Changes for page NDDS75 -- NB-IoT Distance Detect Sensor User Manual
Last modified by Bei Jinggeng on 2024/05/31 09:53
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 24 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - NSE01NB-IoTSoil Moisture & EC Sensor User Manual1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -3,16 +3,8 @@ 3 3 4 4 5 5 6 +**Contents:** 6 6 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 -**Table of Contents:** 15 - 16 16 {{toc/}} 17 17 18 18 ... ... @@ -20,710 +20,738 @@ 20 20 21 21 22 22 15 += 1. Introduction = 23 23 24 -= 1. Introduction =17 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 25 25 26 -== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 27 - 28 28 ((( 29 - 20 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 21 +))) 30 30 31 31 ((( 32 - DraginoNSE01 isan(% style="color:blue" %)**NB-IOT soilmoisture& EC sensor**(%%)foragriculturalIoT. Used tomeasure the soilmoisture ofsaline-alkali soiland loam.Thesoil sensor uses the FDRmethod to calculate soil moisture andcompensates it with soiltemperature andelectricalconductivity.It hasalsobeencalibratedfor mineralsoiltypesatthe factory.24 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 33 33 ))) 34 34 35 35 ((( 36 - Itcandetect (%style="color:blue"%)**SoilMoisture,Soil Temperature andSoilConductivity**(%%),anduploaditsvalue totheserver wirelessly.28 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 37 37 ))) 38 38 39 39 ((( 40 - Thewirelesstechnology usedin NSE01allowsthedeviceto senddataata lowdata rateand reachultra-longdistances, providingultra-long-distancespreadspectrum Communication.32 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 41 41 ))) 42 42 43 43 ((( 44 - NSE01arepoweredby(%style="color:blue"%)**8500mAhLi-SOCI2**(%%)batteries,which canbeusedforupto5 years.36 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 45 45 ))) 46 46 47 - 48 -))) 49 49 50 50 [[image:1654503236291-817.png]] 51 51 52 52 53 -[[image:165 7245163077-232.png]]43 +[[image:1654503265560-120.png]] 54 54 55 55 56 56 57 -== 1.2 47 +== 1.2 Features == 58 58 59 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 49 +* LoRaWAN 1.0.3 Class A 50 +* Ultra low power consumption 60 60 * Monitor Soil Moisture 61 61 * Monitor Soil Temperature 62 62 * Monitor Soil Conductivity 54 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 63 63 * AT Commands to change parameters 64 64 * Uplink on periodically 65 65 * Downlink to change configure 66 66 * IP66 Waterproof Enclosure 67 -* Ultra-Low Power consumption 68 -* AT Commands to change parameters 69 -* Micro SIM card slot for NB-IoT SIM 70 -* 8500mAh Battery for long term use 59 +* 4000mAh or 8500mAh Battery for long term use 71 71 61 +== 1.3 Specification == 72 72 63 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 73 73 65 +[[image:image-20220606162220-5.png]] 74 74 75 -== 1.3 Specification == 76 76 77 77 78 - (% style="color:#037691"%)**Common DC Characteristics:**69 +== 1.4 Applications == 79 79 80 -* Supply Voltage: 2.1v ~~ 3.6v 81 -* Operating Temperature: -40 ~~ 85°C 71 +* Smart Agriculture 82 82 83 -(% style="color:#037691" %)**NB-IoT Spec:** 73 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 74 + 84 84 85 -* - B1 @H-FDD: 2100MHz 86 -* - B3 @H-FDD: 1800MHz 87 -* - B8 @H-FDD: 900MHz 88 -* - B5 @H-FDD: 850MHz 89 -* - B20 @H-FDD: 800MHz 90 -* - B28 @H-FDD: 700MHz 76 +== 1.5 Firmware Change log == 91 91 92 -Probe(% style="color:#037691" %)** Specification:** 93 93 94 - MeasureVolume:Baseon the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.79 +**LSE01 v1.0 :** Release 95 95 96 -[[image:image-20220708101224-1.png]] 97 97 98 98 83 += 2. Configure LSE01 to connect to LoRaWAN network = 99 99 100 -== 1.4Applications ==85 +== 2.1 How it works == 101 101 102 -* Smart Agriculture 87 +((( 88 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 89 +))) 103 103 104 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 105 - 91 +((( 92 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 93 +))) 106 106 107 -== 1.5 Pin Definitions == 108 108 109 109 110 - [[image:1657246476176-652.png]]97 +== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 111 111 99 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 112 112 113 113 114 - = 2. Use NSE01 to communicatewith IoT Server =102 +[[image:1654503992078-669.png]] 115 115 116 -== 2.1 How it works == 117 117 105 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 118 118 107 + 108 +**Step 1**: Create a device in TTN with the OTAA keys from LSE01. 