<
From version < 65.2 >
edited by Xiaoling
on 2022/07/08 15:03
To version < 45.1 >
edited by Xiaoling
on 2022/07/08 10:16
>
Change comment: Uploaded new attachment "image-20220708101605-2.png", version {1}

Summary

Details

Page properties
Content
... ... @@ -45,6 +45,7 @@
45 45  
46 46  == 1.2 ​Features ==
47 47  
48 +
48 48  * NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
49 49  * Monitor Soil Moisture
50 50  * Monitor Soil Temperature
... ... @@ -60,7 +60,6 @@
60 60  
61 61  
62 62  
63 -
64 64  == 1.3  Specification ==
65 65  
66 66  
... ... @@ -70,7 +70,6 @@
70 70  * Operating Temperature: -40 ~~ 85°C
71 71  
72 72  
73 -
74 74  (% style="color:#037691" %)**NB-IoT Spec:**
75 75  
76 76  * - B1 @H-FDD: 2100MHz
... ... @@ -81,9 +81,8 @@
81 81  * - B28 @H-FDD: 700MHz
82 82  
83 83  
83 +(% style="color:#037691" %)**Probe Specification:**
84 84  
85 -Probe(% style="color:#037691" %)** Specification:**
86 -
87 87  Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
88 88  
89 89  [[image:image-20220708101224-1.png]]
... ... @@ -104,711 +104,998 @@
104 104  
105 105  
106 106  
107 -= 2.  Use NSE01 to communicate with IoT Server =
105 += 2. Configure LSE01 to connect to LoRaWAN network =
108 108  
109 -== 2.1  How it works ==
107 +== 2.1 How it works ==
110 110  
111 -
112 112  (((
113 -The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
110 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
114 114  )))
115 115  
116 -
117 117  (((
118 -The diagram below shows the working flow in default firmware of NSE01:
114 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
119 119  )))
120 120  
121 -[[image:image-20220708101605-2.png]]
122 122  
123 -(((
124 -
125 -)))
126 126  
119 +== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
127 127  
121 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
128 128  
129 -== 2.2 ​ Configure the NSE01 ==
130 130  
124 +[[image:1654503992078-669.png]]
131 131  
132 -=== 2.2.1 Test Requirement ===
133 133  
127 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
134 134  
135 -To use NSE01 in your city, make sure meet below requirements:
136 136  
137 -* Your local operator has already distributed a NB-IoT Network there.
138 -* The local NB-IoT network used the band that NSE01 supports.
139 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
130 +(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
140 140  
132 +Each LSE01 is shipped with a sticker with the default device EUI as below:
133 +
134 +[[image:image-20220606163732-6.jpeg]]
135 +
136 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
137 +
138 +**Add APP EUI in the application**
139 +
140 +
141 +[[image:1654504596150-405.png]]
142 +
143 +
144 +
145 +**Add APP KEY and DEV EUI**
146 +
147 +[[image:1654504683289-357.png]]
148 +
149 +
150 +
151 +(% style="color:blue" %)**Step 2**(%%): Power on LSE01
152 +
153 +
154 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
155 +
156 +[[image:image-20220606163915-7.png]]
157 +
158 +
159 +(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
160 +
161 +[[image:1654504778294-788.png]]
162 +
163 +
164 +
165 +== 2.3 Uplink Payload ==
166 +
167 +
168 +=== 2.3.1 MOD~=0(Default Mode) ===
169 +
170 +LSE01 will uplink payload via LoRaWAN with below payload format: 
171 +
141 141  (((
142 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
173 +Uplink payload includes in total 11 bytes.
143 143  )))
144 144  
176 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
177 +|(((
178 +**Size**
145 145  
146 -[[image:1657249419225-449.png]]
180 +**(bytes)**
181 +)))|**2**|**2**|**2**|**2**|**2**|**1**
182 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
183 +Temperature
147 147  
185 +(Reserve, Ignore now)
186 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
187 +MOD & Digital Interrupt
148 148  
189 +(Optional)
190 +)))
149 149  
150 -=== 2.2.2 Insert SIM card ===
192 +=== 2.3.2 MOD~=1(Original value) ===
151 151  
152 -Insert the NB-IoT Card get from your provider.
194 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
153 153  
154 -User need to take out the NB-IoT module and insert the SIM card like below:
196 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
197 +|(((
198 +**Size**
155 155  
200 +**(bytes)**
201 +)))|**2**|**2**|**2**|**2**|**2**|**1**
202 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
203 +Temperature
156 156  
157 -[[image:1657249468462-536.png]]
205 +(Reserve, Ignore now)
206 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
207 +MOD & Digital Interrupt
158 158  
209 +(Optional)
210 +)))
159 159  
212 +=== 2.3.3 Battery Info ===
160 160  
161 -=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
214 +(((
215 +Check the battery voltage for LSE01.
