Last modified by Bei Jinggeng on 2024/05/31 09:53

From version 65.21
edited by Xiaoling
on 2022/07/08 16:06
Change comment: There is no comment for this version
To version 32.11
edited by Xiaoling
on 2022/06/07 11:39
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
Content
... ... @@ -3,16 +3,8 @@
3 3  
4 4  
5 5  
6 +**Contents:**
6 6  
7 -
8 -
9 -
10 -
11 -
12 -
13 -
14 -**Table of Contents:**
15 -
16 16  {{toc/}}
17 17  
18 18  
... ... @@ -20,710 +20,738 @@
20 20  
21 21  
22 22  
15 += 1. Introduction =
23 23  
24 -= 1.  Introduction =
17 +== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
25 25  
26 -== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
27 -
28 28  (((
29 -
20 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
21 +)))
30 30  
31 31  (((
32 -Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
24 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
33 33  )))
34 34  
35 35  (((
36 -It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
28 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
37 37  )))
38 38  
39 39  (((
40 -The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
32 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
41 41  )))
42 42  
43 43  (((
44 -NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
36 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
45 45  )))
46 46  
47 -
48 -)))
49 49  
50 50  [[image:1654503236291-817.png]]
51 51  
52 52  
53 -[[image:1657245163077-232.png]]
43 +[[image:1654503265560-120.png]]
54 54  
55 55  
56 56  
57 -== 1.2 ​ Features ==
47 +== 1.2 ​Features ==
58 58  
59 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
49 +* LoRaWAN 1.0.3 Class A
50 +* Ultra low power consumption
60 60  * Monitor Soil Moisture
61 61  * Monitor Soil Temperature
62 62  * Monitor Soil Conductivity
54 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
63 63  * AT Commands to change parameters
64 64  * Uplink on periodically
65 65  * Downlink to change configure
66 66  * IP66 Waterproof Enclosure
67 -* Ultra-Low Power consumption
68 -* AT Commands to change parameters
69 -* Micro SIM card slot for NB-IoT SIM
70 -* 8500mAh Battery for long term use
59 +* 4000mAh or 8500mAh Battery for long term use
71 71  
61 +== 1.3 Specification ==
72 72  
63 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
73 73  
65 +[[image:image-20220606162220-5.png]]
74 74  
75 -== 1.3  Specification ==
76 76  
77 77  
78 -(% style="color:#037691" %)**Common DC Characteristics:**
69 +== ​1.4 Applications ==
79 79  
80 -* Supply Voltage: 2.1v ~~ 3.6v
81 -* Operating Temperature: -40 ~~ 85°C
71 +* Smart Agriculture
82 82  
83 -(% style="color:#037691" %)**NB-IoT Spec:**
73 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
74 +​
84 84  
85 -* - B1 @H-FDD: 2100MHz
86 -* - B3 @H-FDD: 1800MHz
87 -* - B8 @H-FDD: 900MHz
88 -* - B5 @H-FDD: 850MHz
89 -* - B20 @H-FDD: 800MHz
90 -* - B28 @H-FDD: 700MHz
76 +== 1.5 Firmware Change log ==
91 91  
92 -Probe(% style="color:#037691" %)** Specification:**
93 93  
94 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
79 +**LSE01 v1.0 :**  Release
95 95  
96 -[[image:image-20220708101224-1.png]]
97 97  
98 98  
83 += 2. Configure LSE01 to connect to LoRaWAN network =
99 99  
100 -== ​1. Applications ==
85 +== 2.1 How it works ==
101 101  
102 -* Smart Agriculture
87 +(((
88 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
89 +)))
103 103  
104 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
105 -​
91 +(((
92 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
93 +)))
106 106  
107 -== 1.5  Pin Definitions ==
108 108  
109 109  
110 -[[image:1657246476176-652.png]]
97 +== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
111 111  
99 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
112 112  
113 113  
114 -= 2.  Use NSE01 to communicate with IoT Server =
102 +[[image:1654503992078-669.png]]
115 115  
116 -== 2.1  How it works ==
117 117  
105 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
118 118  
107 +
108 +**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
109 +
110 +Each LSE01 is shipped with a sticker with the default device EUI as below:
111 +
112 +[[image:image-20220606163732-6.jpeg]]
113 +
114 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
115 +
116 +**Add APP EUI in the application**
117 +
118 +
119 +[[image:1654504596150-405.png]]
120 +
121 +
122 +
123 +**Add APP KEY and DEV EUI**
124 +
125 +[[image:1654504683289-357.png]]
126 +
127 +
128 +
129 +**Step 2**: Power on LSE01
130 +
131 +
132 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
133 +
134 +[[image:image-20220606163915-7.png]]
135 +
136 +
137 +**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
138 +
139 +[[image:1654504778294-788.png]]
140 +
141 +
142 +
143 +== 2.3 Uplink Payload ==
144 +
145 +(% class="wikigeneratedid" %)
146 +=== ===
147 +
148 +=== 2.3.1 MOD~=0(Default Mode) ===
149 +
150 +LSE01 will uplink payload via LoRaWAN with below payload format: 
151 +
119 119  (((
120 -The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
153 +Uplink payload includes in total 11 bytes.