109 + 110 +Each LSE01 is shipped with a sticker with the default device EUI as below: 111 + 112 +[[image:image-20220606163732-6.jpeg]] 113 + 114 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 115 + 116 +**Add APP EUI in the application** 117 + 118 + 119 +[[image:1654504596150-405.png]] 120 + 121 + 122 + 123 +**Add APP KEY and DEV EUI** 124 + 125 +[[image:1654504683289-357.png]] 126 + 127 + 128 + 129 +**Step 2**: Power on LSE01 130 + 131 + 132 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 133 + 134 +[[image:image-20220606163915-7.png]] 135 + 136 + 137 +**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 138 + 139 +[[image:1654504778294-788.png]] 140 + 141 + 142 + 143 +== 2.3 Uplink Payload == 144 + 145 +(% class="wikigeneratedid" %) 146 +=== === 147 + 148 +=== 2.3.1 MOD~=0(Default Mode) === 149 + 150 +LSE01 will uplink payload via LoRaWAN with below payload format: 151 + 119 119 ((( 120 - The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware inNSE01 will get environment data from sensors and send the value to local NB-IoT networkviathe NB-IoT module. The NB-IoT network will forwardthis valueto IoTserverviathe protocoldefinedbyNSE01.153 +Uplink payload includes in total 11 bytes. 121 121 ))) 122 122 156 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 157 +|((( 158 +**Size** 123 123 124 -((( 125 -The diagram below shows the working flow in default firmware of NSE01: 160 +**(bytes)** 161 +)))|**2**|**2**|**2**|**2**|**2**|**1** 162 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 163 +Temperature 164 + 165 +(Reserve, Ignore now) 166 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 167 +MOD & Digital Interrupt 168 + 169 +(Optional) 126 126 ))) 127 127 128 -[[image:image-20220708101605-2.png]] 129 129 173 + 174 +=== 2.3.2 MOD~=1(Original value) === 175 + 176 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 177 + 178 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 179 +|((( 180 +**Size** 181 + 182 +**(bytes)** 183 +)))|**2**|**2**|**2**|**2**|**2**|**1** 184 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 185 +Temperature 186 + 187 +(Reserve, Ignore now) 188 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 189 +MOD & Digital Interrupt 190 + 191 +(Optional) 192 +))) 193 + 194 + 195 + 196 +=== 2.3.3 Battery Info === 197 + 130 130 ((( 131 - 199 +Check the battery voltage for LSE01. 132 132 ))) 133 133 202 +((( 203 +Ex1: 0x0B45 = 2885mV 204 +))) 134 134 206 +((( 207 +Ex2: 0x0B49 = 2889mV 208 +))) 135 135 136 -== 2.2 Configure the NSE01 == 137 137 138 138 139 -=== 2. 2.1TestRequirement===212 +=== 2.3.4 Soil Moisture === 140 140 214 +((( 215 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 216 +))) 141 141 142 142 ((( 143 - TouseNSE01inyourcity,make suremeetbelowrequirements:219 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 144 144 ))) 145 145 146 - * Your local operator has already distributed a NB-IoT Network there.147 - *The local NB-IoT network used the band that NSE01 supports.148 - * Your operator is able to distribute the data received in their NB-IoT network to your IoT server.222 +((( 223 + 224 +))) 149 149 150 150 ((( 151 - Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%)or raw UDP((% style="color:red"%)120.24.4.116:5601)(%%)or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)orTCP((% style="color:red"%)120.24.4.116:5600)(%%)protocol to send data to the test server227 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 152 152 ))) 153 153 154 154 155 -[[image:1657249419225-449.png]] 156 156 232 +=== 2.3.5 Soil Temperature === 157 157 234 +((( 235 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 236 +))) 158 158 159 -=== 2.2.2 Insert SIM card === 238 +((( 239 +**Example**: 240 +))) 160 160 161 161 ((( 162 -I nsertthe NB-IoT Cardgetfromyourprovider.243 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 163 163 ))) 164 164 165 165 ((( 166 - Userneed totakeouttheNB-IoTmoduleandinserttheSIMcardlikebelow:247 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 167 167 ))) 168 168 169 169 170 -[[image:1657249468462-536.png]] 171 171 252 +=== 2.3.6 Soil Conductivity (EC) === 172 172 254 +((( 255 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 256 +))) 173 173 174 -=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 258 +((( 259 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 260 +))) 175 175 176 176 ((( 263 +Generally, the EC value of irrigation water is less than 800uS / cm. 264 +))) 265 + 177 177 ((( 178 - Userneed to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.267 + 179 179 ))) 269 + 270 +((( 271 + 180 180 ))) 181 181 274 +=== 2.3.7 MOD === 182 182 183 - **Connection:**276 +Firmware version at least v2.1 supports changing mode. 184 184 185 - (% style="background-color:yellow"%)USB TTL GND <~-~-~-~-> GND278 +For example, bytes[10]=90 186 186 187 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~->UART_RXD280 +mod=(bytes[10]>>7)&0x01=1. 188 188 189 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 190 190 283 +**Downlink Command:** 191 191 192 -I nthePC,usebelowserial tool settings:285 +If payload = 0x0A00, workmode=0 193 193 194 -* Baud: (% style="color:green" %)**9600** 195 -* Data bits:** (% style="color:green" %)8(%%)** 196 -* Stop bits: (% style="color:green" %)**1** 197 -* Parity: (% style="color:green" %)**None** 198 -* Flow Control: (% style="color:green" %)**None** 287 +If** **payload =** **0x0A01, workmode=1 199 199 200 -((( 201 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 202 -))) 203 203 204 -[[image:image-20220708110657-3.png]] 205 205 206 -((( 207 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 208 -))) 291 +=== 2.3.8 Decode payload in The Things Network === 209 209 293 +While using TTN network, you can add the payload format to decode the payload. 