Changes for page NDDS75 -- NB-IoT Distance Detect Sensor User Manual
Last modified by Bei Jinggeng on 2024/05/31 09:53
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 23 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - NSE01NB-IoTSoil Moisture & EC Sensor User Manual1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -13,802 +13,1079 @@ 13 13 14 14 **Table of Contents:** 15 15 16 +{{toc/}} 16 16 17 17 18 18 19 19 20 20 21 -= 1. Introduction = 22 22 23 -= =1.1 Whatis LoRaWAN Soil Moisture & EC Sensor==23 += 1. Introduction = 24 24 25 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 26 + 25 25 ((( 26 26 27 27 28 -Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 30 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 31 +))) 29 29 30 -It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 33 +((( 34 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 35 +))) 31 31 32 -The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 37 +((( 38 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 39 +))) 33 33 34 -NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years. 41 +((( 42 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 43 +))) 35 35 36 - 45 +((( 46 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 37 37 ))) 38 38 49 + 39 39 [[image:1654503236291-817.png]] 40 40 41 41 42 -[[image:165 7245163077-232.png]]53 +[[image:1654503265560-120.png]] 43 43 44 44 45 45 46 46 == 1.2 Features == 47 47 48 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 59 +* LoRaWAN 1.0.3 Class A 60 +* Ultra low power consumption 49 49 * Monitor Soil Moisture 50 50 * Monitor Soil Temperature 51 51 * Monitor Soil Conductivity 64 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 52 52 * AT Commands to change parameters 53 53 * Uplink on periodically 54 54 * Downlink to change configure 55 55 * IP66 Waterproof Enclosure 56 -* Ultra-Low Power consumption 57 -* AT Commands to change parameters 58 -* Micro SIM card slot for NB-IoT SIM 59 -* 8500mAh Battery for long term use 69 +* 4000mAh or 8500mAh Battery for long term use 60 60 61 61 72 +== 1.3 Specification == 62 62 74 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 63 63 64 - == 1.3 Specification==76 +[[image:image-20220606162220-5.png]] 65 65 66 66 67 -(% style="color:#037691" %)**Common DC Characteristics:** 68 68 69 -* Supply Voltage: 2.1v ~~ 3.6v 70 -* Operating Temperature: -40 ~~ 85°C 80 +== 1.4 Applications == 71 71 82 +* Smart Agriculture 72 72 84 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 85 + 73 73 74 - (% style="color:#037691"%)**NB-IoTSpec:**87 +== 1.5 Firmware Change log == 75 75 76 -* - B1 @H-FDD: 2100MHz 77 -* - B3 @H-FDD: 1800MHz 78 -* - B8 @H-FDD: 900MHz 79 -* - B5 @H-FDD: 850MHz 80 -* - B20 @H-FDD: 800MHz 81 -* - B28 @H-FDD: 700MHz 82 82 90 +**LSE01 v1.0 :** Release 83 83 84 84 85 -Probe(% style="color:#037691" %)** Specification:** 86 86 87 - MeasureVolume:Baseonthecentra pinof theprobe,acylinder with 7cm diameterand 10cm height.94 += 2. Configure LSE01 to connect to LoRaWAN network = 88 88 89 - [[image:image-20220708101224-1.png]]96 +== 2.1 How it works == 90 90 98 +((( 99 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 100 +))) 91 91 102 +((( 103 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 104 +))) 92 92 93 -== 1.4 Applications == 94 94 95 -* Smart Agriculture 96 96 97 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 98 - 108 +== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 99 99 100 - ==1.5 PinDefinitions==110 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 101 101 102 102 103 -[[image:165 7246476176-652.png]]113 +[[image:1654503992078-669.png]] 104 104 105 105 116 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 106 106 107 -= 2. Use NSE01 to communicate with IoT Server = 108 108 109 -= =2.1Howitworks==119 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSE01. 