121 121  )))
122 122  
156 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
157 +|(((
158 +**Size**
123 123  
124 -(((
125 -The diagram below shows the working flow in default firmware of NSE01:
160 +**(bytes)**
161 +)))|**2**|**2**|**2**|**2**|**2**|**1**
162 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
163 +Temperature
164 +
165 +(Reserve, Ignore now)
166 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
167 +MOD & Digital Interrupt
168 +
169 +(Optional)
126 126  )))
127 127  
128 -[[image:image-20220708101605-2.png]]
129 129  
173 +
174 +=== 2.3.2 MOD~=1(Original value) ===
175 +
176 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
177 +
178 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
179 +|(((
180 +**Size**
181 +
182 +**(bytes)**
183 +)))|**2**|**2**|**2**|**2**|**2**|**1**
184 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
185 +Temperature
186 +
187 +(Reserve, Ignore now)
188 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
189 +MOD & Digital Interrupt
190 +
191 +(Optional)
192 +)))
193 +
194 +
195 +
196 +=== 2.3.3 Battery Info ===
197 +
130 130  (((
131 -
199 +Check the battery voltage for LSE01.
132 132  )))
133 133  
202 +(((
203 +Ex1: 0x0B45 = 2885mV
204 +)))
134 134  
206 +(((
207 +Ex2: 0x0B49 = 2889mV
208 +)))
135 135  
136 -== 2.2 ​ Configure the NSE01 ==
137 137  
138 138  
139 -=== 2.2.1 Test Requirement ===
212 +=== 2.3.4 Soil Moisture ===
140 140  
214 +(((
215 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
216 +)))
141 141  
142 142  (((
143 -To use NSE01 in your city, make sure meet below requirements:
219 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
144 144  )))
145 145  
146 -* Your local operator has already distributed a NB-IoT Network there.
147 -* The local NB-IoT network used the band that NSE01 supports.
148 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
222 +(((
223 +
224 +)))
149 149  
150 150  (((
151 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
227 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
152 152  )))
153 153  
154 154  
155 -[[image:1657249419225-449.png]]
156 156  
232 +=== 2.3.5 Soil Temperature ===
157 157  
234 +(((
235 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
236 +)))
158 158  
159 -=== 2.2.2 Insert SIM card ===
238 +(((
239 +**Example**:
240 +)))
160 160  
161 161  (((
162 -Insert the NB-IoT Card get from your provider.
243 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
163 163  )))
164 164  
165 165  (((
166 -User need to take out the NB-IoT module and insert the SIM card like below:
247 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
167 167  )))
168 168  
169 169  
170 -[[image:1657249468462-536.png]]
171 171  
252 +=== 2.3.6 Soil Conductivity (EC) ===
172 172  
254 +(((
255 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
256 +)))
173 173  
174 -=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
258 +(((
259 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
260 +)))
175 175  
176 176  (((
263 +Generally, the EC value of irrigation water is less than 800uS / cm.
264 +)))
265 +
177 177  (((
178 -User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
267 +
179 179  )))
269 +
270 +(((
271 +
180 180  )))
181 181  
274 +=== 2.3.7 MOD ===
182 182  
183 -**Connection:**
276 +Firmware version at least v2.1 supports changing mode.
184 184  
185 - (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
278 +For example, bytes[10]=90
186 186  
187 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
280 +mod=(bytes[10]>>7)&0x01=1.
188 188  
189 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
190 190  
283 +**Downlink Command:**
191 191  
192 -In the PC, use below serial tool settings:
285 +If payload = 0x0A00, workmode=0
193 193  
194 -* Baud:  (% style="color:green" %)**9600**
195 -* Data bits:** (% style="color:green" %)8(%%)**
196 -* Stop bits: (% style="color:green" %)**1**
197 -* Parity:  (% style="color:green" %)**None**
198 -* Flow Control: (% style="color:green" %)**None**
287 +If** **payload =** **0x0A01, workmode=1
199 199  
200 -(((
201 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
202 -)))
203 203  
204 -[[image:image-20220708110657-3.png]]
205 205  
206 -(((
207 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
208 -)))
291 +=== 2.3.8 ​Decode payload in The Things Network ===
209 209  
293 +While using TTN network, you can add the payload format to decode the payload.
210 210  
211 211  
212 -=== 2.2.4 Use CoAP protocol to uplink data ===
296 +[[image:1654505570700-128.png]]
213 213  
214 -(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
298 +The payload decoder function for TTN is here:
215 215  
300 +LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
216 216  
217 -**Use below commands:**
218 218  
219 -* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
220 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
221 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
222 222  
223 -For parameter description, please refer to AT command set
304 +== 2.4 Uplink Interval ==
224 224  
225 -[[image:1657249793983-486.png]]
306 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
226 226  
227 227  
228 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
229 229  
230 -[[image:1657249831934-534.png]]
310 +== 2.5 Downlink Payload ==
231 231  
312 +By default, LSE50 prints the downlink payload to console port.