210 210 211 211 212 - ===2.2.4 Use CoAPprotocol to uplink data ===296 +[[image:1654505570700-128.png]] 213 213 214 - (%style="color:red"%)Note: if youdon't haveCoAP server,youanreferthislink tosetup one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]298 +The payload decoder function for TTN is here: 215 215 300 +LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 216 216 217 -**Use below commands:** 218 218 219 -* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 220 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 221 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 222 222 223 - Forparameterdescription,pleaserefer to AT commandset304 +== 2.4 Uplink Interval == 224 224 225 - [[image:1657249793983-486.png]]306 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 226 226 227 227 228 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 229 229 230 - [[image:1657249831934-534.png]]310 +== 2.5 Downlink Payload == 231 231 312 +By default, LSE50 prints the downlink payload to console port. 232 232 314 +[[image:image-20220606165544-8.png]] 233 233 234 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 235 235 236 - This feature is supportedsince firmware version v1.0.1317 +**Examples:** 237 237 238 238 239 -* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 240 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 241 -* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 320 +* **Set TDC** 242 242 243 - [[image:1657249864775-321.png]]322 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 244 244 324 +Payload: 01 00 00 1E TDC=30S 245 245 246 - [[image:1657249930215-289.png]]326 +Payload: 01 00 00 3C TDC=60S 247 247 248 248 329 +* **Reset** 249 249 250 - ===2.2.6UseMQTT protocol touplink data===331 +If payload = 0x04FF, it will reset the LSE01 251 251 252 -This feature is supported since firmware version v110 253 253 334 +* **CFM** 254 254 255 -* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 256 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 257 -* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 258 -* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 259 -* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 260 -* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 261 -* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 336 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 262 262 263 -[[image:1657249978444-674.png]] 264 264 265 265 266 - [[image:1657249990869-686.png]]340 +== 2.6 Show Data in DataCake IoT Server == 267 267 342 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 268 268 269 -((( 270 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 271 -))) 272 272 345 +**Step 1**: Be sure that your device is programmed and properly connected to the network at this time. 273 273 347 +**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 274 274 275 -=== 2.2.7 Use TCP protocol to uplink data === 276 276 277 - This feature is supported since firmwareversion v110350 +[[image:1654505857935-743.png]] 278 278 279 279 280 -* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 281 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 353 +[[image:1654505874829-548.png]] 282 282 283 - [[image:1657250217799-140.png]]355 +Step 3: Create an account or log in Datacake. 284 284 357 +Step 4: Search the LSE01 and add DevEUI. 285 285 286 -[[image:1657250255956-604.png]] 287 287 360 +[[image:1654505905236-553.png]] 288 288 289 289 290 - ===2.2.8ChangeUpdateInterval===363 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 291 291 292 - User can use below command to changethe (% style="color:green" %)**uplink interval**.365 +[[image:1654505925508-181.png]] 293 293 294 -* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 295 295 296 -((( 297 -(% style="color:red" %)**NOTE:** 298 -))) 299 299 300 -((( 301 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 302 -))) 369 +== 2.7 Frequency Plans == 303 303 371 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 304 304 305 305 306 -== 2.3 plinkPayload==374 +=== 2.7.1 EU863-870 (EU868) === 307 307 308 - Inthismode, uplink payload includes in total8bytes376 +(% style="color:#037691" %)** Uplink:** 309 309 310 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 311 -|=(% style="width: 60px;" %)((( 312 -**Size(bytes)** 313 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1** 314 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 378 +868.1 - SF7BW125 to SF12BW125 315 315 316 -((( 317 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 318 -))) 380 +868.3 - SF7BW125 to SF12BW125 and SF7BW250 319 319 382 +868.5 - SF7BW125 to SF12BW125 320 320 321 - [[image:image-20220708111918-4.png]]384 +867.1 - SF7BW125 to SF12BW125 322 322 386 +867.3 - SF7BW125 to SF12BW125 323 323 324 - Thepayloadis ASCIIstring,representative same HEX:388 +867.5 - SF7BW125 to SF12BW125 325 325 326 - 0x72403155615900640c7817075e0a8c02f900where:390 +867.7 - SF7BW125 to SF12BW125 327 327 328 -* Device ID: 0x 724031556159 = 724031556159 329 -* Version: 0x0064=100=1.0.0 