110 110 121 +Each LSE01 is shipped with a sticker with the default device EUI as below: 111 111 112 -((( 113 -The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 114 -))) 123 +[[image:image-20220606163732-6.jpeg]] 115 115 125 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 116 116 117 -((( 118 -The diagram below shows the working flow in default firmware of NSE01: 119 -))) 127 +**Add APP EUI in the application** 120 120 121 -[[image:image-20220708101605-2.png]] 122 122 123 -((( 124 - 125 -))) 130 +[[image:1654504596150-405.png]] 126 126 127 127 128 128 129 - ==2.2Configurethe NSE01==134 +**Add APP KEY and DEV EUI** 130 130 136 +[[image:1654504683289-357.png]] 131 131 132 -=== 2.2.1 Test Requirement === 133 133 134 134 135 - Touse NSE01 in your city, makesuremeetbelowrequirements:140 +(% style="color:blue" %)**Step 2**(%%): Power on LSE01 136 136 137 -* Your local operator has already distributed a NB-IoT Network there. 138 -* The local NB-IoT network used the band that NSE01 supports. 139 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 140 140 143 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 144 + 145 +[[image:image-20220606163915-7.png]] 146 + 147 + 148 +(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 149 + 150 +[[image:1654504778294-788.png]] 151 + 152 + 153 + 154 +== 2.3 Uplink Payload == 155 + 156 + 157 +=== 2.3.1 MOD~=0(Default Mode) === 158 + 159 +LSE01 will uplink payload via LoRaWAN with below payload format: 160 + 141 141 ((( 142 - Below figure shows our testing structure. Here we have NB-IoT networkcoverage byChina Mobile, the bandthey useis B8. The NSE01 willuseCoAP((%style="color:red"%)120.24.4.116:5683)(%%)or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red"%)120.24.4.116:1883)(%%)orTCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server162 +Uplink payload includes in total 11 bytes. 143 143 ))) 144 144 165 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 166 +|((( 167 +**Size** 145 145 146 -[[image:1657249419225-449.png]] 169 +**(bytes)** 170 +)))|**2**|**2**|**2**|**2**|**2**|**1** 171 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 172 +Temperature 147 147 174 +(Reserve, Ignore now) 175 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 176 +MOD & Digital Interrupt 148 148 178 +(Optional) 179 +))) 149 149 150 -=== 2.2.2 Insert SIM card === 151 151 152 - InserttheNB-IoT Cardgetfrom your provider.182 +=== 2.3.2 MOD~=1(Original value) === 153 153 154 - Userneedtotake outtheNB-IoTmodule and insert theSIM cardlikebelow:184 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 155 155 186 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 187 +|((( 188 +**Size** 156 156 157 -[[image:1657249468462-536.png]] 190 +**(bytes)** 191 +)))|**2**|**2**|**2**|**2**|**2**|**1** 192 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 193 +Temperature 158 158 195 +(Reserve, Ignore now) 196 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 197 +MOD & Digital Interrupt 159 159 199 +(Optional) 200 +))) 160 160 161 -=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 162 162 203 +=== 2.3.3 Battery Info === 204 + 163 163 ((( 206 +Check the battery voltage for LSE01. 