216 +)))
162 162  
163 163  (((
219 +Ex1: 0x0B45 = 2885mV
220 +)))
221 +
164 164  (((
165 -User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
223 +Ex2: 0x0B49 = 2889mV
166 166  )))
225 +
226 +
227 +
228 +=== 2.3.4 Soil Moisture ===
229 +
230 +(((
231 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
167 167  )))
168 168  
234 +(((
235 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
236 +)))
169 169  
170 -**Connection:**
238 +(((
239 +
240 +)))
171 171  
172 - (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
242 +(((
243 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
244 +)))
173 173  
174 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
175 175  
176 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
177 177  
248 +=== 2.3.5 Soil Temperature ===
178 178  
179 -In the PC, use below serial tool settings:
250 +(((
251 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
252 +)))
180 180  
181 -* Baud:  (% style="color:green" %)**9600**
182 -* Data bits:** (% style="color:green" %)8(%%)**
183 -* Stop bits: (% style="color:green" %)**1**
184 -* Parity:  (% style="color:green" %)**None**
185 -* Flow Control: (% style="color:green" %)**None**
254 +(((
255 +**Example**:
256 +)))
186 186  
187 187  (((
188 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
259 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
189 189  )))
190 190  
191 -[[image:image-20220708110657-3.png]]
262 +(((
263 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
264 +)))
192 192  
193 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
194 194  
195 195  
268 +=== 2.3.6 Soil Conductivity (EC) ===
196 196  
197 -=== 2.2.4 Use CoAP protocol to uplink data ===
270 +(((
271 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
272 +)))
198 198  
199 -(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
274 +(((
275 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
276 +)))
200 200  
278 +(((
279 +Generally, the EC value of irrigation water is less than 800uS / cm.
280 +)))
201 201  
202 -**Use below commands:**
282 +(((
283 +
284 +)))
203 203  
204 -* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
205 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
206 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
286 +(((
287 +
288 +)))
207 207  
208 -For parameter description, please refer to AT command set
290 +=== 2.3.7 MOD ===
209 209  
210 -[[image:1657249793983-486.png]]
292 +Firmware version at least v2.1 supports changing mode.
211 211  
294 +For example, bytes[10]=90
212 212  
213 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
296 +mod=(bytes[10]>>7)&0x01=1.
214 214  
215 -[[image:1657249831934-534.png]]
216 216  
299 +**Downlink Command:**
217 217  
301 +If payload = 0x0A00, workmode=0
218 218  
219 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
303 +If** **payload =** **0x0A01, workmode=1
220 220  
221 -This feature is supported since firmware version v1.0.1
222 222  
223 223  
224 -* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
225 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
226 -* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
307 +=== 2.3.8 ​Decode payload in The Things Network ===
227 227  
228 -[[image:1657249864775-321.png]]
309 +While using TTN network, you can add the payload format to decode the payload.
229 229  
230 230  
231 -[[image:1657249930215-289.png]]
312 +[[image:1654505570700-128.png]]
232 232  
314 +(((
315 +The payload decoder function for TTN is here:
316 +)))
233 233  
318 +(((
319 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
320 +)))
234 234  
235 -=== 2.2.6 Use MQTT protocol to uplink data ===
236 236  
237 -This feature is supported since firmware version v110
323 +== 2.4 Uplink Interval ==
238 238  
325 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
239 239  
240 -* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
241 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
242 -* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
243 -* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
244 -* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
245 -* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
246 -* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
247 247  
248 -[[image:1657249978444-674.png]]
249 249  
329 +== 2.5 Downlink Payload ==
250 250  
251 -[[image:1657249990869-686.png]]
331 +By default, LSE50 prints the downlink payload to console port.