392 +867.9 - SF7BW125 to SF12BW125 330 330 331 -* BAT: 0x0c78 = 3192 mV = 3.192V 332 -* Singal: 0x17 = 23 333 -* Soil Moisture: 0x075e= 1886 = 18.86 % 334 -* Soil Temperature:0x0a8c =2700=27 °C 335 -* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 336 -* Interrupt: 0x00 = 0 394 +868.8 - FSK 337 337 338 338 397 +(% style="color:#037691" %)** Downlink:** 339 339 399 +Uplink channels 1-9 (RX1) 340 340 341 - ==2.4PayloadExplanationand Sensor Interface ==401 +869.525 - SF9BW125 (RX2 downlink only) 342 342 343 343 344 -=== 2.4.1 Device ID === 345 345 346 -((( 347 -By default, the Device ID equal to the last 6 bytes of IMEI. 348 -))) 405 +=== 2.7.2 US902-928(US915) === 349 349 350 -((( 351 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 352 -))) 407 +Used in USA, Canada and South America. Default use CHE=2 353 353 354 -((( 355 -**Example:** 356 -))) 409 +(% style="color:#037691" %)**Uplink:** 357 357 358 -((( 359 -AT+DEUI=A84041F15612 360 -))) 411 +903.9 - SF7BW125 to SF10BW125 361 361 362 -((( 363 -The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 364 -))) 413 +904.1 - SF7BW125 to SF10BW125 365 365 415 +904.3 - SF7BW125 to SF10BW125 366 366 417 +904.5 - SF7BW125 to SF10BW125 367 367 368 - === 2.4.2VersionInfo ===419 +904.7 - SF7BW125 to SF10BW125 369 369 370 -((( 371 -Specify the software version: 0x64=100, means firmware version 1.00. 372 -))) 421 +904.9 - SF7BW125 to SF10BW125 373 373 374 -((( 375 -For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 376 -))) 423 +905.1 - SF7BW125 to SF10BW125 377 377 425 +905.3 - SF7BW125 to SF10BW125 378 378 379 379 380 - ===2.4.3 BatteryInfo===428 +(% style="color:#037691" %)**Downlink:** 381 381 382 -((( 383 -Check the battery voltage for LSE01. 384 -))) 430 +923.3 - SF7BW500 to SF12BW500 385 385 386 -((( 387 -Ex1: 0x0B45 = 2885mV 388 -))) 432 +923.9 - SF7BW500 to SF12BW500 389 389 390 -((( 391 -Ex2: 0x0B49 = 2889mV 392 -))) 434 +924.5 - SF7BW500 to SF12BW500 393 393 436 +925.1 - SF7BW500 to SF12BW500 394 394 438 +925.7 - SF7BW500 to SF12BW500 395 395 396 - ===2.4.4SignalStrength===440 +926.3 - SF7BW500 to SF12BW500 397 397 398 -((( 399 -NB-IoT Network signal Strength. 400 -))) 442 +926.9 - SF7BW500 to SF12BW500 401 401 402 -((( 403 -**Ex1: 0x1d = 29** 404 -))) 444 +927.5 - SF7BW500 to SF12BW500 405 405 406 -((( 407 -(% style="color:blue" %)**0**(%%) -113dBm or less 408 -))) 446 +923.3 - SF12BW500(RX2 downlink only) 409 409 410 -((( 411 -(% style="color:blue" %)**1**(%%) -111dBm 412 -))) 413 413 414 -((( 415 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 416 -))) 417 417 418 -((( 419 -(% style="color:blue" %)**31** (%%) -51dBm or greater 420 -))) 450 +=== 2.7.3 CN470-510 (CN470) === 421 421 422 -((( 423 -(% style="color:blue" %)**99** (%%) Not known or not detectable 424 -))) 452 +Used in China, Default use CHE=1 425 425 454 +(% style="color:#037691" %)**Uplink:** 426 426 456 +486.3 - SF7BW125 to SF12BW125 427 427 428 - === 2.4.5oilMoisture===458 +486.5 - SF7BW125 to SF12BW125 429 429 430 -((( 431 -((( 432 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 433 -))) 434 -))) 460 +486.7 - SF7BW125 to SF12BW125 435 435 436 -((( 437 -((( 438 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 439 -))) 440 -))) 462 +486.9 - SF7BW125 to SF12BW125 441 441 442 -((( 443 - 444 -))) 464 +487.1 - SF7BW125 to SF12BW125 445 445 446 -((( 447 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 448 -))) 466 +487.3 - SF7BW125 to SF12BW125 449 449 468 +487.5 - SF7BW125 to SF12BW125 450 450 470 +487.7 - SF7BW125 to SF12BW125 451 451 452 -=== 2.4.6 Soil Temperature === 453 453 454 -((( 455 -Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 456 -))) 473 +(% style="color:#037691" %)**Downlink:** 457 457 458 -((( 459 -**Example**: 460 -))) 475 +506.7 - SF7BW125 to SF12BW125 461 461 462 -((( 463 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 464 -))) 477 +506.9 - SF7BW125 to SF12BW125 465 465 466 -((( 467 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 468 -))) 479 +507.1 - SF7BW125 to SF12BW125 469 469 481 +507.3 - SF7BW125 to SF12BW125 470 470 483 +507.5 - SF7BW125 to SF12BW125 471 471 472 - === 2.4.7oilConductivity(EC) ===485 +507.7 - SF7BW125 to SF12BW125 473 473 474 -((( 475 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 476 -))) 487 +507.9 - SF7BW125 to SF12BW125 477 477 478 -((( 479 -For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 480 -))) 489 +508.1 - SF7BW125 to SF12BW125 481 481 482 -((( 483 -Generally, the EC value of irrigation water is less than 800uS / cm. 484 -))) 491 +505.3 - SF12BW125 (RX2 downlink only) 485 485 486 -((( 487 - 488 -))) 489 489 490 -((( 491 - 492 -))) 493 493 494 -=== 2. 4.8Digital Interrupt===495 +=== 2.7.4 AU915-928(AU915) === 495 495 496 -((( 497 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 498 -))) 497 +Default use CHE=2 499 499 500 -((( 501 -The command is: 502 -))) 499 +(% style="color:#037691" %)**Uplink:** 503 503 504 -((( 505 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 506 -))) 501 +916.8 - SF7BW125 to SF12BW125 507 507 503 +917.0 - SF7BW125 to SF12BW125 508 508 509 -((( 510 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up. 511 -))) 505 +917.2 - SF7BW125 to SF12BW125 512 512 507 +917.4 - SF7BW125 to SF12BW125 513 513 514 -((( 515 -Example: 516 -))) 509 +917.6 - SF7BW125 to SF12BW125 517 517 518 -((( 519 -0x(00): Normal uplink packet. 