207 +))) 208 + 164 164 ((( 165 - User need to configure NSE01via serial port to set the (% style="color:blue"%)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USBtoTTL adapter to connect to NSE01 and use AT Commands to configure it, as below.210 +Ex1: 0x0B45 = 2885mV 166 166 ))) 212 + 213 +((( 214 +Ex2: 0x0B49 = 2889mV 167 167 ))) 168 168 169 169 170 -**Connection:** 171 171 172 - (%style="background-color:yellow"%)USB TTL GND <~-~-~-~-> GND219 +=== 2.3.4 Soil Moisture === 173 173 174 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 221 +((( 222 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 223 +))) 175 175 176 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 225 +((( 226 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 227 +))) 177 177 229 +((( 230 + 231 +))) 178 178 179 -In the PC, use below serial tool settings: 233 +((( 234 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 235 +))) 180 180 181 -* Baud: (% style="color:green" %)**9600** 182 -* Data bits:** (% style="color:green" %)8(%%)** 183 -* Stop bits: (% style="color:green" %)**1** 184 -* Parity: (% style="color:green" %)**None** 185 -* Flow Control: (% style="color:green" %)**None** 186 186 238 + 239 +=== 2.3.5 Soil Temperature === 240 + 187 187 ((( 188 - Makesure the switchisinFLASH position,thenpowerondevice byconnectingthejumperonNSE01.NSE01 willoutputsystem infooncepower onasbelow,wecan enter the(%style="color:green"%)**password:12345678**(%%)toaccessAT Commandinput.242 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 189 189 ))) 190 190 191 -[[image:image-20220708110657-3.png]] 245 +((( 246 +**Example**: 247 +))) 192 192 193 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 249 +((( 250 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 251 +))) 194 194 253 +((( 254 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 255 +))) 195 195 196 196 197 -=== 2.2.4 Use CoAP protocol to uplink data === 198 198 199 - (% style="color:red"%)Note:if you don't have CoAP server, you can refer thislinktoset up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]259 +=== 2.3.6 Soil Conductivity (EC) === 200 200 261 +((( 262 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 263 +))) 201 201 202 -**Use below commands:** 265 +((( 266 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 267 +))) 203 203 204 - *(% style="color:blue" %)**AT+PRO=1**(%%) ~/~/ Set to use CoAP protocol to uplink205 - * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683** (%%)~/~/to setCoAPserver address andport206 - * (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%)~/~/Set COAP resource path269 +((( 270 +Generally, the EC value of irrigation water is less than 800uS / cm. 271 +))) 207 207 208 -For parameter description, please refer to AT command set 273 +((( 274 + 275 +))) 209 209 210 -[[image:1657249793983-486.png]] 277 +((( 278 + 279 +))) 211 211 281 +=== 2.3.7 MOD === 212 212 213 - After configurethe serveraddress and(% style="color:green" %)**resetthe device**(%%) (via AT+ATZ ), NSE01willstart touplink sensorvaluestoCoAP server.283 +Firmware version at least v2.1 supports changing mode. 214 214 215 - [[image:1657249831934-534.png]]285 +For example, bytes[10]=90 216 216 287 +mod=(bytes[10]>>7)&0x01=1. 217 217 218 218 219 - === 2.2.5 Use UDP protocolto uplinkdata(Default protocol) ===290 +**Downlink Command:** 220 220 221 - Thisfeatureis supportedsincefirmware version v1.0.1292 +If payload = 0x0A00, workmode=0 222 222 294 +If** **payload =** **0x0A01, workmode=1 223 223 224 -* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 225 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 226 -* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 227 227 228 -[[image:1657249864775-321.png]] 229 229 298 +=== 2.3.8 Decode payload in The Things Network === 230 230 231 - [[image:1657249930215-289.png]]300 +While using TTN network, you can add the payload format to decode the payload. 