Changes for page NDDS75 -- NB-IoT Distance Detect Sensor User Manual
Last modified by Bei Jinggeng on 2024/05/31 09:53
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 24 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - NSE01NB-IoTSoil Moisture & EC Sensor User Manual1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -3,16 +3,8 @@ 3 3 4 4 5 5 6 +**Contents:** 6 6 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 -**Table of Contents:** 15 - 16 16 {{toc/}} 17 17 18 18 ... ... @@ -20,710 +20,717 @@ 20 20 21 21 22 22 15 += 1. Introduction = 23 23 24 -= 1. Introduction =17 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 25 25 26 -== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 27 - 28 28 ((( 29 - 20 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 21 +))) 30 30 31 31 ((( 32 - DraginoNSE01 isan(% style="color:blue" %)**NB-IOT soilmoisture& EC sensor**(%%)foragriculturalIoT. Used tomeasure the soilmoisture ofsaline-alkali soiland loam.Thesoil sensor uses the FDRmethod to calculate soil moisture andcompensates it with soiltemperature andelectricalconductivity.It hasalsobeencalibratedfor mineralsoiltypesatthe factory.24 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 33 33 ))) 34 34 35 35 ((( 36 - Itcandetect (%style="color:blue"%)**SoilMoisture,Soil Temperature andSoilConductivity**(%%),anduploaditsvalue totheserver wirelessly.28 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 37 37 ))) 38 38 39 39 ((( 40 - Thewirelesstechnology usedin NSE01allowsthedeviceto senddataata lowdata rateand reachultra-longdistances, providingultra-long-distancespreadspectrum Communication.32 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 41 41 ))) 42 42 43 43 ((( 44 - NSE01arepoweredby(%style="color:blue"%)**8500mAhLi-SOCI2**(%%)batteries,which canbeusedforupto5 years.36 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 45 45 ))) 46 46 47 - 48 -))) 49 49 50 50 [[image:1654503236291-817.png]] 51 51 52 52 53 -[[image:165 7245163077-232.png]]43 +[[image:1654503265560-120.png]] 54 54 55 55 56 56 57 -== 1.2 47 +== 1.2 Features == 58 58 59 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 49 +* LoRaWAN 1.0.3 Class A 50 +* Ultra low power consumption 60 60 * Monitor Soil Moisture 61 61 * Monitor Soil Temperature 62 62 * Monitor Soil Conductivity 54 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 63 63 * AT Commands to change parameters 64 64 * Uplink on periodically 65 65 * Downlink to change configure 66 66 * IP66 Waterproof Enclosure 67 -* Ultra-Low Power consumption 68 -* AT Commands to change parameters 69 -* Micro SIM card slot for NB-IoT SIM 70 -* 8500mAh Battery for long term use 59 +* 4000mAh or 8500mAh Battery for long term use 71 71 72 72 62 +== 1.3 Specification == 73 73 64 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 74 74 75 - == 1.3 Specification==66 +[[image:image-20220606162220-5.png]] 76 76 77 77 78 -(% style="color:#037691" %)**Common DC Characteristics:** 79 79 80 -* Supply Voltage: 2.1v ~~ 3.6v 81 -* Operating Temperature: -40 ~~ 85°C 70 +== 1.4 Applications == 82 82 83 - (%style="color:#037691" %)**NB-IoT Spec:**72 +* Smart Agriculture 84 84 85 -* - B1 @H-FDD: 2100MHz 86 -* - B3 @H-FDD: 1800MHz 87 -* - B8 @H-FDD: 900MHz 88 -* - B5 @H-FDD: 850MHz 89 -* - B20 @H-FDD: 800MHz 90 -* - B28 @H-FDD: 700MHz 74 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 75 + 91 91 92 - Probe(%style="color:#037691"%)** Specification:**77 +== 1.5 Firmware Change log == 93 93 94 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 95 95 96 - [[image:image-20220708101224-1.png]]80 +**LSE01 v1.0 :** Release 97 97 98 98 99 99 100 -= =1.4Applications==84 += 2. Configure LSE01 to connect to LoRaWAN network = 101 101 102 - *SmartAgriculture86 +== 2.1 How it works == 103 103 104 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 105 - 88 +((( 89 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 90 +))) 106 106 107 -== 1.5 Pin Definitions == 92 +((( 93 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 94 +))) 108 108 109 109 110 -[[image:1657246476176-652.png]] 111 111 98 +== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 112 112 100 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 113 113 114 -= 2. Use NSE01 to communicate with IoT Server = 115 115 116 - ==2.1 How it works ==103 +[[image:1654503992078-669.png]] 117 117 118 118 119 -((( 120 -The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 121 -))) 106 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 122 122 123 123 124 -((( 125 -The diagram below shows the working flow in default firmware of NSE01: 126 -))) 109 +**Step 1**: Create a device in TTN with the OTAA keys from LSE01. 