520 -))) 511 +917.8 - SF7BW125 to SF12BW125 521 521 522 -((( 523 -0x(01): Interrupt Uplink Packet. 524 -))) 513 +918.0 - SF7BW125 to SF12BW125 525 525 515 +918.2 - SF7BW125 to SF12BW125 526 526 527 527 528 - ===2.4.9 +5V Output===518 +(% style="color:#037691" %)**Downlink:** 529 529 530 -((( 531 -NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 532 -))) 520 +923.3 - SF7BW500 to SF12BW500 533 533 522 +923.9 - SF7BW500 to SF12BW500 534 534 535 -((( 536 -The 5V output time can be controlled by AT Command. 537 -))) 524 +924.5 - SF7BW500 to SF12BW500 538 538 539 -((( 540 -(% style="color:blue" %)**AT+5VT=1000** 541 -))) 526 +925.1 - SF7BW500 to SF12BW500 542 542 543 -((( 544 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 545 -))) 528 +925.7 - SF7BW500 to SF12BW500 546 546 530 +926.3 - SF7BW500 to SF12BW500 547 547 532 +926.9 - SF7BW500 to SF12BW500 548 548 549 - ==2.5DownlinkPayload==534 +927.5 - SF7BW500 to SF12BW500 550 550 551 - Bydefault,NSE01prints thedownlinkpayload to console port.536 +923.3 - SF12BW500(RX2 downlink only) 552 552 553 -[[image:image-20220708133731-5.png]] 554 554 555 555 556 -((( 557 -(% style="color:blue" %)**Examples:** 558 -))) 540 +=== 2.7.5 AS920-923 & AS923-925 (AS923) === 559 559 560 -((( 561 - 562 -))) 542 +(% style="color:#037691" %)**Default Uplink channel:** 563 563 564 -* ((( 565 -(% style="color:blue" %)**Set TDC** 566 -))) 544 +923.2 - SF7BW125 to SF10BW125 567 567 568 -((( 569 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 570 -))) 546 +923.4 - SF7BW125 to SF10BW125 571 571 572 -((( 573 -Payload: 01 00 00 1E TDC=30S 574 -))) 575 575 576 -((( 577 -Payload: 01 00 00 3C TDC=60S 578 -))) 549 +(% style="color:#037691" %)**Additional Uplink Channel**: 579 579 580 -((( 581 - 582 -))) 551 +(OTAA mode, channel added by JoinAccept message) 583 583 584 -* ((( 585 -(% style="color:blue" %)**Reset** 586 -))) 553 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 587 587 588 -((( 589 -If payload = 0x04FF, it will reset the NSE01 590 -))) 555 +922.2 - SF7BW125 to SF10BW125 591 591 557 +922.4 - SF7BW125 to SF10BW125 592 592 593 - *(%style="color:blue"%)**INTMOD**559 +922.6 - SF7BW125 to SF10BW125 594 594 595 -((( 596 -Downlink Payload: 06000003, Set AT+INTMOD=3 597 -))) 561 +922.8 - SF7BW125 to SF10BW125 598 598 563 +923.0 - SF7BW125 to SF10BW125 599 599 565 +922.0 - SF7BW125 to SF10BW125 600 600 601 -== 2.6 LED Indicator == 602 602 603 -((( 604 -The NSE01 has an internal LED which is to show the status of different state. 568 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 605 605 570 +923.6 - SF7BW125 to SF10BW125 606 606 607 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 608 -* Then the LED will be on for 1 second means device is boot normally. 609 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 610 -* For each uplink probe, LED will be on for 500ms. 611 -))) 572 +923.8 - SF7BW125 to SF10BW125 612 612 574 +924.0 - SF7BW125 to SF10BW125 613 613 576 +924.2 - SF7BW125 to SF10BW125 614 614 578 +924.4 - SF7BW125 to SF10BW125 615 615 616 - ==2.7InstallationinSoil ==580 +924.6 - SF7BW125 to SF10BW125 617 617 618 -__**Measurement the soil surface**__ 619 619 620 -((( 621 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 622 -))) 583 +(% style="color:#037691" %)** Downlink:** 623 623 624 - [[image:1657259653666-883.png]]585 +Uplink channels 1-8 (RX1) 625 625 587 +923.2 - SF10BW125 (RX2) 626 626 627 -((( 628 - 629 629 630 -((( 631 -Dig a hole with diameter > 20CM. 632 -))) 633 633 634 -((( 635 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 636 -))) 637 -))) 591 +=== 2.7.6 KR920-923 (KR920) === 638 638 639 - [[image:1654506665940-119.png]]593 +Default channel: 640 640 641 -((( 642 - 643 -))) 595 +922.1 - SF7BW125 to SF12BW125 644 644 597 +922.3 - SF7BW125 to SF12BW125 645 645 646 - ==2.8FirmwareChange Log==599 +922.5 - SF7BW125 to SF12BW125 647 647 648 648 649 - DownloadURL&FirmwareChange602 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 650 650 651 - [[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]604 +922.1 - SF7BW125 to SF12BW125 652 652 606 +922.3 - SF7BW125 to SF12BW125 653 653 654 - UpgradeInstruction:[[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]608 +922.5 - SF7BW125 to SF12BW125 655 655 610 +922.7 - SF7BW125 to SF12BW125 656 656 612 +922.9 - SF7BW125 to SF12BW125 657 657 658 - ==2.9BatteryAnalysis ==614 +923.1 - SF7BW125 to SF12BW125 659 659 660 - ===2.9.1BatteryType ===616 +923.3 - SF7BW125 to SF12BW125 661 661 662 662 619 +(% style="color:#037691" %)**Downlink:** 620 + 621 +Uplink channels 1-7(RX1) 622 + 623 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 624 + 625 + 626 + 627 +=== 2.7.7 IN865-867 (IN865) === 628 + 629 +(% style="color:#037691" %)** Uplink:** 630 + 631 +865.0625 - SF7BW125 to SF12BW125 632 + 633 +865.4025 - SF7BW125 to SF12BW125 634 + 635 +865.9850 - SF7BW125 to SF12BW125 636 + 637 + 638 +(% style="color:#037691" %) **Downlink:** 639 + 640 +Uplink channels 1-3 (RX1) 641 + 642 +866.550 - SF10BW125 (RX2) 643 + 644 + 645 + 646 + 647 +== 2.8 LED Indicator == 648 + 649 +The LSE01 has an internal LED which is to show the status of different state. 