232 232 233 233 303 +[[image:1654505570700-128.png]] 234 234 235 -=== 2.2.6 Use MQTT protocol to uplink data === 305 +((( 306 +The payload decoder function for TTN is here: 307 +))) 236 236 237 -This feature is supported since firmware version v110 309 +((( 310 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]] 311 +))) 238 238 239 239 240 -* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 241 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 242 -* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 243 -* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 244 -* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 245 -* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 246 -* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 314 +== 2.4 Uplink Interval == 247 247 248 - [[image:1657249978444-674.png]]316 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 249 249 250 250 251 -[[image:1657249990869-686.png]] 252 252 320 +== 2.5 Downlink Payload == 253 253 322 +By default, LSE50 prints the downlink payload to console port. 323 + 324 +[[image:image-20220606165544-8.png]] 325 + 326 + 254 254 ((( 255 - MQTTprotocolhas a much higher powerconsumption compare vs UDP / CoAP protocol. Please check the poweranalyze documentand adjust the uplink period to asuitable interval.328 +(% style="color:blue" %)**Examples:** 256 256 ))) 257 257 331 +((( 332 + 333 +))) 258 258 335 +* ((( 336 +(% style="color:blue" %)**Set TDC** 337 +))) 259 259 260 -=== 2.2.7 Use TCP protocol to uplink data === 339 +((( 340 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 341 +))) 261 261 262 -This feature is supported since firmware version v110 343 +((( 344 +Payload: 01 00 00 1E TDC=30S 345 +))) 263 263 347 +((( 348 +Payload: 01 00 00 3C TDC=60S 349 +))) 264 264 265 -* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 266 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 351 +((( 352 + 353 +))) 267 267 268 -[[image:1657250217799-140.png]] 355 +* ((( 356 +(% style="color:blue" %)**Reset** 357 +))) 269 269 359 +((( 360 +If payload = 0x04FF, it will reset the LSE01 361 +))) 270 270 271 -[[image:1657250255956-604.png]] 272 272 364 +* (% style="color:blue" %)**CFM** 273 273 366 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 274 274 275 -=== 2.2.8 Change Update Interval === 276 276 277 -User can use below command to change the (% style="color:green" %)**uplink interval**. 278 278 279 - * (% style="color:blue" %)**AT+TDC=600** (%%)~/~/SetUpdate Intervalto 600s370 +== 2.6 Show Data in DataCake IoT Server == 280 280 281 281 ((( 282 - (%style="color:red"%)**NOTE:**373 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 283 283 ))) 284 284 285 285 ((( 286 - (%style="color:red" %)1. By default, the device will send an uplink message every 1 hour.377 + 287 287 ))) 288 288 380 +((( 381 +(% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time. 382 +))) 289 289 384 +((( 385 +(% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 386 +))) 290 290 291 -== 2.3 Uplink Payload == 292 292 293 - In thismode, uplink payload includes in total18bytes389 +[[image:1654505857935-743.png]] 294 294 295 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 296 -|=(% style="width: 50px;" %)((( 297 -**Size(bytes)** 298 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1** 299 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]] 300 300 301 - If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01uplink data.392 +[[image:1654505874829-548.png]] 302 302 303 303 304 - [[image:image-20220708111918-4.png]]395 +(% style="color:blue" %)**Step 3**(%%)**:** Create an account or log in Datacake. 