232 232  
314 +[[image:image-20220606165544-8.png]]
233 233  
234 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
235 235  
236 -This feature is supported since firmware version v1.0.1
317 +**Examples:**
237 237  
238 238  
239 -* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
240 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
241 -* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
320 +* **Set TDC**
242 242  
243 -[[image:1657249864775-321.png]]
322 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
244 244  
324 +Payload:    01 00 00 1E    TDC=30S
245 245  
246 -[[image:1657249930215-289.png]]
326 +Payload:    01 00 00 3C    TDC=60S
247 247  
248 248  
329 +* **Reset**
249 249  
250 -=== 2.2.6 Use MQTT protocol to uplink data ===
331 +If payload = 0x04FF, it will reset the LSE01
251 251  
252 -This feature is supported since firmware version v110
253 253  
334 +* **CFM**
254 254  
255 -* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
256 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
257 -* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
258 -* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
259 -* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
260 -* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
261 -* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
336 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
262 262  
263 -[[image:1657249978444-674.png]]
264 264  
265 265  
266 -[[image:1657249990869-686.png]]
340 +== 2.6 ​Show Data in DataCake IoT Server ==
267 267  
342 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
268 268  
269 -(((
270 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
271 -)))
272 272  
345 +**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
273 273  
347 +**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
274 274  
275 -=== 2.2.7 Use TCP protocol to uplink data ===
276 276  
277 -This feature is supported since firmware version v110
350 +[[image:1654505857935-743.png]]
278 278  
279 279  
280 -* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
281 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
353 +[[image:1654505874829-548.png]]
282 282  
283 -[[image:1657250217799-140.png]]
355 +Step 3: Create an account or log in Datacake.
284 284  
357 +Step 4: Search the LSE01 and add DevEUI.
285 285  
286 -[[image:1657250255956-604.png]]
287 287  
360 +[[image:1654505905236-553.png]]
288 288  
289 289  
290 -=== 2.2.8 Change Update Interval ===
363 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
291 291  
292 -User can use below command to change the (% style="color:green" %)**uplink interval**.
365 +[[image:1654505925508-181.png]]
293 293  
294 -* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
295 295  
296 -(((
297 -(% style="color:red" %)**NOTE:**
298 -)))
299 299  
300 -(((
301 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
302 -)))
369 +== 2.7 Frequency Plans ==
303 303  
371 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
304 304  
305 305  
306 -== 2.3  Uplink Payload ==
374 +=== 2.7.1 EU863-870 (EU868) ===
307 307  
308 -In this mode, uplink payload includes in total 18 bytes
376 +(% style="color:#037691" %)** Uplink:**
309 309  
310 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
311 -|=(% style="width: 60px;" %)(((
312 -**Size(bytes)**
313 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1**
314 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
378 +868.1 - SF7BW125 to SF12BW125
315 315  
316 -(((
317 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
318 -)))
380 +868.3 - SF7BW125 to SF12BW125 and SF7BW250
319 319  
382 +868.5 - SF7BW125 to SF12BW125
320 320  
321 -[[image:image-20220708111918-4.png]]
384 +867.1 - SF7BW125 to SF12BW125
322 322  
386 +867.3 - SF7BW125 to SF12BW125
323 323  
324 -The payload is ASCII string, representative same HEX:
388 +867.5 - SF7BW125 to SF12BW125
325 325  
326 -0x72403155615900640c7817075e0a8c02f900 where:
390 +867.7 - SF7BW125 to SF12BW125
327 327  
328 -* Device ID: 0x 724031556159 = 724031556159
329 -* Version: 0x0064=100=1.0.0
392 +867.9 - SF7BW125 to SF12BW125
330 330  
331 -* BAT: 0x0c78 = 3192 mV = 3.192V
332 -* Singal: 0x17 = 23
333 -* Soil Moisture: 0x075e= 1886 = 18.86  %
334 -* Soil Temperature:0x0a8c =2700=27 °C
335 -* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
336 -* Interrupt: 0x00 = 0
394 +868.8 - FSK
337 337  
338 338  
397 +(% style="color:#037691" %)** Downlink:**
339 339  
399 +Uplink channels 1-9 (RX1)
340 340  
341 -== 2.4  Payload Explanation and Sensor Interface ==
401 +869.525 - SF9BW125 (RX2 downlink only)
342 342  
343 343  
344 -=== 2.4.1  Device ID ===
345 345  
346 -(((
347 -By default, the Device ID equal to the last 6 bytes of IMEI.