650 + 651 +* Blink once when device power on. 652 +* Solid ON for 5 seconds once device successful Join the network. 653 +* Blink once when device transmit a packet. 654 + 655 + 656 + 657 +== 2.9 Installation in Soil == 658 + 659 +**Measurement the soil surface** 660 + 661 + 662 +[[image:1654506634463-199.png]] 663 + 663 663 ((( 664 -The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 665 +((( 666 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 665 665 ))) 668 +))) 666 666 667 667 671 +[[image:1654506665940-119.png]] 672 + 668 668 ((( 669 - The batteryis designedto lastfor severalyearsdepends ontheactually use environmentand updateinterval.674 +Dig a hole with diameter > 20CM. 670 670 ))) 671 671 677 +((( 678 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 679 +))) 672 672 681 + 682 +== 2.10 Firmware Change Log == 683 + 673 673 ((( 674 - The battery relateddocumentsasbelow:685 +**Firmware download link:** 675 675 ))) 676 676 677 - * [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]678 - *[[Lithium-ThionylChlorideBattery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]679 - * [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]688 +((( 689 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 690 +))) 680 680 681 681 ((( 682 - [[image:image-20220708140453-6.png]]693 + 683 683 ))) 684 684 696 +((( 697 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 698 +))) 685 685 700 +((( 701 + 702 +))) 686 686 687 -=== 2.9.2 Power consumption Analyze === 704 +((( 705 +**V1.0.** 706 +))) 688 688 689 689 ((( 690 - Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which baseon the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.709 +Release 691 691 ))) 692 692 693 693 713 +== 2.11 Battery Analysis == 714 + 715 +=== 2.11.1 Battery Type === 716 + 694 694 ((( 695 - Instruction touse as below:718 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 696 696 ))) 697 697 698 698 ((( 699 - (% style="color:blue" %)**Step 1: **(%%)Downlink theup-to-date DRAGINO_Battery_Life_Prediction_Table.xlsxfrom: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]722 +The battery is designed to last for more than 5 years for the LSN50. 700 700 ))) 701 701 702 - 703 703 ((( 704 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose 726 +((( 727 +The battery-related documents are as below: 705 705 ))) 729 +))) 706 706 707 707 * ((( 708 - ProductModel732 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 709 709 ))) 710 710 * ((( 711 - UplinkInterval735 +[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 712 712 ))) 713 713 * ((( 714 - WorkingMode738 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 715 715 ))) 716 716 717 -((( 718 -And the Life expectation in difference case will be shown on the right. 719 -))) 741 + [[image:image-20220606171726-9.png]] 720 720 721 -[[image:image-20220708141352-7.jpeg]] 722 722 723 723 745 +=== 2.11.2 Battery Note === 724 724 725 -=== 2.9.3 Battery Note === 726 - 727 727 ((( 728 728 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 729 729 ))) ... ... @@ -730,169 +730,303 @@ 730 730 731 731 732 732 733 -=== 2. 9.4Replace the battery ===753 +=== 2.11.3 Replace the battery === 734 734 735 735 ((( 736 - The defaultbatterypack of NSE01includesa ER26500 plus super capacitor. If usercan'tfind this pack locally, they canfind ER26500or equivalencewithouttheSPC1520 capacitor, which willalso work in mostcase.The SPC can enlargethe batterylife for highfrequencyuse (update period below 5 minutes).756 +If Battery is lower than 2.7v, user should replace the battery of LSE01. 737 737 ))) 738 738 739 - 740 - 741 -= 3. Access NB-IoT Module = 742 - 743 743 ((( 744 - Userscan directly accesstheATcommand set of theNB-IoTmodule.760 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 745 745 ))) 746 746 747 747 ((( 748 -The ATCommand setcanrefer theBC35-GNB-IoTModuleATCommand: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]]764 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 749 749 ))) 750 750 751 -[[image:1657261278785-153.png]] 752 752 753 753 769 += 3. Using the AT Commands = 754 754 755 -= 4.UsingtheAT Commands =771 +== 3.1 Access AT Commands == 756 756 757 -== 4.1 Access AT Commands == 758 758 759 -S eethislinkfordetail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]774 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 760 760 776 +[[image:1654501986557-872.png||height="391" width="800"]] 761 761 762 -AT+<CMD>? : Help on <CMD> 763 763 764 - AT+<CMD>: Run<CMD>779 +Or if you have below board, use below connection: 765 765 766 -AT+<CMD>=<value> : Set the value 767 767 768 - AT+<CMD>=?:Get the value782 +[[image:1654502005655-729.png||height="503" width="801"]] 769 769 770 770 785 + 786 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 787 + 788 + 789 + [[image:1654502050864-459.png||height="564" width="806"]] 790 + 791 + 792 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]] 793 + 794 + 795 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 796 + 797 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 798 + 799 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 800 + 801 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 802 + 803 + 771 771 (% style="color:#037691" %)**General Commands**(%%) 772 772 773 -AT 806 +(% style="background-color:#dcdcdc" %)**AT**(%%) : Attention 774 774 775 -AT? 808 +(% style="background-color:#dcdcdc" %)**AT?