127 127 128 - [[image:image-20220708101605-2.png]]111 +Each LSE01 is shipped with a sticker with the default device EUI as below: 129 129 130 -((( 113 +[[image:image-20220606163732-6.jpeg]] 114 + 115 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 116 + 117 +**Add APP EUI in the application** 118 + 119 + 120 +[[image:1654504596150-405.png]] 121 + 122 + 123 + 124 +**Add APP KEY and DEV EUI** 125 + 126 +[[image:1654504683289-357.png]] 127 + 128 + 129 + 130 +**Step 2**: Power on LSE01 131 + 132 + 133 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 134 + 135 +[[image:image-20220606163915-7.png]] 136 + 137 + 138 +**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 139 + 140 +[[image:1654504778294-788.png]] 141 + 142 + 143 + 144 +== 2.3 Uplink Payload == 145 + 146 +=== 2.3.1 MOD~=0(Default Mode) === 147 + 148 +LSE01 will uplink payload via LoRaWAN with below payload format: 149 + 150 + 151 +Uplink payload includes in total 11 bytes. 131 131 153 + 154 +(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %) 155 +|=((( 156 +**Size** 157 + 158 +**(bytes)** 159 +)))|=(% style="width: 46px;" %)**2**|=(% style="width: 160px;" %)**2**|=(% style="width: 104px;" %)**2**|=(% style="width: 126px;" %)**2**|=(% style="width: 159px;" %)**2**|=(% style="width: 114px;" %)**1** 160 +|**Value**|(% style="width:46px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:160px" %)((( 161 +Temperature 162 + 163 +(Reserve, Ignore now) 164 +)))|(% style="width:104px" %)[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|(% style="width:126px" %)[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(% style="width:114px" %)((( 165 +MOD & Digital Interrupt 166 + 167 +(Optional) 132 132 ))) 133 133 170 +[[image:1654504881641-514.png]] 134 134 135 135 136 -== 2.2 Configure the NSE01 == 137 137 174 +=== 2.3.2 MOD~=1(Original value) === 138 138 139 - ===2.2.1TestRequirement===176 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 140 140 178 +(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %) 179 +|=((( 180 +**Size** 141 141 142 -((( 143 -To use NSE01 in your city, make sure meet below requirements: 144 -))) 182 +**(bytes)** 183 +)))|=**2**|=**2**|=**2**|=**2**|=**2**|=**1** 184 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 185 +Temperature 145 145 146 - * Your local operator hasalready distributeda NB-IoT Network there.147 - *ThecalNB-IoTnetwork usedthebandhatNSE01 supports.148 - *Youroperatoris able to distribute the datareceived in their NB-IoTnetwork to your IoT server.187 +(Reserve, Ignore now) 188 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 189 +MOD & Digital Interrupt 149 149 150 -((( 151 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 191 +(Optional) 152 152 ))) 153 153 194 +[[image:1654504907647-967.png]] 154 154 155 -[[image:1657249419225-449.png]] 156 156 157 157 198 +=== 2.3.3 Battery Info === 158 158 159 - ===2.2.2InsertSIM card===200 +Check the battery voltage for LSE01. 160 160 161 -((( 162 -Insert the NB-IoT Card get from your provider. 163 -))) 202 +Ex1: 0x0B45 = 2885mV 164 164 165 -((( 166 -User need to take out the NB-IoT module and insert the SIM card like below: 167 -))) 204 +Ex2: 0x0B49 = 2889mV 168 168 169 169 170 -[[image:1657249468462-536.png]] 171 171 208 +=== 2.3.4 Soil Moisture === 172 172 210 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 173 173 174 - ===2.2.3ConnectUSB–TTLtoNSE01toconfigure it===212 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 175 175 176 -((( 177 -((( 178 -User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 179 -))) 180 -))) 181 181 215 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 182 182 183 -**Connection:** 184 184 185 - (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 186 186 187 - (%style="background-color:yellow"%)USB TTL TXD <~-~-~-~-> UART_RXD219 +=== 2.3.5 Soil Temperature === 188 188 189 - (%style="background-color:yellow"%)USBTTLRXD<~-~-~-~->UART_TXD221 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 190 190 223 +**Example**: 191 191 192 -I nthe PC, use below serialtool settings:225 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 193 193 194 -* Baud: (% style="color:green" %)**9600** 195 -* Data bits:** (% style="color:green" %)8(%%)** 196 -* Stop bits: (% style="color:green" %)**1** 197 -* Parity: (% style="color:green" %)**None** 198 -* Flow Control: (% style="color:green" %)**None** 227 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 199 199 229 + 230 + 231 +=== 2.3.6 Soil Conductivity (EC) === 232 + 200 200 ((( 201 - Make surethe switch is inFLASHposition, then power on devicebyconnectingthe jumperNSE01.NSE01 willoutputsysteminfo oncepowerasbelow,wecan enterthe(% style="color:green" %)**password:12345678**(%%)toaccessATCommandinput.234 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 202 202 ))) 203 203 204 -[[image:image-20220708110657-3.png]] 237 +((( 238 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 239 +))) 205 205 206 206 ((( 207 - (% style="color:red"%)Note: the validAT Commandscan be foundat: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]242 +Generally, the EC value of irrigation water is less than 800uS / cm. 208 208 ))) 209 209 245 +((( 246 + 247 +))) 210 210 249 +((( 250 + 251 +))) 211 211 212 -=== 2. 2.4Use CoAP protocol to uplink data===253 +=== 2.3.7 MOD === 213 213 214 - (% style="color:red"%)Note:if you don'thaveCoAP server, you can refer thislinktosetupne:(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]255 +Firmware version at least v2.1 supports changing mode. 215 215 257 +For example, bytes[10]=90 216 216 217 - **Use below commands:**259 +mod=(bytes[10]>>7)&0x01=1. 