348 -)))
405 +=== 2.7.2 US902-928(US915) ===
349 349  
350 -(((
351 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
352 -)))
407 +Used in USA, Canada and South America. Default use CHE=2
353 353  
354 -(((
355 -**Example:**
356 -)))
409 +(% style="color:#037691" %)**Uplink:**
357 357  
358 -(((
359 -AT+DEUI=A84041F15612
360 -)))
411 +903.9 - SF7BW125 to SF10BW125
361 361  
362 -(((
363 -The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
364 -)))
413 +904.1 - SF7BW125 to SF10BW125
365 365  
415 +904.3 - SF7BW125 to SF10BW125
366 366  
417 +904.5 - SF7BW125 to SF10BW125
367 367  
368 -=== 2.4.2  Version Info ===
419 +904.7 - SF7BW125 to SF10BW125
369 369  
370 -(((
371 -Specify the software version: 0x64=100, means firmware version 1.00.
372 -)))
421 +904.9 - SF7BW125 to SF10BW125
373 373  
374 -(((
375 -For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
376 -)))
423 +905.1 - SF7BW125 to SF10BW125
377 377  
425 +905.3 - SF7BW125 to SF10BW125
378 378  
379 379  
380 -=== 2.4.3  Battery Info ===
428 +(% style="color:#037691" %)**Downlink:**
381 381  
382 -(((
383 -Check the battery voltage for LSE01.
384 -)))
430 +923.3 - SF7BW500 to SF12BW500
385 385  
386 -(((
387 -Ex1: 0x0B45 = 2885mV
388 -)))
432 +923.9 - SF7BW500 to SF12BW500
389 389  
390 -(((
391 -Ex2: 0x0B49 = 2889mV
392 -)))
434 +924.5 - SF7BW500 to SF12BW500
393 393  
436 +925.1 - SF7BW500 to SF12BW500
394 394  
438 +925.7 - SF7BW500 to SF12BW500
395 395  
396 -=== 2.4.4  Signal Strength ===
440 +926.3 - SF7BW500 to SF12BW500
397 397  
398 -(((
399 -NB-IoT Network signal Strength.
400 -)))
442 +926.9 - SF7BW500 to SF12BW500
401 401  
402 -(((
403 -**Ex1: 0x1d = 29**
404 -)))
444 +927.5 - SF7BW500 to SF12BW500
405 405  
406 -(((
407 -(% style="color:blue" %)**0**(%%)  -113dBm or less
408 -)))
446 +923.3 - SF12BW500(RX2 downlink only)
409 409  
410 -(((
411 -(% style="color:blue" %)**1**(%%)  -111dBm
412 -)))
413 413  
414 -(((
415 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
416 -)))
417 417  
418 -(((
419 -(% style="color:blue" %)**31**  (%%) -51dBm or greater
420 -)))
450 +=== 2.7.3 CN470-510 (CN470) ===
421 421  
422 -(((
423 -(% style="color:blue" %)**99**   (%%) Not known or not detectable
424 -)))
452 +Used in China, Default use CHE=1
425 425  
454 +(% style="color:#037691" %)**Uplink:**
426 426  
456 +486.3 - SF7BW125 to SF12BW125
427 427  
428 -=== 2.4.5  Soil Moisture ===
458 +486.5 - SF7BW125 to SF12BW125
429 429  
430 -(((
431 -(((
432 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
433 -)))
434 -)))
460 +486.7 - SF7BW125 to SF12BW125
435 435  
436 -(((
437 -(((
438 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
439 -)))
440 -)))
462 +486.9 - SF7BW125 to SF12BW125
441 441  
442 -(((
443 -
444 -)))
464 +487.1 - SF7BW125 to SF12BW125
445 445  
446 -(((
447 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
448 -)))
466 +487.3 - SF7BW125 to SF12BW125
449 449  
468 +487.5 - SF7BW125 to SF12BW125
450 450  
470 +487.7 - SF7BW125 to SF12BW125
451 451  
452 -=== 2.4.6  Soil Temperature ===
453 453  
454 -(((
455 -Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
456 -)))
473 +(% style="color:#037691" %)**Downlink:**
457 457  
458 -(((
459 -**Example**:
460 -)))
475 +506.7 - SF7BW125 to SF12BW125
461 461  
462 -(((
463 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
464 -)))
477 +506.9 - SF7BW125 to SF12BW125
465 465  
466 -(((
467 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
468 -)))
479 +507.1 - SF7BW125 to SF12BW125
469 469  
481 +507.3 - SF7BW125 to SF12BW125
470 470  
483 +507.5 - SF7BW125 to SF12BW125
471 471  
472 -=== 2.4.7  Soil Conductivity (EC) ===
485 +507.7 - SF7BW125 to SF12BW125
473 473  
474 -(((
475 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
476 -)))
487 +507.9 - SF7BW125 to SF12BW125
477 477  
478 -(((
479 -For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
480 -)))
489 +508.1 - SF7BW125 to SF12BW125
481 481  
482 -(((
483 -Generally, the EC value of irrigation water is less than 800uS / cm.