252 252  
333 +[[image:image-20220606165544-8.png]]
253 253  
335 +
254 254  (((
255 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
337 +(% style="color:blue" %)**Examples:**
256 256  )))
257 257  
340 +(((
341 +
342 +)))
258 258  
344 +* (((
345 +(% style="color:blue" %)**Set TDC**
346 +)))
259 259  
260 -=== 2.2.7 Use TCP protocol to uplink data ===
348 +(((
349 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
350 +)))
261 261  
262 -This feature is supported since firmware version v110
352 +(((
353 +Payload:    01 00 00 1E    TDC=30S
354 +)))
263 263  
356 +(((
357 +Payload:    01 00 00 3C    TDC=60S
358 +)))
264 264  
265 -* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
266 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
360 +(((
361 +
362 +)))
267 267  
268 -[[image:1657250217799-140.png]]
364 +* (((
365 +(% style="color:blue" %)**Reset**
366 +)))
269 269  
368 +(((
369 +If payload = 0x04FF, it will reset the LSE01
370 +)))
270 270  
271 -[[image:1657250255956-604.png]]
272 272  
373 +* (% style="color:blue" %)**CFM**
273 273  
375 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
274 274  
275 -=== 2.2.8 Change Update Interval ===
276 276  
277 -User can use below command to change the (% style="color:green" %)**uplink interval**.
278 278  
279 -* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
379 +== 2.6 Show Data in DataCake IoT Server ==
280 280  
281 281  (((
282 -(% style="color:red" %)**NOTE:**
382 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
283 283  )))
284 284  
285 285  (((
286 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
386 +
287 287  )))
288 288  
389 +(((
390 +(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
391 +)))
289 289  
393 +(((
394 +(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
395 +)))
290 290  
291 -== 2.3  Uplink Payload ==
292 292  
293 -In this mode, uplink payload includes in total 18 bytes
398 +[[image:1654505857935-743.png]]
294 294  
295 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
296 -|=(% style="width: 50px;" %)(((
297 -**Size(bytes)**
298 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
299 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]]
300 300  
301 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
401 +[[image:1654505874829-548.png]]
302 302  
303 303  
304 -[[image:image-20220708111918-4.png]]
404 +(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
305 305  
406 +(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
306 306  
307 -The payload is ASCII string, representative same HEX:
308 308  
309 -0x72403155615900640c7817075e0a8c02f900 where:
409 +[[image:1654505905236-553.png]]
310 310  
311 -* Device ID: 0x 724031556159 = 724031556159
312 -* Version: 0x0064=100=1.0.0
313 313  
314 -* BAT: 0x0c78 = 3192 mV = 3.192V
315 -* Singal: 0x17 = 23
316 -* Soil Moisture: 0x075e= 1886 = 18.86  %
317 -* Soil Temperature:0x0a8c =2700=27 °C
318 -* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
319 -* Interrupt: 0x00 = 0
412 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
320 320  
414 +[[image:1654505925508-181.png]]
321 321  
322 322  
323 323  
324 -== 2. Payload Explanation and Sensor Interface ==
418 +== 2.7 Frequency Plans ==
325 325  
420 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
326 326  
327 -=== 2.4.1  Device ID ===
328 328  
329 -By default, the Device ID equal to the last 6 bytes of IMEI.
423 +=== 2.7.1 EU863-870 (EU868) ===
330 330  
331 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
425 +(% style="color:#037691" %)** Uplink:**
332 332  
333 -**Example:**
427 +868.1 - SF7BW125 to SF12BW125
334 334  
335 -AT+DEUI=A84041F15612
429 +868.3 - SF7BW125 to SF12BW125 and SF7BW250
336 336  
337 -The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
431 +868.5 - SF7BW125 to SF12BW125
338 338  
433 +867.1 - SF7BW125 to SF12BW125
339 339  
435 +867.3 - SF7BW125 to SF12BW125
340 340  
341 -=== 2.4.2  Version Info ===
437 +867.5 - SF7BW125 to SF12BW125
342 342  
343 -Specify the software version: 0x64=100, means firmware version 1.00.
439 +867.7 - SF7BW125 to SF12BW125
344 344  
345 -For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
441 +867.9 - SF7BW125 to SF12BW125
346 346  
443 +868.8 - FSK
347 347  
348 348  
349 -=== 2.4.3  Battery Info ===
446 +(% style="color:#037691" %)** Downlink:**
350 350  
351 -(((
352 -Check the battery voltage for LSE01.
353 -)))
448 +Uplink channels 1-9 (RX1)
354 354  
355 -(((
356 -Ex1: 0x0B45 = 2885mV
357 -)))
450 +869.525 - SF9BW125 (RX2 downlink only)
358 358  
359 -(((
360 -Ex2: 0x0B49 = 2889mV
361 -)))
362 362  
363 363  
454 +=== 2.7.2 US902-928(US915) ===
364 364  
365 -=== 2.4.4  Signal Strength ===
456 +Used in USA, Canada and South America. Default use CHE=2
366 366  
367 -NB-IoT Network signal Strength.