218 218 219 -* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 220 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 221 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 222 222 223 - For parameter description,please refer toAT commandset262 +**Downlink Command:** 224 224 225 - [[image:1657249793983-486.png]]264 +If payload = 0x0A00, workmode=0 226 226 266 +If** **payload =** **0x0A01, workmode=1 227 227 228 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 229 229 230 -[[image:1657249831934-534.png]] 231 231 270 +=== 2.3.8 Decode payload in The Things Network === 232 232 272 +While using TTN network, you can add the payload format to decode the payload. 233 233 234 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 235 235 236 - This feature is supported since firmwareversion v1.0.1275 +[[image:1654505570700-128.png]] 237 237 277 +The payload decoder function for TTN is here: 238 238 239 -* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 240 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 241 -* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 279 +LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 242 242 243 -[[image:1657249864775-321.png]] 244 244 245 245 246 - [[image:1657249930215-289.png]]283 +== 2.4 Uplink Interval == 247 247 285 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 248 248 249 249 250 -=== 2.2.6 Use MQTT protocol to uplink data === 251 251 252 - Thisfeatureis supported sincefirmware versionv110289 +== 2.5 Downlink Payload == 253 253 291 +By default, LSE50 prints the downlink payload to console port. 254 254 255 -* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 256 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 257 -* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 258 -* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 259 -* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 260 -* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 261 -* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 293 +[[image:image-20220606165544-8.png]] 262 262 263 -[[image:1657249978444-674.png]] 264 264 296 +**Examples:** 265 265 266 -[[image:1657249990869-686.png]] 267 267 299 +* **Set TDC** 268 268 269 -((( 270 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 271 -))) 301 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 272 272 303 +Payload: 01 00 00 1E TDC=30S 273 273 305 +Payload: 01 00 00 3C TDC=60S 274 274 275 -=== 2.2.7 Use TCP protocol to uplink data === 276 276 277 - Thisfeature issupported since firmware version v110308 +* **Reset** 278 278 310 +If payload = 0x04FF, it will reset the LSE01 279 279 280 -* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 281 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 282 282 283 - [[image:1657250217799-140.png]]313 +* **CFM** 284 284 315 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 285 285 286 -[[image:1657250255956-604.png]] 287 287 288 288 319 +== 2.6 Show Data in DataCake IoT Server == 289 289 290 - === 2.2.8ChangeUpdateInterval===321 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 291 291 292 -User can use below command to change the (% style="color:green" %)**uplink interval**. 293 293 294 -* (%style="color:blue"%)**AT+TDC=600**(%%)~/~/ SetUpdateIntervalto600s324 +**Step 1**: Be sure that your device is programmed and properly connected to the network at this time. 295 295 296 -((( 297 -(% style="color:red" %)**NOTE:** 298 -))) 326 +**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 299 299 300 -((( 301 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 302 -))) 303 303 329 +[[image:1654505857935-743.png]] 304 304 305 305 306 - ==2.3 Uplink Payload ==332 +[[image:1654505874829-548.png]] 307 307 308 - Inthis mode, uplinkpayloadincludes intal18bytes334 +Step 3: Create an account or log in Datacake. 309 309 310 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 311 -|=(% style="width: 60px;" %)((( 312 -**Size(bytes)** 313 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1** 314 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 336 +Step 4: Search the LSE01 and add DevEUI. 315 315 316 -((( 317 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 318 -))) 319 319 339 +[[image:1654505905236-553.png]] 320 320 321 -[[image:image-20220708111918-4.png]] 322 322 342 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 323 323 324 - The payloadis ASCII string, representative same HEX:344 +[[image:1654505925508-181.png]] 325 325 326 -0x72403155615900640c7817075e0a8c02f900 where: 327 327 328 -* Device ID: 0x 724031556159 = 724031556159 329 -* Version: 0x0064=100=1.0.0 330 330 331 -* BAT: 0x0c78 = 3192 mV = 3.192V 332 -* Singal: 0x17 = 23 333 -* Soil Moisture: 0x075e= 1886 = 18.86 % 334 -* Soil Temperature:0x0a8c =2700=27 °C 335 -* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 336 -* Interrupt: 0x00 = 0 348 +== 2.7 Frequency Plans == 337 337 350 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 338 338 339 339 353 +=== 2.7.1 EU863-870 (EU868) === 340 340 341 - ==2.4 Payload Explanation and