484 -)))
491 +505.3 - SF12BW125 (RX2 downlink only)
485 485  
486 -(((
487 -
488 -)))
489 489  
490 -(((
491 -
492 -)))
493 493  
494 -=== 2.4.8  Digital Interrupt ===
495 +=== 2.7.4 AU915-928(AU915) ===
495 495  
496 -(((
497 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
498 -)))
497 +Default use CHE=2
499 499  
500 -(((
501 -The command is:
502 -)))
499 +(% style="color:#037691" %)**Uplink:**
503 503  
504 -(((
505 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
506 -)))
501 +916.8 - SF7BW125 to SF12BW125
507 507  
503 +917.0 - SF7BW125 to SF12BW125
508 508  
509 -(((
510 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
511 -)))
505 +917.2 - SF7BW125 to SF12BW125
512 512  
507 +917.4 - SF7BW125 to SF12BW125
513 513  
514 -(((
515 -Example:
516 -)))
509 +917.6 - SF7BW125 to SF12BW125
517 517  
518 -(((
519 -0x(00): Normal uplink packet.
520 -)))
511 +917.8 - SF7BW125 to SF12BW125
521 521  
522 -(((
523 -0x(01): Interrupt Uplink Packet.
524 -)))
513 +918.0 - SF7BW125 to SF12BW125
525 525  
515 +918.2 - SF7BW125 to SF12BW125
526 526  
527 527  
528 -=== 2.4.9  ​+5V Output ===
518 +(% style="color:#037691" %)**Downlink:**
529 529  
530 -(((
531 -NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
532 -)))
520 +923.3 - SF7BW500 to SF12BW500
533 533  
522 +923.9 - SF7BW500 to SF12BW500
534 534  
535 -(((
536 -The 5V output time can be controlled by AT Command.
537 -)))
524 +924.5 - SF7BW500 to SF12BW500
538 538  
539 -(((
540 -(% style="color:blue" %)**AT+5VT=1000**
541 -)))
526 +925.1 - SF7BW500 to SF12BW500
542 542  
543 -(((
544 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
545 -)))
528 +925.7 - SF7BW500 to SF12BW500
546 546  
530 +926.3 - SF7BW500 to SF12BW500
547 547  
532 +926.9 - SF7BW500 to SF12BW500
548 548  
549 -== 2.5  Downlink Payload ==
534 +927.5 - SF7BW500 to SF12BW500
550 550  
551 -By default, NSE01 prints the downlink payload to console port.
536 +923.3 - SF12BW500(RX2 downlink only)
552 552  
553 -[[image:image-20220708133731-5.png]]
554 554  
555 555  
556 -(((
557 -(% style="color:blue" %)**Examples:**
558 -)))
540 +=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
559 559  
560 -(((
561 -
562 -)))
542 +(% style="color:#037691" %)**Default Uplink channel:**
563 563  
564 -* (((
565 -(% style="color:blue" %)**Set TDC**
566 -)))
544 +923.2 - SF7BW125 to SF10BW125
567 567  
568 -(((
569 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
570 -)))
546 +923.4 - SF7BW125 to SF10BW125
571 571  
572 -(((
573 -Payload:    01 00 00 1E    TDC=30S
574 -)))
575 575  
576 -(((
577 -Payload:    01 00 00 3C    TDC=60S
578 -)))
549 +(% style="color:#037691" %)**Additional Uplink Channel**:
579 579  
580 -(((
581 -
582 -)))
551 +(OTAA mode, channel added by JoinAccept message)
583 583  
584 -* (((
585 -(% style="color:blue" %)**Reset**
586 -)))
553 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
587 587  
588 -(((
589 -If payload = 0x04FF, it will reset the NSE01
590 -)))
555 +922.2 - SF7BW125 to SF10BW125
591 591  
557 +922.4 - SF7BW125 to SF10BW125
592 592  
593 -* (% style="color:blue" %)**INTMOD**
559 +922.6 - SF7BW125 to SF10BW125
594 594  
595 -(((
596 -Downlink Payload: 06000003, Set AT+INTMOD=3
597 -)))
561 +922.8 - SF7BW125 to SF10BW125
598 598  
563 +923.0 - SF7BW125 to SF10BW125
599 599  
565 +922.0 - SF7BW125 to SF10BW125
600 600  
601 -== 2.6  ​LED Indicator ==
602 602  
603 -(((
604 -The NSE01 has an internal LED which is to show the status of different state.
568 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
605 605  
570 +923.6 - SF7BW125 to SF10BW125
606 606  
607 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
608 -* Then the LED will be on for 1 second means device is boot normally.
609 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
610 -* For each uplink probe, LED will be on for 500ms.