305 305 397 +(% style="color:blue" %)**Step 4**(%%)**:** Search the LSE01 and add DevEUI. 306 306 307 -The payload is ASCII string, representative same HEX: 308 308 309 - 0x72403155615900640c7817075e0a8c02f900 where:400 +[[image:1654505905236-553.png]] 310 310 311 -* Device ID: 0x 724031556159 = 724031556159 312 -* Version: 0x0064=100=1.0.0 313 313 314 -* BAT: 0x0c78 = 3192 mV = 3.192V 315 -* Singal: 0x17 = 23 316 -* Soil Moisture: 0x075e= 1886 = 18.86 % 317 -* Soil Temperature:0x0a8c =2700=27 °C 318 -* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 319 -* Interrupt: 0x00 = 0 403 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 320 320 405 +[[image:1654505925508-181.png]] 321 321 322 322 323 323 324 -== 2. 4PayloadExplanation and SensorInterface==409 +== 2.7 Frequency Plans == 325 325 411 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 326 326 327 -=== 2.4.1 Device ID === 328 328 329 - Bydefault,the Device ID equal to the last6bytes of IMEI.414 +=== 2.7.1 EU863-870 (EU868) === 330 330 331 - User can use(% style="color:blue" %)**AT+DEUI**(%%) to set Device ID416 +(% style="color:#037691" %)** Uplink:** 332 332 333 - **Example:**418 +868.1 - SF7BW125 to SF12BW125 334 334 335 - AT+DEUI=A84041F15612420 +868.3 - SF7BW125 to SF12BW125 and SF7BW250 336 336 337 - TheDevice ID is stored in a none-erasearea,Upgradethe firmwareorrun AT+FDR won't erase Device ID.422 +868.5 - SF7BW125 to SF12BW125 338 338 424 +867.1 - SF7BW125 to SF12BW125 339 339 426 +867.3 - SF7BW125 to SF12BW125 340 340 341 - ===2.4.2VersionInfo ===428 +867.5 - SF7BW125 to SF12BW125 342 342 343 - Specifythesoftware version: 0x64=100,means firmware version1.00.430 +867.7 - SF7BW125 to SF12BW125 344 344 345 - For example: 0x0064:this device is NSE01with firmware version1.0.0.432 +867.9 - SF7BW125 to SF12BW125 346 346 434 +868.8 - FSK 347 347 348 348 349 - ===2.4.3 BatteryInfo===437 +(% style="color:#037691" %)** Downlink:** 350 350 351 -((( 352 -Check the battery voltage for LSE01. 353 -))) 439 +Uplink channels 1-9 (RX1) 354 354 355 -((( 356 -Ex1: 0x0B45 = 2885mV 357 -))) 441 +869.525 - SF9BW125 (RX2 downlink only) 358 358 359 -((( 360 -Ex2: 0x0B49 = 2889mV 361 -))) 362 362 363 363 445 +=== 2.7.2 US902-928(US915) === 364 364 365 - ===2.4.4SignalStrength===447 +Used in USA, Canada and South America. Default use CHE=2 366 366 367 - NB-IoTNetworksignal Strength.449 +(% style="color:#037691" %)**Uplink:** 368 368 369 - **Ex1:0x1d=29**451 +903.9 - SF7BW125 to SF10BW125 370 370 371 - (% style="color:blue" %)**0**(%%)113dBmorless453 +904.1 - SF7BW125 to SF10BW125 372 372 373 - (%style="color:blue"%)**1**(%%)-111dBm455 +904.3 - SF7BW125 to SF10BW125 374 374 375 - (%style="color:blue"%)**2...30**(%%)-109dBm... -53dBm457 +904.5 - SF7BW125 to SF10BW125 376 376 377 - (%style="color:blue"%)**31** (%%) -51dBmorgreater459 +904.7 - SF7BW125 to SF10BW125 378 378 379 - (% style="color:blue" %)**99**(%%)Notknownor not detectable461 +904.9 - SF7BW125 to SF10BW125 380 380 463 +905.1 - SF7BW125 to SF10BW125 381 381 465 +905.3 - SF7BW125 to SF10BW125 382 382 383 -=== 2.4.5 Soil Moisture === 384 384 385 -((( 386 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 387 -))) 468 +(% style="color:#037691" %)**Downlink:** 388 388 389 -((( 390 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 391 -))) 470 +923.3 - SF7BW500 to SF12BW500 392 392 393 -((( 394 - 395 -))) 