SensorInterface==355 +(% style="color:#037691" %)** Uplink:** 342 342 357 +868.1 - SF7BW125 to SF12BW125 343 343 344 - ===2.4.1DeviceID===359 +868.3 - SF7BW125 to SF12BW125 and SF7BW250 345 345 346 -((( 347 -By default, the Device ID equal to the last 6 bytes of IMEI. 348 -))) 361 +868.5 - SF7BW125 to SF12BW125 349 349 350 -((( 351 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 352 -))) 363 +867.1 - SF7BW125 to SF12BW125 353 353 354 -((( 355 -**Example:** 356 -))) 365 +867.3 - SF7BW125 to SF12BW125 357 357 358 -((( 359 -AT+DEUI=A84041F15612 360 -))) 367 +867.5 - SF7BW125 to SF12BW125 361 361 362 -((( 363 -The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 364 -))) 369 +867.7 - SF7BW125 to SF12BW125 365 365 371 +867.9 - SF7BW125 to SF12BW125 366 366 373 +868.8 - FSK 367 367 368 -=== 2.4.2 Version Info === 369 369 370 -((( 371 -Specify the software version: 0x64=100, means firmware version 1.00. 372 -))) 376 +(% style="color:#037691" %)** Downlink:** 373 373 374 -((( 375 -For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 376 -))) 378 +Uplink channels 1-9 (RX1) 377 377 380 +869.525 - SF9BW125 (RX2 downlink only) 378 378 379 379 380 -=== 2.4.3 Battery Info === 381 381 382 -((( 383 -Check the battery voltage for LSE01. 384 -))) 384 +=== 2.7.2 US902-928(US915) === 385 385 386 -((( 387 -Ex1: 0x0B45 = 2885mV 388 -))) 386 +Used in USA, Canada and South America. Default use CHE=2 389 389 390 -((( 391 -Ex2: 0x0B49 = 2889mV 392 -))) 388 +(% style="color:#037691" %)**Uplink:** 393 393 390 +903.9 - SF7BW125 to SF10BW125 394 394 392 +904.1 - SF7BW125 to SF10BW125 395 395 396 - === 2.4.4SignalStrength===394 +904.3 - SF7BW125 to SF10BW125 397 397 398 -((( 399 -NB-IoT Network signal Strength. 400 -))) 396 +904.5 - SF7BW125 to SF10BW125 401 401 402 -((( 403 -**Ex1: 0x1d = 29** 404 -))) 398 +904.7 - SF7BW125 to SF10BW125 405 405 406 -((( 407 -(% style="color:blue" %)**0**(%%) -113dBm or less 408 -))) 400 +904.9 - SF7BW125 to SF10BW125 409 409 410 -((( 411 -(% style="color:blue" %)**1**(%%) -111dBm 412 -))) 402 +905.1 - SF7BW125 to SF10BW125 413 413 414 -((( 415 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 416 -))) 404 +905.3 - SF7BW125 to SF10BW125 417 417 418 -((( 419 -(% style="color:blue" %)**31** (%%) -51dBm or greater 420 -))) 421 421 422 -((( 423 -(% style="color:blue" %)**99** (%%) Not known or not detectable 424 -))) 407 +(% style="color:#037691" %)**Downlink:** 425 425 409 +923.3 - SF7BW500 to SF12BW500 426 426 411 +923.9 - SF7BW500 to SF12BW500 427 427 428 - ===2.4.5oilMoisture===413 +924.5 - SF7BW500 to SF12BW500 429 429 430 -((( 431 -((( 432 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 433 -))) 434 -))) 415 +925.1 - SF7BW500 to SF12BW500 435 435 436 -((( 437 -((( 438 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 439 -))) 440 -))) 417 +925.7 - SF7BW500 to SF12BW500 441 441 442 -((( 443 - 444 -))) 419 +926.3 - SF7BW500 to SF12BW500 445 445 446 -((( 447 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 448 -))) 421 +926.9 - SF7BW500 to SF12BW500 449 449 423 +927.5 - SF7BW500 to SF12BW500 450 450 425 +923.3 - SF12BW500(RX2 downlink only) 451 451 452 -=== 2.4.6 Soil Temperature === 453 453 454 -((( 455 -Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 456 -))) 457 457 458 -((( 459 -**Example**: 460 -))) 429 +=== 2.7.3 CN470-510 (CN470) === 461 461 462 -((( 463 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 464 -))) 431 +Used in China, Default use CHE=1 465 465 466 -((( 467 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 468 -))) 433 +(% style="color:#037691" %)**Uplink:** 469 469 435 +486.3 - SF7BW125 to SF12BW125 470 470 437 +486.5 - SF7BW125 to SF12BW125 471 471 472 - === 2.4.7oilConductivity(EC) ===439 +486.7 - SF7BW125 to SF12BW125 473 473 474 -((( 475 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 476 -))) 441 +486.9 - SF7BW125 to SF12BW125 477 477 478 -((( 479 -For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 480 -))) 443 +487.1 - SF7BW125 to SF12BW125 481 481 482 -((( 483 -Generally, the EC value of irrigation water is less than 800uS / cm. 484 -))) 445 +487.3 - SF7BW125 to SF12BW125 485 485 486 -((( 487 - 488 -))) 447 +487.5 - SF7BW125 to SF12BW125 489 489 490 -((( 491 - 492 -))) 449 +487.7 - SF7BW125 to SF12BW125 493 493 494 -=== 2.4.8 Digital Interrupt === 495 495 496 -((( 497 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 498 -))) 452 +(% style="color:#037691" %)**Downlink:** 499 499 500 -((( 501 -The command is: 502 -))) 454 +506.7 - SF7BW125 to SF12BW125 503 503 504 -((( 505 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 506 -))) 456 +506.9 - SF7BW125 to SF12BW125 507 507 458 +507.1 - SF7BW125 to SF12BW125 508 508 509 -((( 510 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up. 511 -))) 460 +507.3 - SF7BW125 to SF12BW125 512 512 462 +507.5 - SF7BW125 to SF12BW125 513 513 514 -((( 515 -Example: 516 -))) 464 +507.7 - SF7BW125 to SF12BW125 517 517 518 -((( 519 -0x(00): Normal uplink packet. 520 -))) 466 +507.9 - SF7BW125 to SF12BW125 521 521 522 -((( 523 -0x(01): Interrupt Uplink Packet. 