611 -)))
572 +923.8 - SF7BW125 to SF10BW125
612 612  
574 +924.0 - SF7BW125 to SF10BW125
613 613  
576 +924.2 - SF7BW125 to SF10BW125
614 614  
578 +924.4 - SF7BW125 to SF10BW125
615 615  
616 -== 2.7  Installation in Soil ==
580 +924.6 - SF7BW125 to SF10BW125
617 617  
618 -__**Measurement the soil surface**__
619 619  
620 -(((
621 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
622 -)))
583 +(% style="color:#037691" %)** Downlink:**
623 623  
624 -[[image:1657259653666-883.png]]
585 +Uplink channels 1-8 (RX1)
625 625  
587 +923.2 - SF10BW125 (RX2)
626 626  
627 -(((
628 -
629 629  
630 -(((
631 -Dig a hole with diameter > 20CM.
632 -)))
633 633  
634 -(((
635 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
636 -)))
637 -)))
591 +=== 2.7.6 KR920-923 (KR920) ===
638 638  
639 -[[image:1654506665940-119.png]]
593 +Default channel:
640 640  
641 -(((
642 -
643 -)))
595 +922.1 - SF7BW125 to SF12BW125
644 644  
597 +922.3 - SF7BW125 to SF12BW125
645 645  
646 -== 2. Firmware Change Log ==
599 +922.5 - SF7BW125 to SF12BW125
647 647  
648 648  
649 -Download URL & Firmware Change log
602 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
650 650  
651 -[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
604 +922.1 - SF7BW125 to SF12BW125
652 652  
606 +922.3 - SF7BW125 to SF12BW125
653 653  
654 -Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
608 +922.5 - SF7BW125 to SF12BW125
655 655  
610 +922.7 - SF7BW125 to SF12BW125
656 656  
612 +922.9 - SF7BW125 to SF12BW125
657 657  
658 -== 2. Battery Analysis ==
614 +923.1 - SF7BW125 to SF12BW125
659 659  
660 -=== 2.9.1  Battery Type ===
616 +923.3 - SF7BW125 to SF12BW125
661 661  
662 662  
619 +(% style="color:#037691" %)**Downlink:**
620 +
621 +Uplink channels 1-7(RX1)
622 +
623 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
624 +
625 +
626 +
627 +=== 2.7.7 IN865-867 (IN865) ===
628 +
629 +(% style="color:#037691" %)** Uplink:**
630 +
631 +865.0625 - SF7BW125 to SF12BW125
632 +
633 +865.4025 - SF7BW125 to SF12BW125
634 +
635 +865.9850 - SF7BW125 to SF12BW125
636 +
637 +
638 +(% style="color:#037691" %) **Downlink:**
639 +
640 +Uplink channels 1-3 (RX1)
641 +
642 +866.550 - SF10BW125 (RX2)
643 +
644 +
645 +
646 +
647 +== 2.8 LED Indicator ==
648 +
649 +The LSE01 has an internal LED which is to show the status of different state.
650 +
651 +* Blink once when device power on.
652 +* Solid ON for 5 seconds once device successful Join the network.
653 +* Blink once when device transmit a packet.
654 +
655 +
656 +
657 +== 2.9 Installation in Soil ==
658 +
659 +**Measurement the soil surface**
660 +
661 +
662 +[[image:1654506634463-199.png]] ​
663 +
663 663  (((
664 -The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
665 +(((
666 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
665 665  )))
668 +)))
666 666  
667 667  
671 +[[image:1654506665940-119.png]]
672 +
668 668  (((
669 -The battery is designed to last for several years depends on the actually use environment and update interval. 
674 +Dig a hole with diameter > 20CM.
670 670  )))
671 671  
677 +(((
678 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
679 +)))
672 672  
681 +
682 +== 2.10 ​Firmware Change Log ==
683 +
673 673  (((
674 -The battery related documents as below:
685 +**Firmware download link:**
675 675  )))
676 676  
677 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
678 -* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
679 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
688 +(((
689 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
690 +)))
680 680  
681 681  (((
682 -[[image:image-20220708140453-6.png]]
693 +
683 683  )))
684 684  
696 +(((
697 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
698 +)))
685 685  
700 +(((
701 +
702 +)))
686 686  
687 -=== 2.9.2  Power consumption Analyze ===
704 +(((
705 +**V1.0.**
706 +)))
688 688  
689 689  (((
690 -Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
709 +Release
691 691  )))
692 692  
693 693  
713 +== 2.11 ​Battery Analysis ==
714 +
715 +=== 2.11.1 ​Battery Type ===
716 +
694 694  (((
695 -Instruction to use as below:
718 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
696 696  )))
697 697  
698 698  (((
699 -(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
722 +The battery is designed to last for more than 5 years for the LSN50.
700 700  )))
701 701  
702 -
703 703  (((
704 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose
726 +(((
727 +The battery-related documents are as below:
705 705  )))
729 +)))
706 706  
707 707  * (((
708 -Product Model
732 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
709 709  )))
710 710  * (((
711 -Uplink Interval
735 +[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
712 712  )))
713 713  * (((
714 -Working Mode
738 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
715 715  )))
716 716  
717 -(((
718 -And the Life expectation in difference case will be shown on the right.