472 +923.9 - SF7BW500 to SF12BW500 396 396 397 -((( 398 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 399 -))) 474 +924.5 - SF7BW500 to SF12BW500 400 400 476 +925.1 - SF7BW500 to SF12BW500 401 401 478 +925.7 - SF7BW500 to SF12BW500 402 402 403 - ===2.4.6oilTemperature===480 +926.3 - SF7BW500 to SF12BW500 404 404 405 -((( 406 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 407 -))) 482 +926.9 - SF7BW500 to SF12BW500 408 408 409 -((( 410 -**Example**: 411 -))) 484 +927.5 - SF7BW500 to SF12BW500 412 412 413 -((( 414 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 415 -))) 486 +923.3 - SF12BW500(RX2 downlink only) 416 416 417 -((( 418 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 419 -))) 420 420 421 421 490 +=== 2.7.3 CN470-510 (CN470) === 422 422 423 - ===2.4.7 SoilConductivity(EC)===492 +Used in China, Default use CHE=1 424 424 425 -((( 426 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 427 -))) 494 +(% style="color:#037691" %)**Uplink:** 428 428 429 -((( 430 -For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 431 -))) 496 +486.3 - SF7BW125 to SF12BW125 432 432 433 -((( 434 -Generally, the EC value of irrigation water is less than 800uS / cm. 435 -))) 498 +486.5 - SF7BW125 to SF12BW125 436 436 437 -((( 438 - 439 -))) 500 +486.7 - SF7BW125 to SF12BW125 440 440 441 -((( 442 - 443 -))) 502 +486.9 - SF7BW125 to SF12BW125 444 444 445 - === 2.4.8DigitalInterrupt===504 +487.1 - SF7BW125 to SF12BW125 446 446 447 - Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods.Whenthere is a trigger, the NSE01will send a packettothe server.506 +487.3 - SF7BW125 to SF12BW125 448 448 449 - Thecommandis:508 +487.5 - SF7BW125 to SF12BW125 450 450 451 - (%style="color:blue"%)**AT+INTMOD=3**(%%) ~/~/(more info aboutINMOD please refer [[**AT CommandManual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**510 +487.7 - SF7BW125 to SF12BW125 452 452 453 453 454 - Thelower four bitsofthis data field shows if this packet is generated byinterrupt or not. [[Click here>>||anchor="H"]]for the hardware and software set up.513 +(% style="color:#037691" %)**Downlink:** 455 455 515 +506.7 - SF7BW125 to SF12BW125 456 456 457 - Example:517 +506.9 - SF7BW125 to SF12BW125 458 458 459 -0 x(00):Normaluplinkpacket.519 +507.1 - SF7BW125 to SF12BW125 460 460 461 -0 x(01):InterruptUplinkPacket.521 +507.3 - SF7BW125 to SF12BW125 462 462 523 +507.5 - SF7BW125 to SF12BW125 463 463 525 +507.7 - SF7BW125 to SF12BW125 464 464 465 - === 2.4.9+5VOutput===527 +507.9 - SF7BW125 to SF12BW125 466 466 467 - NSE01willenable +5Voutput beforeall sampling and disable the +5v after all sampling.529 +508.1 - SF7BW125 to SF12BW125 468 468 531 +505.3 - SF12BW125 (RX2 downlink only) 469 469 470 -The 5V output time can be controlled by AT Command. 471 471 472 -(% style="color:blue" %)**AT+5VT=1000** 473 473 474 - Meansset5V valid time to have1000ms. So the real5Voutput will actually have 1000ms + sampling time for other sensors.535 +=== 2.7.4 AU915-928(AU915) === 475 475 537 +Default use CHE=2 476 476 539 +(% style="color:#037691" %)**Uplink:** 477 477 478 - ==2.5DownlinkPayload ==541 +916.8 - SF7BW125 to SF12BW125 479 479 480 - Bydefault,NSE01prints the downlinkpayload to console port.543 +917.0 - SF7BW125 to SF12BW125 481 481 482 - [[image:image-20220708133731-5.png]]545 +917.2 - SF7BW125 to SF12BW125 483 483 547 +917.4 - SF7BW125 to SF12BW125 484 484 485 -((( 486 -(% style="color:blue" %)**Examples:** 487 -))) 549 +917.6 - SF7BW125 to SF12BW125 488 488 489 -((( 490 - 491 -))) 551 +917.8 - SF7BW125 to SF12BW125 492 492 493 -* ((( 494 -(% style="color:blue" %)**Set