**(%%) : Short Help 776 776 777 -ATZ 810 +(% style="background-color:#dcdcdc" %)**ATZ**(%%) : MCU Reset 778 778 779 -AT+TDC 812 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%) : Application Data Transmission Interval 780 780 781 -AT+CFG : Print all configurations 782 782 783 - AT+CFGMOD: Workingmode selection815 +(% style="color:#037691" %)**Keys, IDs and EUIs management** 784 784 785 -AT+I NTMOD:Setthe trigger interruptmode817 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%) : Application EUI 786 786 787 -AT+ 5VTSetextend the timeof5V power819 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%) : Application Key 788 788 789 -AT+P ROChooseagreement821 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%) : Application Session Key 790 790 791 -AT+ WEIGREGet weightorsetweight to 0823 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%) : Device Address 792 792 793 -AT+ WEIGAPGet or SettheGapValue of weight825 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%) : Device EUI 794 794 795 -AT+ RXDL: Extendthe sendingandreceivingtime827 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%) : Network ID (You can enter this command change only after successful network connection) 796 796 797 -AT+ CNTFACGettcountingparameters829 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%) : Network Session Key Joining and sending date on LoRa network 798 798 799 -AT+ SERVADDR:ServerAddress831 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%) : Confirm Mode 800 800 833 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 801 801 802 -(% style="color:# 037691" %)**COAPManagement**835 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%) : Join LoRa? Network 803 803 804 -AT+ URIsourceparameters837 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%) : LoRa? Network Join Mode 805 805 839 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 806 806 807 -(% style="color:# 037691" %)**UDPManagement**841 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%) : Print Last Received Data in Raw Format 808 808 809 -AT+C FM:Uploadconfirmationmode (onlyvalid forUDP)843 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%) : Print Last Received Data in Binary Format 810 810 845 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 811 811 812 -(% style="color:# 037691" %)**MQTTManagement**847 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%) : Send Hexadecimal Data 813 813 814 -AT+CLIENT : Get or Set MQTT client 815 815 816 - AT+UNAMEGetSetMQTT Username850 +(% style="color:#037691" %)**LoRa Network Management** 817 817 818 -AT+ PWDGetor SetMQTT password852 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%) : Adaptive Rate 819 819 820 -AT+ PUBTOPICGetorSetMQTTpublishtopic854 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%) : LoRa Class(Currently only support class A 821 821 822 -AT+ SUBTOPIC :GetorSetMQTT subscriptiontopic856 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%) : Duty Cycle Setting 823 823 858 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 824 824 825 -(% style="color:# 037691" %)**Information**860 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink 826 826 827 -AT+F DRctoryDataReset862 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%) : Frame Counter Uplink 828 828 829 -AT+ PWORDSerialAccessPassword864 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%) : Join Accept Delay1 830 830 866 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 831 831 868 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 832 832 833 -= 5.FAQ=870 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%) : Receive Delay1 834 834 835 -= =5.1HowtoUpgradeFirmware==872 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%) : Receive Delay2 836 836 874 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 837 837 876 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 877 + 878 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 879 + 880 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 881 + 882 + 883 +(% style="color:#037691" %)**Information** 884 + 885 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 886 + 887 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 888 + 889 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 890 + 891 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 892 + 893 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 894 + 895 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 896 + 897 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 898 + 899 + 900 += 4. FAQ = 901 + 902 +== 4.1 How to change the LoRa Frequency Bands/Region? == 903 + 838 838 ((( 839 -User can upgrade the firmware for 1) bug fix, 2) new feature release. 