719 -)))
741 + [[image:image-20220606171726-9.png]]
720 720  
721 -[[image:image-20220708141352-7.jpeg]]
722 722  
723 723  
745 +=== 2.11.2 ​Battery Note ===
724 724  
725 -=== 2.9.3  ​Battery Note ===
726 -
727 727  (((
728 728  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
729 729  )))
... ... @@ -730,169 +730,303 @@
730 730  
731 731  
732 732  
733 -=== 2.9. Replace the battery ===
753 +=== 2.11.3 Replace the battery ===
734 734  
735 735  (((
736 -The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
756 +If Battery is lower than 2.7v, user should replace the battery of LSE01.
737 737  )))
738 738  
739 -
740 -
741 -= 3. ​ Access NB-IoT Module =
742 -
743 743  (((
744 -Users can directly access the AT command set of the NB-IoT module.
760 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
745 745  )))
746 746  
747 747  (((
748 -The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
764 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
749 749  )))
750 750  
751 -[[image:1657261278785-153.png]]
752 752  
753 753  
769 += 3. ​Using the AT Commands =
754 754  
755 -= 4.  Using the AT Commands =
771 +== 3.1 Access AT Commands ==
756 756  
757 -== 4.1  Access AT Commands ==
758 758  
759 -See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
774 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
760 760  
776 +[[image:1654501986557-872.png||height="391" width="800"]]
761 761  
762 -AT+<CMD>?  : Help on <CMD>
763 763  
764 -AT+<CMD>         : Run <CMD>
779 +Or if you have below board, use below connection:
765 765  
766 -AT+<CMD>=<value> : Set the value
767 767  
768 -AT+<CMD>=?  : Get the value
782 +[[image:1654502005655-729.png||height="503" width="801"]]
769 769  
770 770  
785 +
786 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
787 +
788 +
789 + [[image:1654502050864-459.png||height="564" width="806"]]
790 +
791 +
792 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
793 +
794 +
795 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
796 +
797 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
798 +
799 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
800 +
801 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
802 +
803 +
771 771  (% style="color:#037691" %)**General Commands**(%%)      
772 772  
773 -AT  : Attention       
806 +(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
774 774  
775 -AT?  : Short Help     
808 +(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
776 776  
777 -ATZ  : MCU Reset    
810 +(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
778 778  
779 -AT+TDC  : Application Data Transmission Interval
812 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
780 780  
781 -AT+CFG  : Print all configurations
782 782  
783 -AT+CFGMOD           : Working mode selection
815 +(% style="color:#037691" %)**Keys, IDs and EUIs management**
784 784  
785 -AT+INTMOD            : Set the trigger interrupt mode
817 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
786 786  
787 -AT+5VT  : Set extend the time of 5V power  
819 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
788 788  
789 -AT+PRO  : Choose agreement
821 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
790 790  
791 -AT+WEIGRE  : Get weight or set weight to 0
823 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
792 792  
793 -AT+WEIGAP  : Get or Set the GapValue of weight
825 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
794 794  
795 -AT+RXDL  : Extend the sending and receiving time
827 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
796 796  
797 -AT+CNTFAC  : Get or set counting parameters
829 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
798 798  
799 -AT+SERVADDR  : Server Address
831 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
800 800  
833 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
801 801  
802 -(% style="color:#037691" %)**COAP Management**      
835 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
803 803  
804 -AT+URI            : Resource parameters
837 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
805 805  
839 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
806 806  
807 -(% style="color:#037691" %)**UDP Management**
841 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
808 808  
809 -AT+CFM          : Upload confirmation mode (only valid for UDP)
843 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
810 810  
845 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
811 811  
812 -(% style="color:#037691" %)**MQTT Management**
847 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
813 813  
814 -AT+CLIENT               : Get or Set MQTT client
815 815  
816 -AT+UNAME  : Get or Set MQTT Username
850 +(% style="color:#037691" %)**LoRa Network Management**
817 817  
818 -AT+PWD                  : Get or Set MQTT password
852 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
819 819  
820 -AT+PUBTOPI : Get or Set MQTT publish topic
854 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
821 821  
822 -AT+SUBTOPIC  : Get or Set MQTT subscription topic
856 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
823 823  
858 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
824 824  
825 -(% style="color:#037691" %)**Information**          
860 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
826 826  
827 -AT+FDR  : Factory Data Reset
862 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
828 828  
829 -AT+PWOR : Serial Access Password
864 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
830 830  
866 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
831 831  
868 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
832 832  
833 -= ​5.  FAQ =
870 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
834 834  
835 -== 5.1 How to Upgrade Firmware ==
872 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
836 836  
874 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
837 837  
876 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
877 +
878 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
879 +
880 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
881 +
882 +
883 +(% style="color:#037691" %)**Information** 
884 +
885 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
886 +
887 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
888 +
889 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
890 +
891 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
892 +
893 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
894 +
895 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
896 +
897 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
898 +
899 +
900 += ​4. FAQ =
901 +
902 +== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
903 +
838 838  (((
839 -User can upgrade the firmware for 1) bug fix, 2) new feature release.