TDC** 495 -))) 553 +918.0 - SF7BW125 to SF12BW125 496 496 497 -((( 498 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 499 -))) 555 +918.2 - SF7BW125 to SF12BW125 500 500 501 -((( 502 -Payload: 01 00 00 1E TDC=30S 503 -))) 504 504 505 -((( 506 -Payload: 01 00 00 3C TDC=60S 507 -))) 558 +(% style="color:#037691" %)**Downlink:** 508 508 509 -((( 510 - 511 -))) 560 +923.3 - SF7BW500 to SF12BW500 512 512 513 -* ((( 514 -(% style="color:blue" %)**Reset** 515 -))) 562 +923.9 - SF7BW500 to SF12BW500 516 516 517 -((( 518 -If payload = 0x04FF, it will reset the NSE01 519 -))) 564 +924.5 - SF7BW500 to SF12BW500 520 520 566 +925.1 - SF7BW500 to SF12BW500 521 521 522 - *(%style="color:blue"%)**INTMOD**568 +925.7 - SF7BW500 to SF12BW500 523 523 524 - DownlinkPayload:06000003,SetAT+INTMOD=3570 +926.3 - SF7BW500 to SF12BW500 525 525 572 +926.9 - SF7BW500 to SF12BW500 526 526 574 +927.5 - SF7BW500 to SF12BW500 527 527 528 - ==2.6LEDIndicator==576 +923.3 - SF12BW500(RX2 downlink only) 529 529 530 -((( 531 -The NSE01 has an internal LED which is to show the status of different state. 532 532 533 533 534 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 535 -* Then the LED will be on for 1 second means device is boot normally. 536 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 537 -* For each uplink probe, LED will be on for 500ms. 538 -))) 580 +=== 2.7.5 AS920-923 & AS923-925 (AS923) === 539 539 582 +(% style="color:#037691" %)**Default Uplink channel:** 540 540 584 +923.2 - SF7BW125 to SF10BW125 541 541 586 +923.4 - SF7BW125 to SF10BW125 542 542 543 -== 2.7 Installation in Soil == 544 544 545 - __**Measurementthesoilsurface**__589 +(% style="color:#037691" %)**Additional Uplink Channel**: 546 546 547 - Choosethe propermeasuring position. Avoidtheprobe to touchrocks or hard things. Split thesurface soil according to the measureddeep. Keep the measuredasoriginal density. Vertical insert theprobe intothe soil to bemeasured. Makesure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]591 +(OTAA mode, channel added by JoinAccept message) 548 548 549 - [[image:1657259653666-883.png]]593 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 550 550 595 +922.2 - SF7BW125 to SF10BW125 551 551 552 -((( 553 - 597 +922.4 - SF7BW125 to SF10BW125 554 554 555 -((( 556 -Dig a hole with diameter > 20CM. 557 -))) 599 +922.6 - SF7BW125 to SF10BW125 558 558 559 -((( 560 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 561 -))) 562 -))) 601 +922.8 - SF7BW125 to SF10BW125 563 563 564 - [[image:1654506665940-119.png]]603 +923.0 - SF7BW125 to SF10BW125 565 565 566 -((( 567 - 568 -))) 605 +922.0 - SF7BW125 to SF10BW125 569 569 570 570 571 -= =2.8Firmware Change Log==608 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 572 572 610 +923.6 - SF7BW125 to SF10BW125 573 573 574 - DownloadURL&FirmwareChange log612 +923.8 - SF7BW125 to SF10BW125 575 575 576 - [[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]614 +924.0 - SF7BW125 to SF10BW125 577 577 616 +924.2 - SF7BW125 to SF10BW125 578 578 579 - UpgradeInstruction:[[Upgrade_Firmware>>||anchor="H"]]618 +924.4 - SF7BW125 to SF10BW125 580 580 620 +924.6 - SF7BW125 to SF10BW125 581 581 582 582 583 - ==2.9 BatteryAnalysis ==623 +(% style="color:#037691" %)** Downlink:** 584 584 585 - ===2.9.1 BatteryType===625 +Uplink channels 1-8 (RX1) 586 586 627 +923.2 - SF10BW125 (RX2) 587 587 588 -The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 589 589 590 590 591 - Thebatteryisdesignedto last for several years depends on the actually use environment and update interval.631 +=== 2.7.6 KR920-923 (KR920) === 