905 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 906 +When downloading the images, choose the required image file for download. 840 840 ))) 841 841 842 842 ((( 843 - Pleasesee this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]910 + 844 844 ))) 845 845 846 846 ((( 847 - (%style="color:red"%)Notice,NSE01andLSE01share thememotherboard.Theyuse thesameconnection andmethodto update.914 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 848 848 ))) 849 849 917 +((( 918 + 919 +))) 850 850 921 +((( 922 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 923 +))) 851 851 852 -= 6. Trouble Shooting = 925 +((( 926 + 927 +))) 853 853 854 -== 6.1 Connection problem when uploading firmware == 929 +((( 930 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 931 +))) 855 855 933 +[[image:image-20220606154726-3.png]] 856 856 935 + 936 +When you use the TTN network, the US915 frequency bands use are: 937 + 938 +* 903.9 - SF7BW125 to SF10BW125 939 +* 904.1 - SF7BW125 to SF10BW125 940 +* 904.3 - SF7BW125 to SF10BW125 941 +* 904.5 - SF7BW125 to SF10BW125 942 +* 904.7 - SF7BW125 to SF10BW125 943 +* 904.9 - SF7BW125 to SF10BW125 944 +* 905.1 - SF7BW125 to SF10BW125 945 +* 905.3 - SF7BW125 to SF10BW125 946 +* 904.6 - SF8BW500 947 + 857 857 ((( 858 - **Pleasesee:**[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]949 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 859 859 ))) 860 860 861 -(% class=" wikigeneratedid" %)952 +(% class="box infomessage" %) 862 862 ((( 954 +**AT+CHE=2** 955 +))) 956 + 957 +(% class="box infomessage" %) 958 +((( 959 +**ATZ** 960 +))) 961 + 962 +((( 963 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 964 +))) 965 + 966 +((( 863 863 864 864 ))) 865 865 970 +((( 971 +The **AU915** band is similar. Below are the AU915 Uplink Channels. 972 +))) 866 866 867 - == 6.2 AT Commandinput doesn't work ==974 +[[image:image-20220606154825-4.png]] 868 868 976 + 977 + 978 += 5. Trouble Shooting = 979 + 980 +== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 981 + 982 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 983 + 984 + 985 +== 5.2 AT Command input doesn’t work == 986 + 869 869 ((( 870 -In the case if user can see the console output but can 't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.988 +In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 871 871 ))) 872 872 873 873 992 +== 5.3 Device rejoin in at the second uplink packet == 874 874 875 -= 7. OrderInfo=994 +(% style="color:#4f81bd" %)**Issue describe as below:** 876 876 996 +[[image:1654500909990-784.png]] 877 877 878 -Part Number**:** (% style="color:#4f81bd" %)**NSE01** 879 879 999 +(% style="color:#4f81bd" %)**Cause for this issue:** 880 880 1001 +((( 1002 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 1003 +))) 1004 + 1005 + 1006 +(% style="color:#4f81bd" %)**Solution: ** 1007 + 1008 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 1009 + 1010 +[[image:1654500929571-736.png||height="458" width="832"]] 1011 + 1012 + 1013 += 6. Order Info = 1014 + 1015 + 1016 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 1017 + 1018 + 1019 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 1020 + 1021 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 1022 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 1023 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 1024 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 1025 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1026 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1027 +* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1028 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1029 + 1030 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1031 + 1032 +* (% style="color:red" %)**4**(%%): 4000mAh battery 1033 +* (% style="color:red" %)**8**(%%): 8500mAh battery 1034 + 881 881 (% class="wikigeneratedid" %) 882 882 ((( 883 883 884 884 ))) 885 885 886 -= 8.1040 += 7. Packing Info = 887 887 888 888 ((( 889 889 890 890 891 891 (% style="color:#037691" %)**Package Includes**: 1046 +))) 892 892 893 - 894 -* NSE01 NB-IoT Soil Moisture & EC Sensor x 1 895 -* External antenna x 1 1048 +* ((( 1049 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 896 896 ))) 897 897 898 898 ((( ... ... @@ -899,20 +899,30 @@ 899 899 900 900 901 901 (% style="color:#037691" %)**Dimension and weight**: 1056 +))) 902 902 903 - 904 -* Size: 195 x 125 x 55 mm 905 -* Weight: 420g 1058 +* ((( 1059 +Device Size: cm 906 906 ))) 1061 +* ((( 1062 +Device Weight: g 1063 +))) 1064 +* ((( 1065 +Package Size / pcs : cm 1066 +))) 1067 +* ((( 1068 +Weight / pcs : g 907 907 908 -((( 909 - 910 910 911 - 912 912 913 913 ))) 914 914 915 -= 9.1074 += 8. Support = 916 916 917 917 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 918 918 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1078 + 1079 + 1080 +~)~)~) 1081 +~)~)~) 1082 +~)~)~)
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -102.7 KB - Content