905 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
906 +When downloading the images, choose the required image file for download. ​
840 840  )))
841 841  
842 842  (((
843 -Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
910 +
844 844  )))
845 845  
846 846  (((
847 -(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
914 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
848 848  )))
849 849  
917 +(((
918 +
919 +)))
850 850  
921 +(((
922 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
923 +)))
851 851  
852 -= 6.  Trouble Shooting =
925 +(((
926 +
927 +)))
853 853  
854 -== 6.1  ​Connection problem when uploading firmware ==
929 +(((
930 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
931 +)))
855 855  
933 +[[image:image-20220606154726-3.png]]
856 856  
935 +
936 +When you use the TTN network, the US915 frequency bands use are:
937 +
938 +* 903.9 - SF7BW125 to SF10BW125
939 +* 904.1 - SF7BW125 to SF10BW125
940 +* 904.3 - SF7BW125 to SF10BW125
941 +* 904.5 - SF7BW125 to SF10BW125
942 +* 904.7 - SF7BW125 to SF10BW125
943 +* 904.9 - SF7BW125 to SF10BW125
944 +* 905.1 - SF7BW125 to SF10BW125
945 +* 905.3 - SF7BW125 to SF10BW125
946 +* 904.6 - SF8BW500
947 +
857 857  (((
858 -**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
949 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
859 859  )))
860 860  
861 -(% class="wikigeneratedid" %)
952 +(% class="box infomessage" %)
862 862  (((
954 +**AT+CHE=2**
955 +)))
956 +
957 +(% class="box infomessage" %)
958 +(((
959 +**ATZ**
960 +)))
961 +
962 +(((
963 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
964 +)))
965 +
966 +(((
863 863  
864 864  )))
865 865  
970 +(((
971 +The **AU915** band is similar. Below are the AU915 Uplink Channels.
972 +)))
866 866  
867 -== 6.2  AT Command input doesn't work ==
974 +[[image:image-20220606154825-4.png]]
868 868  
976 +
977 +
978 += 5. Trouble Shooting =
979 +
980 +== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
981 +
982 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
983 +
984 +
985 +== 5.2 AT Command input doesn’t work ==
986 +
869 869  (((
870 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
988 +In the case if user can see the console output but cant type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesnt send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
871 871  )))
872 872  
873 873  
992 +== 5.3 Device rejoin in at the second uplink packet ==
874 874  
875 -= 7. ​ Order Info =
994 +(% style="color:#4f81bd" %)**Issue describe as below:**
876 876  
996 +[[image:1654500909990-784.png]]
877 877  
878 -Part Number**:** (% style="color:#4f81bd" %)**NSE01**
879 879  
999 +(% style="color:#4f81bd" %)**Cause for this issue:**
880 880  
1001 +(((
1002 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
1003 +)))
1004 +
1005 +
1006 +(% style="color:#4f81bd" %)**Solution: **
1007 +
1008 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1009 +
1010 +[[image:1654500929571-736.png||height="458" width="832"]]
1011 +
1012 +
1013 += 6. ​Order Info =
1014 +
1015 +
1016 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1017 +
1018 +
1019 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1020 +
1021 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1022 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1023 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1024 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1025 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1026 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1027 +* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1028 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1029 +
1030 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1031 +
1032 +* (% style="color:red" %)**4**(%%): 4000mAh battery
1033 +* (% style="color:red" %)**8**(%%): 8500mAh battery
1034 +
881 881  (% class="wikigeneratedid" %)
882 882  (((
883 883  
884 884  )))
885 885  
886 -= 8.  Packing Info =
1040 += 7. Packing Info =
887 887  
888 888  (((
889 889  
890 890  
891 891  (% style="color:#037691" %)**Package Includes**:
1046 +)))
892 892  
893 -
894 -* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
895 -* External antenna x 1
1048 +* (((
1049 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
896 896  )))
897 897  
898 898  (((
... ... @@ -899,20 +899,30 @@
899 899  
900 900  
901 901  (% style="color:#037691" %)**Dimension and weight**:
1056 +)))
902 902  
903 -
904 -* Size: 195 x 125 x 55 mm
905 -* Weight:   420g
1058 +* (((
1059 +Device Size: cm
906 906  )))
1061 +* (((
1062 +Device Weight: g
1063 +)))
1064 +* (((
1065 +Package Size / pcs : cm
1066 +)))
1067 +* (((
1068 +Weight / pcs : g
907 907  
908 -(((
909 -
910 910  
911 -
912 912  
913 913  )))
914 914  
915 -= 9.  Support =
1074 += 8. Support =
916 916  
917 917  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
918 918  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1078 +
1079 +
1080 +~)~)~)
1081 +~)~)~)
1082 +~)~)~)
1657245163077-232.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
image-20220610172436-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -370.3 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -102.7 KB
Content