458 +(% style="color:#037691" %)**Uplink:**
368 368  
369 -**Ex1: 0x1d = 29**
460 +903.9 - SF7BW125 to SF10BW125
370 370  
371 -(% style="color:blue" %)**0**(%%)  -113dBm or less
462 +904.1 - SF7BW125 to SF10BW125
372 372  
373 -(% style="color:blue" %)**1**(%%)  -111dBm
464 +904.3 - SF7BW125 to SF10BW125
374 374  
375 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
466 +904.5 - SF7BW125 to SF10BW125
376 376  
377 -(% style="color:blue" %)**31**  (%%) -51dBm or greater
468 +904.7 - SF7BW125 to SF10BW125
378 378  
379 -(% style="color:blue" %)**99**   (%%) Not known or not detectable
470 +904.9 - SF7BW125 to SF10BW125
380 380  
472 +905.1 - SF7BW125 to SF10BW125
381 381  
474 +905.3 - SF7BW125 to SF10BW125
382 382  
383 -=== 2.4.5  Soil Moisture ===
384 384  
385 -(((
386 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
387 -)))
477 +(% style="color:#037691" %)**Downlink:**
388 388  
389 -(((
390 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
391 -)))
479 +923.3 - SF7BW500 to SF12BW500
392 392  
393 -(((
394 -
395 -)))
481 +923.9 - SF7BW500 to SF12BW500
396 396  
397 -(((
398 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
399 -)))
483 +924.5 - SF7BW500 to SF12BW500
400 400  
485 +925.1 - SF7BW500 to SF12BW500
401 401  
487 +925.7 - SF7BW500 to SF12BW500
402 402  
403 -=== 2.4.6  Soil Temperature ===
489 +926.3 - SF7BW500 to SF12BW500
404 404  
405 -(((
406 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
407 -)))
491 +926.9 - SF7BW500 to SF12BW500
408 408  
409 -(((
410 -**Example**:
411 -)))
493 +927.5 - SF7BW500 to SF12BW500
412 412  
413 -(((
414 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
415 -)))
495 +923.3 - SF12BW500(RX2 downlink only)
416 416  
417 -(((
418 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
419 -)))
420 420  
421 421  
499 +=== 2.7.3 CN470-510 (CN470) ===
422 422  
423 -=== 2.4.7  Soil Conductivity (EC) ===
501 +Used in China, Default use CHE=1
424 424  
425 -(((
426 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
427 -)))
503 +(% style="color:#037691" %)**Uplink:**
428 428  
429 -(((
430 -For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
431 -)))
505 +486.3 - SF7BW125 to SF12BW125
432 432  
433 -(((
434 -Generally, the EC value of irrigation water is less than 800uS / cm.
435 -)))
507 +486.5 - SF7BW125 to SF12BW125
436 436  
437 -(((
438 -
439 -)))
509 +486.7 - SF7BW125 to SF12BW125
440 440  
441 -(((
442 -
443 -)))
511 +486.9 - SF7BW125 to SF12BW125
444 444  
445 -=== 2.4.8  Digital Interrupt ===
513 +487.1 - SF7BW125 to SF12BW125
446 446  
447 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
515 +487.3 - SF7BW125 to SF12BW125
448 448  
449 -The command is:
517 +487.5 - SF7BW125 to SF12BW125
450 450  
451 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
519 +487.7 - SF7BW125 to SF12BW125
452 452  
453 453  
454 -The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up.
522 +(% style="color:#037691" %)**Downlink:**
455 455  
524 +506.7 - SF7BW125 to SF12BW125
456 456  
457 -Example:
526 +506.9 - SF7BW125 to SF12BW125
458 458  
459 -0x(00): Normal uplink packet.
528 +507.1 - SF7BW125 to SF12BW125
460 460  
461 -0x(01): Interrupt Uplink Packet.
530 +507.3 - SF7BW125 to SF12BW125
462 462  
532 +507.5 - SF7BW125 to SF12BW125
463 463  
534 +507.7 - SF7BW125 to SF12BW125
464 464  
465 -=== 2.4.9  ​+5V Output ===
536 +507.9 - SF7BW125 to SF12BW125
466 466  
467 -NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
538 +508.1 - SF7BW125 to SF12BW125
468 468  
540 +505.3 - SF12BW125 (RX2 downlink only)
469 469  
470 -The 5V output time can be controlled by AT Command.
471 471  
472 -(% style="color:blue" %)**AT+5VT=1000**
473 473  
474 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
544 +=== 2.7.4 AU915-928(AU915) ===
475 475  
546 +Default use CHE=2
476 476  
548 +(% style="color:#037691" %)**Uplink:**
477 477  
478 -== 2.5  Downlink Payload ==
550 +916.8 - SF7BW125 to SF12BW125
479 479  
480 -By default, NSE01 prints the downlink payload to console port.