524 -))) 468 +508.1 - SF7BW125 to SF12BW125 525 525 470 +505.3 - SF12BW125 (RX2 downlink only) 526 526 527 527 528 -=== 2.4.9 +5V Output === 529 529 530 -((( 531 -NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 532 -))) 474 +=== 2.7.4 AU915-928(AU915) === 533 533 476 +Default use CHE=2 534 534 535 -((( 536 -The 5V output time can be controlled by AT Command. 537 -))) 478 +(% style="color:#037691" %)**Uplink:** 538 538 539 -((( 540 -(% style="color:blue" %)**AT+5VT=1000** 541 -))) 480 +916.8 - SF7BW125 to SF12BW125 542 542 543 -((( 544 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 545 -))) 482 +917.0 - SF7BW125 to SF12BW125 546 546 484 +917.2 - SF7BW125 to SF12BW125 547 547 486 +917.4 - SF7BW125 to SF12BW125 548 548 549 - ==2.5DownlinkPayload ==488 +917.6 - SF7BW125 to SF12BW125 550 550 551 - Bydefault,NSE01prints the downlinkpayload to console port.490 +917.8 - SF7BW125 to SF12BW125 552 552 553 - [[image:image-20220708133731-5.png]]492 +918.0 - SF7BW125 to SF12BW125 554 554 494 +918.2 - SF7BW125 to SF12BW125 555 555 556 -((( 557 -(% style="color:blue" %)**Examples:** 558 -))) 559 559 560 -((( 561 - 562 -))) 497 +(% style="color:#037691" %)**Downlink:** 563 563 564 -* ((( 565 -(% style="color:blue" %)**Set TDC** 566 -))) 499 +923.3 - SF7BW500 to SF12BW500 567 567 568 -((( 569 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 570 -))) 501 +923.9 - SF7BW500 to SF12BW500 571 571 572 -((( 573 -Payload: 01 00 00 1E TDC=30S 574 -))) 503 +924.5 - SF7BW500 to SF12BW500 575 575 576 -((( 577 -Payload: 01 00 00 3C TDC=60S 578 -))) 505 +925.1 - SF7BW500 to SF12BW500 579 579 580 -((( 581 - 582 -))) 507 +925.7 - SF7BW500 to SF12BW500 583 583 584 -* ((( 585 -(% style="color:blue" %)**Reset** 586 -))) 509 +926.3 - SF7BW500 to SF12BW500 587 587 588 -((( 589 -If payload = 0x04FF, it will reset the NSE01 590 -))) 511 +926.9 - SF7BW500 to SF12BW500 591 591 513 +927.5 - SF7BW500 to SF12BW500 592 592 593 - *(%style="color:blue" %)**INTMOD**515 +923.3 - SF12BW500(RX2 downlink only) 594 594 595 -((( 596 -Downlink Payload: 06000003, Set AT+INTMOD=3 597 -))) 598 598 599 599 519 +=== 2.7.5 AS920-923 & AS923-925 (AS923) === 600 600 601 - ==2.6LEDIndicator ==521 +(% style="color:#037691" %)**Default Uplink channel:** 602 602 603 -((( 604 -The NSE01 has an internal LED which is to show the status of different state. 523 +923.2 - SF7BW125 to SF10BW125 605 605 525 +923.4 - SF7BW125 to SF10BW125 606 606 607 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 608 -* Then the LED will be on for 1 second means device is boot normally. 609 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 610 -* For each uplink probe, LED will be on for 500ms. 611 -))) 612 612 528 +(% style="color:#037691" %)**Additional Uplink Channel**: 613 613 530 +(OTAA mode, channel added by JoinAccept message) 614 614 532 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 615 615 616 - ==2.7InstallationinSoil ==534 +922.2 - SF7BW125 to SF10BW125 617 617 618 - __**Measurementthesoilsurface**__536 +922.4 - SF7BW125 to SF10BW125 619 619 620 -((( 621 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 622 -))) 538 +922.6 - SF7BW125 to SF10BW125 623 623 624 - [[image:1657259653666-883.png]]540 +922.8 - SF7BW125 to SF10BW125 625 625 542 +923.0 - SF7BW125 to SF10BW125 626 626 627 -((( 628 - 544 +922.0 - SF7BW125 to SF10BW125 629 629 630 -((( 631 -Dig a hole with diameter > 20CM. 632 -))) 633 633 634 -((( 635 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 636 -))) 637 -))) 547 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 638 638 639 - [[image:1654506665940-119.png]]549 +923.6 - SF7BW125 to SF10BW125 640 640 641 -((( 642 - 643 -))) 551 +923.8 - SF7BW125 to SF10BW125 644 644 553 +924.0 - SF7BW125 to SF10BW125 645 645 646 - ==2.8FirmwareChange Log==555 +924.2 - SF7BW125 to SF10BW125 647 647 557 +924.4 - SF7BW125 to SF10BW125 648 648 649 - DownloadURL&FirmwareChange log559 +924.6 - SF7BW125 to SF10BW125 650 650 651 -[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 652 652 562 +(% style="color:#037691" %)** Downlink:** 653 653 654 -Up grade Instruction:[[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]564 +Uplink channels 1-8 (RX1) 655 655 566 +923.2 - SF10BW125 (RX2) 656 656 657 657 658 -== 2.9 Battery Analysis == 659 659 660 -=== 2. 9.1BatteryType===570 +=== 2.7.6 KR920-923 (KR920) === 661 661 572 +Default channel: 662 662 574 +922.1 - SF7BW125 to SF12BW125 575 + 576 +922.3 - SF7BW125 to SF12BW125 577 + 578 +922.5 - SF7BW125 to SF12BW125 579 + 580 + 581 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 582 + 583 +922.1 - SF7BW125 to SF12BW125 584 + 585 +922.3 - SF7BW125 to SF12BW125 586 + 587 +922.5 - SF7BW125 to SF12BW125 588 + 589 +922.7 - SF7BW125 to SF12BW125 590 + 591 +922.9 - SF7BW125 to SF12BW125 592 + 593 +923.1 - SF7BW125 to SF12BW125 594 + 595 +923.3 - SF7BW125 to SF12BW125 596 + 597 + 598 +(% style="color:#037691" %)**Downlink:** 599 + 600 +Uplink channels 1-7(RX1) 601 + 602 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 603 + 604 + 605 + 606 +=== 2.7.7 IN865-867 (IN865) === 607 + 608 +(% style="color:#037691" %)** Uplink:** 609 + 610 +865.0625 - SF7BW125 to SF12BW125 611 + 612 +865.4025 - SF7BW125 to SF12BW125 613 + 614 +865.9850 - SF7BW125 to SF12BW125 615 + 616 + 617 +(% style="color:#037691" %) **Downlink:** 618 + 619 +Uplink channels 1-3 (RX1) 620 + 621 +866.550 - SF10BW125 (RX2) 622 + 623 + 624 + 625 + 626 +== 2.8 LED Indicator == 627 + 628 +The LSE01 has an internal LED which is to show the status of different state. 