913 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
837 837  
915 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
916 +
917 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
918 +
919 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
920 +
921 +
922 +(% style="color:#037691" %)**Information** 
923 +
924 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
925 +
926 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
927 +
928 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
929 +
930 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
931 +
932 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
933 +
934 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
935 +
936 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
937 +
938 +
939 += ​4. FAQ =
940 +
941 +== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
942 +
838 838  (((
839 -User can upgrade the firmware for 1) bug fix, 2) new feature release.
944 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
945 +When downloading the images, choose the required image file for download. ​
840 840  )))
841 841  
842 842  (((
843 -Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
949 +
844 844  )))
845 845  
846 846  (((
847 -(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
953 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
848 848  )))
849 849  
956 +(((
957 +
958 +)))
850 850  
960 +(((
961 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
962 +)))
851 851  
852 -= 6.  Trouble Shooting =
964 +(((
965 +
966 +)))
853 853  
854 -== 6.1  ​Connection problem when uploading firmware ==
968 +(((
969 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
970 +)))
855 855  
972 +[[image:image-20220606154726-3.png]]
856 856  
974 +
975 +When you use the TTN network, the US915 frequency bands use are:
976 +
977 +* 903.9 - SF7BW125 to SF10BW125
978 +* 904.1 - SF7BW125 to SF10BW125
979 +* 904.3 - SF7BW125 to SF10BW125
980 +* 904.5 - SF7BW125 to SF10BW125
981 +* 904.7 - SF7BW125 to SF10BW125
982 +* 904.9 - SF7BW125 to SF10BW125
983 +* 905.1 - SF7BW125 to SF10BW125
984 +* 905.3 - SF7BW125 to SF10BW125
985 +* 904.6 - SF8BW500
986 +
857 857  (((
858 -**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
988 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
989 +
990 +* (% style="color:#037691" %)**AT+CHE=2**
991 +* (% style="color:#037691" %)**ATZ**
859 859  )))
860 860  
861 -(% class="wikigeneratedid" %)
862 862  (((
863 863  
996 +
997 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
864 864  )))
865 865  
1000 +(((
1001 +
1002 +)))
866 866  
867 -== 6.2  AT Command input doesn't work ==
1004 +(((
1005 +The **AU915** band is similar. Below are the AU915 Uplink Channels.
1006 +)))
868 868  
1008 +[[image:image-20220606154825-4.png]]
1009 +
1010 +
1011 +== 4.2 ​Can I calibrate LSE01 to different soil types? ==
1012 +
1013 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1014 +
1015 +
1016 += 5. Trouble Shooting =
1017 +
1018 +== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
1019 +
1020 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
1021 +
1022 +
1023 +== 5.2 AT Command input doesn’t work ==
1024 +
869 869  (((
870 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1026 +In the case if user can see the console output but cant type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesnt send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
871 871  )))
872 872  
873 873  
1030 +== 5.3 Device rejoin in at the second uplink packet ==
874 874  
875 -= 7. ​ Order Info =
1032 +(% style="color:#4f81bd" %)**Issue describe as below:**
876 876  
1034 +[[image:1654500909990-784.png]]
877 877  
878 -Part Number**:** (% style="color:#4f81bd" %)**NSE01**
879 879  
1037 +(% style="color:#4f81bd" %)**Cause for this issue:**
880 880  
1039 +(((
1040 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
1041 +)))
1042 +
1043 +
1044 +(% style="color:#4f81bd" %)**Solution: **
1045 +
1046 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1047 +
1048 +[[image:1654500929571-736.png||height="458" width="832"]]
1049 +
1050 +
1051 += 6. ​Order Info =
1052 +
1053 +
1054 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1055 +
1056 +
1057 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1058 +
1059 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1060 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1061 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1062 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1063 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1064 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1065 +* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1066 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1067 +
1068 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1069 +
1070 +* (% style="color:red" %)**4**(%%): 4000mAh battery
1071 +* (% style="color:red" %)**8**(%%): 8500mAh battery
1072 +
881 881  (% class="wikigeneratedid" %)
882 882  (((
883 883  
884 884  )))
885 885  
886 -= 8.  Packing Info =
1078 += 7. Packing Info =
887 887  
888 888  (((
889 889  
890 890  
891 891  (% style="color:#037691" %)**Package Includes**:
1084 +)))
892 892  
893 -
894 -* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
895 -* External antenna x 1
1086 +* (((
1087 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
896 896  )))
897 897  
898 898  (((
... ... @@ -899,20 +899,24 @@
899 899  
900 900  
901 901  (% style="color:#037691" %)**Dimension and weight**:
1094 +)))
902 902  
903 -
904 -* Size: 195 x 125 x 55 mm
905 -* Weight:   420g
1096 +* (((
1097 +Device Size: cm
906 906  )))
1099 +* (((
1100 +Device Weight: g
1101 +)))
1102 +* (((
1103 +Package Size / pcs : cm
1104 +)))
1105 +* (((
1106 +Weight / pcs : g
907 907  
908 -(((
909 909  
910 -
911 -
912 -
913 913  )))
914 914  
915 -= 9.  Support =
1111 += 8. Support =
916 916  
917 917  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
918 918  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657245163077-232.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -102.7 KB
Content