552 +917.0 - SF7BW125 to SF12BW125
481 481  
482 -[[image:image-20220708133731-5.png]]
554 +917.2 - SF7BW125 to SF12BW125
483 483  
556 +917.4 - SF7BW125 to SF12BW125
484 484  
485 -(((
486 -(% style="color:blue" %)**Examples:**
487 -)))
558 +917.6 - SF7BW125 to SF12BW125
488 488  
489 -(((
490 -
491 -)))
560 +917.8 - SF7BW125 to SF12BW125
492 492  
493 -* (((
494 -(% style="color:blue" %)**Set TDC**
495 -)))
562 +918.0 - SF7BW125 to SF12BW125
496 496  
497 -(((
498 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
499 -)))
564 +918.2 - SF7BW125 to SF12BW125
500 500  
501 -(((
502 -Payload:    01 00 00 1E    TDC=30S
503 -)))
504 504  
505 -(((
506 -Payload:    01 00 00 3C    TDC=60S
507 -)))
567 +(% style="color:#037691" %)**Downlink:**
508 508  
509 -(((
510 -
511 -)))
569 +923.3 - SF7BW500 to SF12BW500
512 512  
513 -* (((
514 -(% style="color:blue" %)**Reset**
515 -)))
571 +923.9 - SF7BW500 to SF12BW500
516 516  
517 -(((
518 -If payload = 0x04FF, it will reset the NSE01
519 -)))
573 +924.5 - SF7BW500 to SF12BW500
520 520  
575 +925.1 - SF7BW500 to SF12BW500
521 521  
522 -* (% style="color:blue" %)**INTMOD**
577 +925.7 - SF7BW500 to SF12BW500
523 523  
524 -Downlink Payload: 06000003, Set AT+INTMOD=3
579 +926.3 - SF7BW500 to SF12BW500
525 525  
581 +926.9 - SF7BW500 to SF12BW500
526 526  
583 +927.5 - SF7BW500 to SF12BW500
527 527  
528 -== 2. ​LED Indicator ==
585 +923.3 - SF12BW500(RX2 downlink only)
529 529  
530 -(((
531 -The NSE01 has an internal LED which is to show the status of different state.
532 532  
533 533  
534 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
535 -* Then the LED will be on for 1 second means device is boot normally.
536 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
537 -* For each uplink probe, LED will be on for 500ms.
538 -)))
589 +=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
539 539  
591 +(% style="color:#037691" %)**Default Uplink channel:**
540 540  
593 +923.2 - SF7BW125 to SF10BW125
541 541  
595 +923.4 - SF7BW125 to SF10BW125
542 542  
543 -== 2.7  Installation in Soil ==
544 544  
545 -__**Measurement the soil surface**__
598 +(% style="color:#037691" %)**Additional Uplink Channel**:
546 546  
547 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
600 +(OTAA mode, channel added by JoinAccept message)
548 548  
549 -[[image:1657259653666-883.png]]
602 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
550 550  
604 +922.2 - SF7BW125 to SF10BW125
551 551  
552 -(((
553 -
606 +922.4 - SF7BW125 to SF10BW125
554 554  
555 -(((
556 -Dig a hole with diameter > 20CM.
557 -)))
608 +922.6 - SF7BW125 to SF10BW125
558 558  
559 -(((
560 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
561 -)))
562 -)))
610 +922.8 - SF7BW125 to SF10BW125
563 563  
564 -[[image:1654506665940-119.png]]
612 +923.0 - SF7BW125 to SF10BW125
565 565  
566 -(((
567 -
568 -)))
614 +922.0 - SF7BW125 to SF10BW125
569 569  
570 570  
571 -== 2.8  ​Firmware Change Log ==
617 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
572 572  
619 +923.6 - SF7BW125 to SF10BW125
573 573  
574 -Download URL & Firmware Change log
621 +923.8 - SF7BW125 to SF10BW125
575 575  
576 -[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
623 +924.0 - SF7BW125 to SF10BW125
577 577  
625 +924.2 - SF7BW125 to SF10BW125
578 578  
579 -Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]]
627 +924.4 - SF7BW125 to SF10BW125
580 580  
629 +924.6 - SF7BW125 to SF10BW125
581 581  
582 582  
583 -== 2.9  ​Battery Analysis ==
632 +(% style="color:#037691" %)** Downlink:**
584 584  
585 -=== 2.9.1  ​Battery Type ===
634 +Uplink channels 1-8 (RX1)
586 586  
636 +923.2 - SF10BW125 (RX2)
587 587  
588 -The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
589 589  
590 590  
591 -The battery is designed to last for several years depends on the actually use environment and update interval. 