629 + 630 +* Blink once when device power on. 631 +* Solid ON for 5 seconds once device successful Join the network. 632 +* Blink once when device transmit a packet. 633 + 634 + 635 + 636 +== 2.9 Installation in Soil == 637 + 638 +**Measurement the soil surface** 639 + 640 + 641 +[[image:1654506634463-199.png]] 642 + 663 663 ((( 664 -The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 644 +((( 645 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 665 665 ))) 647 +))) 666 666 667 667 650 +[[image:1654506665940-119.png]] 651 + 668 668 ((( 669 - The batteryis designedto lastfor severalyearsdepends ontheactually use environmentand updateinterval.653 +Dig a hole with diameter > 20CM. 670 670 ))) 671 671 656 +((( 657 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 658 +))) 672 672 660 + 661 +== 2.10 Firmware Change Log == 662 + 673 673 ((( 674 - The battery relateddocumentsasbelow:664 +**Firmware download link:** 675 675 ))) 676 676 677 - * [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]678 - *[[Lithium-ThionylChlorideBattery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]679 - * [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]667 +((( 668 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 669 +))) 680 680 681 681 ((( 682 - [[image:image-20220708140453-6.png]]672 + 683 683 ))) 684 684 675 +((( 676 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 677 +))) 685 685 679 +((( 680 + 681 +))) 686 686 687 -=== 2.9.2 Power consumption Analyze === 683 +((( 684 +**V1.0.** 685 +))) 688 688 689 689 ((( 690 - Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which baseon the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.688 +Release 691 691 ))) 692 692 693 693 692 +== 2.11 Battery Analysis == 693 + 694 +=== 2.11.1 Battery Type === 695 + 694 694 ((( 695 - Instruction touse as below:697 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 696 696 ))) 697 697 698 698 ((( 699 - (% style="color:blue" %)**Step 1: **(%%)Downlink theup-to-date DRAGINO_Battery_Life_Prediction_Table.xlsxfrom: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]701 +The battery is designed to last for more than 5 years for the LSN50. 700 700 ))) 701 701 702 - 703 703 ((( 704 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose 705 +((( 706 +The battery-related documents are as below: 705 705 ))) 708 +))) 706 706 707 707 * ((( 708 - ProductModel711 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 709 709 ))) 710 710 * ((( 711 - UplinkInterval714 +[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 712 712 ))) 713 713 * ((( 714 - WorkingMode717 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 715 715 ))) 716 716 717 -((( 718 -And the Life expectation in difference case will be shown on the right. 719 -))) 720 + [[image:image-20220606171726-9.png]] 720 720 721 -[[image:image-20220708141352-7.jpeg]] 722 722 723 723 724 +=== 2.11.2 Battery Note === 724 724 725 -=== 2.9.3 Battery Note === 726 - 727 727 ((( 728 728 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 729 729 ))) ... ... @@ -730,189 +730,328 @@ 730 730 731 731 732 732 733 -=== 2. 9.4Replace the battery ===732 +=== 2.11.3 Replace the battery === 734 734 735 735 ((( 736 - The defaultbatterypack of NSE01includesa ER26500 plus super capacitor. If usercan'tfind this pack locally, they canfind ER26500or equivalencewithouttheSPC1520 capacitor, which willalso work in mostcase.The SPC can enlargethe batterylife for highfrequencyuse (update period below 5 minutes).735 +If Battery is lower than 2.7v, user should replace the battery of LSE01. 737 737 ))) 738 738 739 - 740 - 741 -= 3. Access NB-IoT Module = 742 - 743 743 ((( 744 - Userscan directly accesstheATcommand set of theNB-IoTmodule.739 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 745 745 ))) 746 746 747 747 ((( 748 -The ATCommand setcanrefer theBC35-GNB-IoTModuleATCommand: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]]743 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 749 749 ))) 750 750 751 -[[image:1657261278785-153.png]] 752 752 753 753 748 += 3. Using the AT Commands = 754 754 755 -= 4.UsingtheAT Commands =750 +== 3.1 Access AT Commands == 756 756 757 -== 4.1 Access AT Commands == 758 758 759 -S eethislinkfordetail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]753 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 760 760 755 +[[image:1654501986557-872.png||height="391" width="800"]] 761 761 762 -AT+<CMD>? : Help on <CMD> 763 763 764 - AT+<CMD>: Run<CMD>758 +Or if you have below board, use below connection: 765 765 766 -AT+<CMD>=<value> : Set the value 767 767 768 - AT+<CMD>=?:Get the value761 +[[image:1654502005655-729.png||height="503" width="801"]] 769 769 770 770 764 + 765 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 766 + 767 + 768 + [[image:1654502050864-459.png||height="564" width="806"]] 769 + 770 + 771 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]] 772 + 773 + 774 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 775 + 776 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 777 + 778 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 779 + 780 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 781 + 782 + 771 771 (% style="color:#037691" %)**General Commands**(%%) 772 772 773 -AT 785 +(% style="background-color:#dcdcdc" %)**AT**(%%) : Attention 774 774 775 -AT? 787 +(% style="background-color:#dcdcdc" %)**AT?