640 +=== 2.7.6 KR920-923 (KR920) ===
592 592  
642 +Default channel:
593 593  
594 -The battery related documents as below:
644 +922.1 - SF7BW125 to SF12BW125
595 595  
596 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
597 -* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
598 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
646 +922.3 - SF7BW125 to SF12BW125
599 599  
648 +922.5 - SF7BW125 to SF12BW125
649 +
650 +
651 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
652 +
653 +922.1 - SF7BW125 to SF12BW125
654 +
655 +922.3 - SF7BW125 to SF12BW125
656 +
657 +922.5 - SF7BW125 to SF12BW125
658 +
659 +922.7 - SF7BW125 to SF12BW125
660 +
661 +922.9 - SF7BW125 to SF12BW125
662 +
663 +923.1 - SF7BW125 to SF12BW125
664 +
665 +923.3 - SF7BW125 to SF12BW125
666 +
667 +
668 +(% style="color:#037691" %)**Downlink:**
669 +
670 +Uplink channels 1-7(RX1)
671 +
672 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
673 +
674 +
675 +
676 +=== 2.7.7 IN865-867 (IN865) ===
677 +
678 +(% style="color:#037691" %)** Uplink:**
679 +
680 +865.0625 - SF7BW125 to SF12BW125
681 +
682 +865.4025 - SF7BW125 to SF12BW125
683 +
684 +865.9850 - SF7BW125 to SF12BW125
685 +
686 +
687 +(% style="color:#037691" %) **Downlink:**
688 +
689 +Uplink channels 1-3 (RX1)
690 +
691 +866.550 - SF10BW125 (RX2)
692 +
693 +
694 +
695 +
696 +== 2.8 LED Indicator ==
697 +
698 +The LSE01 has an internal LED which is to show the status of different state.
699 +
700 +* Blink once when device power on.
701 +* Solid ON for 5 seconds once device successful Join the network.
702 +* Blink once when device transmit a packet.
703 +
704 +== 2.9 Installation in Soil ==
705 +
706 +**Measurement the soil surface**
707 +
708 +
709 +[[image:1654506634463-199.png]] ​
710 +
600 600  (((
601 -[[image:image-20220708140453-6.png]]
712 +(((
713 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
602 602  )))
715 +)))
603 603  
604 604  
605 605  
606 -=== 2.9.2  Power consumption Analyze ===
719 +[[image:1654506665940-119.png]]
607 607  
608 608  (((
609 -Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
722 +Dig a hole with diameter > 20CM.
610 610  )))
611 611  
725 +(((
726 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
727 +)))
612 612  
729 +
730 +== 2.10 ​Firmware Change Log ==
731 +
613 613  (((
614 -Instruction to use as below:
733 +**Firmware download link:**
615 615  )))
616 616  
617 617  (((
618 -(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
737 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
619 619  )))
620 620  
740 +(((
741 +
742 +)))
621 621  
622 622  (((
623 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose
745 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
624 624  )))
625 625  
626 -* (((
627 -Product Model
748 +(((
749 +
628 628  )))
629 -* (((
630 -Uplink Interval
751 +
752 +(((
753 +**V1.0.**
631 631  )))
632 -* (((
633 -Working Mode
634 -)))
635 635  
636 636  (((
637 -And the Life expectation in difference case will be shown on the right.
757 +Release
638 638  )))
639 639  
640 -[[image:image-20220708141352-7.jpeg]]
641 641  
761 +== 2.11 ​Battery Analysis ==
642 642  
763 +=== 2.11.1 ​Battery Type ===
643 643  
644 -=== 2.9.3  ​Battery Note ===
765 +(((
766 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
767 +)))
645 645  
646 646  (((
647 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
770 +The battery is designed to last for more than 5 years for the LSN50.
648 648  )))
649 649  
773 +(((
774 +(((
775 +The battery-related documents are as below:
776 +)))
777 +)))
650 650  
779 +* (((
780 +[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
781 +)))
782 +* (((
783 +[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
784 +)))
785 +* (((
786 +[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
787 +)))
651 651  
652 -=== 2.9.4  Replace the battery ===
789 + [[image:image-20220610172436-1.png]]
653 653  
791 +
792 +
793 +=== 2.11.2 ​Battery Note ===
794 +
654 654  (((
655 -The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
796 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
656 656  )))
657 657  
658 658  
659 659  
660 -= 3. ​ Access NB-IoT Module =
801 +=== 2.11.3 Replace the battery ===
661 661  
662 662  (((
663 -Users can directly access the AT command set of the NB-IoT module.
804 +If Battery is lower than 2.7v, user should replace the battery of LSE01.
664 664  )))
665 665  
666 666  (((
667 -The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
808 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
668 668  )))
669 669  
670 -[[image:1657261278785-153.png]]
811 +(((
812 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
813 +)))
671 671  
672 672  
673 673  
674 -= 4.  Using the AT Commands =
817 += 3. Using the AT Commands =
675 675  
676 -== 4.1  Access AT Commands ==
819 +== 3.1 Access AT Commands ==
677 677  
678 -See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
679 679  
822 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
680 680  
681 -AT+<CMD>?  : Help on <CMD>
824 +[[image:1654501986557-872.png||height="391" width="800"]]
682 682  
683 -AT+<CMD>         : Run <CMD>
684 684  
685 -AT+<CMD>=<value> : Set the value
827 +Or if you have below board, use below connection:
686 686  
687 -AT+<CMD>=?  : Get the value
688 688  
830 +[[image:1654502005655-729.png||height="503" width="801"]]
689 689  
832 +
833 +
834 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
835 +
836 +
837 + [[image:1654502050864-459.png||height="564" width="806"]]
838 +
839 +
840 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
841 +
842 +
843 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
844 +
845 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
846 +
847 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
848 +
849 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
850 +
851 +
690 690  (% style="color:#037691" %)**General Commands**(%%)      
691 691  
692 -AT  : Attention       
854 +(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
693 693  
694 -AT?  : Short Help     
856 +(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
695 695  
696 -ATZ  : MCU Reset    
858 +(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
697 697  
698 -AT+TDC  : Application Data Transmission Interval
860 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
699 699  
700 -AT+CFG  : Print all configurations
701 701  
702 -AT+CFGMOD           : Working mode selection
863 +(% style="color:#037691" %)**Keys, IDs and EUIs management**
703 703  
704 -AT+INTMOD            : Set the trigger interrupt mode
865 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
705 705  
706 -AT+5VT  : Set extend the time of 5V power  
867 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
707 707  
708 -AT+PRO  : Choose agreement
869 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
709 709  
710 -AT+WEIGRE  : Get weight or set weight to 0
871 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
711 711  
712 -AT+WEIGAP  : Get or Set the GapValue of weight
873 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
713 713  
714 -AT+RXDL  : Extend the sending and receiving time
875 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
715 715  
716 -AT+CNTFAC  : Get or set counting parameters
877 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
717 717  
718 -AT+SERVADDR  : Server Address
879 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
719 719  
881 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
720 720  
721 -(% style="color:#037691" %)**COAP Management**      
883 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
722 722  
723 -AT+URI            : Resource parameters
885 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
724 724  
887 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
725 725  
726 -(% style="color:#037691" %)**UDP Management**
889 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
727 727  
728 -AT+CFM          : Upload confirmation mode (only valid for UDP)
891 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
729 729  
893 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
730 730  
731 -(% style="color:#037691" %)**MQTT Management**
895 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
732 732  
733 -AT+CLIENT               : Get or Set MQTT client
734 734  
735 -AT+UNAME  : Get or Set MQTT Username
898 +(% style="color:#037691" %)**LoRa Network Management**
736 736  
737 -AT+PWD                  : Get or Set MQTT password
900 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
738 738  
739 -AT+PUBTOPI : Get or Set MQTT publish topic
902 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
740 740  
741 -AT+SUBTOPIC  : Get or Set MQTT subscription topic
904 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
742 742  
906 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
743 743  
744 -(% style="color:#037691" %)**Information**          
908 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
745 745  
746 -AT+FDR  : Factory Data Reset
910 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
747 747  
748 -AT+PWOR : Serial Access Password
912 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
749 749  
914 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
750 750  
916 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
751 751  
752 -= ​5.  FAQ =
918 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
753 753  
754 -== 5.1 How to Upgrade Firmware ==
920 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
755 755  
922 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
756 756  
924 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
925 +
926 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
927 +
928 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
929 +
930 +
931 +(% style="color:#037691" %)**Information** 
932 +
933 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
934 +
935 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
936 +
937 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
938 +
939 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
940 +
941 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
942 +
943 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
944 +
945 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
946 +
947 +
948 += ​4. FAQ =
949 +
950 +== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
951 +
757 757  (((
758 -User can upgrade the firmware for 1) bug fix, 2) new feature release.