**(%%) : Short Help 776 776 777 -ATZ 789 +(% style="background-color:#dcdcdc" %)**ATZ**(%%) : MCU Reset 778 778 779 -AT+TDC 791 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%) : Application Data Transmission Interval 780 780 781 -AT+CFG : Print all configurations 782 782 783 - AT+CFGMOD: Workingmode selection794 +(% style="color:#037691" %)**Keys, IDs and EUIs management** 784 784 785 -AT+I NTMOD:Setthe trigger interruptmode796 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%) : Application EUI 786 786 787 -AT+ 5VTSetextend the timeof5V power798 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%) : Application Key 788 788 789 -AT+P ROChooseagreement800 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%) : Application Session Key 790 790 791 -AT+ WEIGREGet weightorsetweight to 0802 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%) : Device Address 792 792 793 -AT+ WEIGAPGet or SettheGapValue of weight804 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%) : Device EUI 794 794 795 -AT+ RXDL: Extendthe sendingandreceivingtime806 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%) : Network ID (You can enter this command change only after successful network connection) 796 796 797 -AT+ CNTFACGettcountingparameters808 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%) : Network Session Key Joining and sending date on LoRa network 798 798 799 -AT+ SERVADDR:ServerAddress810 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%) : Confirm Mode 800 800 812 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 801 801 802 -(% style="color:# 037691" %)**COAPManagement**814 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%) : Join LoRa? Network 803 803 804 -AT+ URIsourceparameters816 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%) : LoRa? Network Join Mode 805 805 818 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 806 806 807 -(% style="color:# 037691" %)**UDPManagement**820 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%) : Print Last Received Data in Raw Format 808 808 809 -AT+C FM:Uploadconfirmationmode (onlyvalid forUDP)822 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%) : Print Last Received Data in Binary Format 810 810 824 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 811 811 812 -(% style="color:# 037691" %)**MQTTManagement**826 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%) : Send Hexadecimal Data 813 813 814 -AT+CLIENT : Get or Set MQTT client 815 815 816 - AT+UNAMEGetSetMQTT Username829 +(% style="color:#037691" %)**LoRa Network Management** 817 817 818 -AT+ PWDGetor SetMQTT password831 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%) : Adaptive Rate 819 819 820 -AT+ PUBTOPICGetorSetMQTTpublishtopic833 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%) : LoRa Class(Currently only support class A 821 821 822 -AT+ SUBTOPIC :GetorSetMQTT subscriptiontopic835 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%) : Duty Cycle Setting 823 823 837 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 824 824 825 -(% style="color:# 037691" %)**Information**839 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink 826 826 827 -AT+F DRctoryDataReset841 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%) : Frame Counter Uplink 828 828 829 -AT+ PWORDSerialAccessPassword843 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%) : Join Accept Delay1 830 830 845 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 831 831 847 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 832 832 833 -= 5.FAQ=849 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%) : Receive Delay1 834 834 835 -= =5.1HowtoUpgradeFirmware==851 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%) : Receive Delay2 836 836 853 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 837 837 855 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 856 + 857 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 858 + 859 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 860 + 861 + 862 +(% style="color:#037691" %)**Information** 863 + 864 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 865 + 866 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 867 + 868 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 869 + 870 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 871 + 872 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 873 + 874 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 875 + 876 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 877 + 878 + 879 += 4. FAQ = 880 + 881 +== 4.1 How to change the LoRa Frequency Bands/Region? == 882 + 838 838 ((( 839 -User can upgrade the firmware for 1) bug fix, 2) new feature release. 