953 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
954 +When downloading the images, choose the required image file for download. ​
759 759  )))
760 760  
761 761  (((
762 -Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
958 +
763 763  )))
764 764  
765 765  (((
766 -(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
962 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
767 767  )))
768 768  
965 +(((
966 +
967 +)))
769 769  
969 +(((
970 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
971 +)))
770 770  
771 -= 6.  Trouble Shooting =
973 +(((
974 +
975 +)))
772 772  
773 -== 6.1  ​Connection problem when uploading firmware ==
977 +(((
978 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
979 +)))
774 774  
981 +[[image:image-20220606154726-3.png]]
775 775  
776 -(% class="wikigeneratedid" %)
983 +
984 +When you use the TTN network, the US915 frequency bands use are:
985 +
986 +* 903.9 - SF7BW125 to SF10BW125
987 +* 904.1 - SF7BW125 to SF10BW125
988 +* 904.3 - SF7BW125 to SF10BW125
989 +* 904.5 - SF7BW125 to SF10BW125
990 +* 904.7 - SF7BW125 to SF10BW125
991 +* 904.9 - SF7BW125 to SF10BW125
992 +* 905.1 - SF7BW125 to SF10BW125
993 +* 905.3 - SF7BW125 to SF10BW125
994 +* 904.6 - SF8BW500
995 +
777 777  (((
778 -(% style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]]
997 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
998 +
999 +* (% style="color:#037691" %)**AT+CHE=2**
1000 +* (% style="color:#037691" %)**ATZ**
779 779  )))
780 780  
1003 +(((
1004 +
781 781  
1006 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
1007 +)))
782 782  
783 -== 6.2  AT Command input doesn't work ==
1009 +(((
1010 +
1011 +)))
784 784  
785 785  (((
1014 +The **AU915** band is similar. Below are the AU915 Uplink Channels.
1015 +)))
1016 +
1017 +[[image:image-20220606154825-4.png]]
1018 +
1019 +
1020 +== 4.2 ​Can I calibrate LSE01 to different soil types? ==
1021 +
1022 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1023 +
1024 +
1025 += 5. Trouble Shooting =
1026 +
1027 +== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
1028 +
1029 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
1030 +
1031 +
1032 +== 5.2 AT Command input doesn't work ==
1033 +
1034 +(((
786 786  In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
787 787  )))
788 788  
789 789  
1039 +== 5.3 Device rejoin in at the second uplink packet ==
790 790  
791 -= 7. ​ Order Info =
1041 +(% style="color:#4f81bd" %)**Issue describe as below:**
792 792  
1043 +[[image:1654500909990-784.png]]
793 793  
794 -Part Number**:** (% style="color:#4f81bd" %)**NSE01**
795 795  
1046 +(% style="color:#4f81bd" %)**Cause for this issue:**
796 796  
1048 +(((
1049 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
1050 +)))
1051 +
1052 +
1053 +(% style="color:#4f81bd" %)**Solution: **
1054 +
1055 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1056 +
1057 +[[image:1654500929571-736.png||height="458" width="832"]]
1058 +
1059 +
1060 += 6. ​Order Info =
1061 +
1062 +
1063 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1064 +
1065 +
1066 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1067 +
1068 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1069 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1070 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1071 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1072 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1073 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1074 +* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1075 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1076 +
1077 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1078 +
1079 +* (% style="color:red" %)**4**(%%): 4000mAh battery
1080 +* (% style="color:red" %)**8**(%%): 8500mAh battery
1081 +
797 797  (% class="wikigeneratedid" %)
798 798  (((
799 799  
800 800  )))
801 801  
802 -= 8.  Packing Info =
1087 += 7. Packing Info =
803 803  
804 804  (((
805 805  
806 806  
807 807  (% style="color:#037691" %)**Package Includes**:
1093 +)))
808 808  
809 -
810 -* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
811 -* External antenna x 1
1095 +* (((
1096 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
812 812  )))
813 813  
814 814  (((
... ... @@ -815,20 +815,24 @@
815 815  
816 816  
817 817  (% style="color:#037691" %)**Dimension and weight**:
1103 +)))
818 818  
819 -
820 -* Size: 195 x 125 x 55 mm
821 -* Weight:   420g
1105 +* (((
1106 +Device Size: cm
822 822  )))
1108 +* (((
1109 +Device Weight: g
1110 +)))
1111 +* (((
1112 +Package Size / pcs : cm
1113 +)))
1114 +* (((
1115 +Weight / pcs : g
823 823  
824 -(((
825 825  
826 -
827 -
828 -
829 829  )))
830 830  
831 -= 9.  Support =
1120 += 8. Support =
832 832  
833 833  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
834 834  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657249419225-449.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -102.7 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0