884 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 885 +When downloading the images, choose the required image file for download. 840 840 ))) 841 841 842 842 ((( 843 - Pleasesee this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]889 + 844 844 ))) 845 845 846 846 ((( 847 - (%style="color:red"%)Notice,NSE01andLSE01share thememotherboard.Theyuse thesameconnection andmethodto update.893 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 848 848 ))) 849 849 896 +((( 897 + 898 +))) 850 850 900 +((( 901 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 902 +))) 851 851 852 -= 6. Trouble Shooting = 904 +((( 905 + 906 +))) 853 853 854 -== 6.1 Connection problem when uploading firmware == 908 +((( 909 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 910 +))) 855 855 912 +[[image:image-20220606154726-3.png]] 856 856 914 + 915 +When you use the TTN network, the US915 frequency bands use are: 916 + 917 +* 903.9 - SF7BW125 to SF10BW125 918 +* 904.1 - SF7BW125 to SF10BW125 919 +* 904.3 - SF7BW125 to SF10BW125 920 +* 904.5 - SF7BW125 to SF10BW125 921 +* 904.7 - SF7BW125 to SF10BW125 922 +* 904.9 - SF7BW125 to SF10BW125 923 +* 905.1 - SF7BW125 to SF10BW125 924 +* 905.3 - SF7BW125 to SF10BW125 925 +* 904.6 - SF8BW500 926 + 857 857 ((( 858 - **Pleasesee:**[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]928 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 859 859 ))) 860 860 861 -(% class=" wikigeneratedid" %)931 +(% class="box infomessage" %) 862 862 ((( 863 - 933 +**AT+CHE=2** 864 864 ))) 865 865 936 +(% class="box infomessage" %) 937 +((( 938 +**ATZ** 939 +))) 866 866 867 -== 6.2 AT Command input doesn't work == 941 +((( 942 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 943 +))) 868 868 869 869 ((( 870 - Inthe case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.946 + 871 871 ))) 872 872 949 +((( 950 +The **AU915** band is similar. Below are the AU915 Uplink Channels. 951 +))) 873 873 953 +[[image:image-20220606154825-4.png]] 874 874 875 -= 7. Order Info = 876 876 877 877 878 - PartNumber**:** (% style="color:#4f81bd"%)**NSE01**957 += 5. Trouble Shooting = 879 879 959 +== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 880 880 881 -(% class="wikigeneratedid" %) 961 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 962 + 963 + 964 +== 5.2 AT Command input doesn’t work == 965 + 882 882 ((( 883 - 967 +In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 884 884 ))) 885 885 886 -= 8. Packing Info = 887 887 888 -((( 889 - 971 +== 5.3 Device rejoin in at the second uplink packet == 890 890 891 -(% style="color:# 037691" %)**PackageIncludes**:973 +(% style="color:#4f81bd" %)**Issue describe as below:** 892 892 975 +[[image:1654500909990-784.png]] 893 893 894 -* NSE01 NB-IoT Soil Moisture & EC Sensor x 1 895 -* External antenna x 1 977 + 978 +(% style="color:#4f81bd" %)**Cause for this issue:** 979 + 980 +((( 981 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 896 896 ))) 897 897 984 + 985 +(% style="color:#4f81bd" %)**Solution: ** 986 + 987 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 988 + 989 +[[image:1654500929571-736.png||height="458" width="832"]] 990 + 991 + 992 += 6. Order Info = 993 + 994 + 995 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 996 + 997 + 998 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 999 + 1000 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 1001 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 1002 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 1003 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 1004 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1005 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1006 +* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1007 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1008 + 1009 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1010 + 1011 +* (% style="color:red" %)**4**(%%): 4000mAh battery 1012 +* (% style="color:red" %)**8**(%%): 8500mAh battery 1013 + 1014 +(% class="wikigeneratedid" %) 898 898 ((( 899 899 1017 +))) 900 900 901 - (% style="color:#037691"%)**Dimensionandweight**:1019 += 7. Packing Info = 902 902 1021 +((( 1022 + 903 903 904 -* Size: 195 x 125 x 55 mm 905 -* Weight: 420g 1024 +**Package Includes**: 906 906 ))) 907 907 1027 +* ((( 1028 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 1029 +))) 1030 + 908 908 ((( 909 - 1032 +**Dimension and weight**: 1033 +))) 910 910 1035 +* ((( 1036 +Device Size: cm 1037 +))) 1038 +* ((( 1039 +Device Weight: g 1040 +))) 1041 +* ((( 1042 +Package Size / pcs : cm 1043 +))) 1044 +* ((( 1045 +Weight / pcs : g 911 911 1047 + 912 912 913 913 ))) 914 914 915 -= 9.1051 += 8. Support = 916 916 917 917 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 918 918 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1055 + 1056 +
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -102.7 KB - Content