592 592 633 +Default channel: 593 593 594 - Thebatteryrelateddocuments as below:635 +922.1 - SF7BW125 to SF12BW125 595 595 596 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 597 -* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 598 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 637 +922.3 - SF7BW125 to SF12BW125 599 599 639 +922.5 - SF7BW125 to SF12BW125 640 + 641 + 642 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 643 + 644 +922.1 - SF7BW125 to SF12BW125 645 + 646 +922.3 - SF7BW125 to SF12BW125 647 + 648 +922.5 - SF7BW125 to SF12BW125 649 + 650 +922.7 - SF7BW125 to SF12BW125 651 + 652 +922.9 - SF7BW125 to SF12BW125 653 + 654 +923.1 - SF7BW125 to SF12BW125 655 + 656 +923.3 - SF7BW125 to SF12BW125 657 + 658 + 659 +(% style="color:#037691" %)**Downlink:** 660 + 661 +Uplink channels 1-7(RX1) 662 + 663 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 664 + 665 + 666 + 667 +=== 2.7.7 IN865-867 (IN865) === 668 + 669 +(% style="color:#037691" %)** Uplink:** 670 + 671 +865.0625 - SF7BW125 to SF12BW125 672 + 673 +865.4025 - SF7BW125 to SF12BW125 674 + 675 +865.9850 - SF7BW125 to SF12BW125 676 + 677 + 678 +(% style="color:#037691" %) **Downlink:** 679 + 680 +Uplink channels 1-3 (RX1) 681 + 682 +866.550 - SF10BW125 (RX2) 683 + 684 + 685 + 686 + 687 +== 2.8 LED Indicator == 688 + 689 +The LSE01 has an internal LED which is to show the status of different state. 690 + 691 +* Blink once when device power on. 692 +* Solid ON for 5 seconds once device successful Join the network. 693 +* Blink once when device transmit a packet. 694 + 695 + 696 +== 2.9 Installation in Soil == 697 + 698 +**Measurement the soil surface** 699 + 700 + 701 +[[image:1654506634463-199.png]] 702 + 600 600 ((( 601 -[[image:image-20220708140453-6.png]] 704 +((( 705 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 602 602 ))) 707 +))) 603 603 604 604 605 605 606 - === 2.9.2 Power consumptionAnalyze ===711 +[[image:1654506665940-119.png]] 607 607 608 608 ((( 609 -D raginobatterypowered product are all runs in Low Powermode. We have an update battery calculatorwhich base onthemeasurement of the realdevice. User can usehis calculator to check the batterylifeand calculate the battery life if want to use different transmit interval.714 +Dig a hole with diameter > 20CM. 610 610 ))) 611 611 717 +((( 718 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 719 +))) 612 612 721 + 722 +== 2.10 Firmware Change Log == 723 + 613 613 ((( 614 - Instructiontouseasbelow:725 +**Firmware download link:** 615 615 ))) 616 616 617 617 ((( 618 - (% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:[[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]729 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 619 619 ))) 620 620 732 +((( 733 + 734 +))) 621 621 622 622 ((( 623 - (% style="color:blue" %)**Step2: **(%%)Openithoose737 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 624 624 ))) 625 625 626 - *(((627 - ProductModel740 +((( 741 + 628 628 ))) 629 -* ((( 630 -Uplink Interval 743 + 744 +((( 745 +**V1.0.** 631 631 ))) 632 -* ((( 633 -Working Mode 634 -))) 635 635 636 636 ((( 637 - And theLifeexpectation in difference casewill be shown on the right.749 +Release 638 638 ))) 639 639 640 -[[image:image-20220708141352-7.jpeg]] 641 641 753 +== 2.11 Battery Analysis == 642 642 755 +=== 2.11.1 Battery Type === 643 643 644 -=== 2.9.3 Battery Note === 757 +((( 758 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 759 +))) 645 645 646 646 ((( 647 -The Li-SICObattery is designedfor small current/ longperiod application. It isnotgood to use a high current,short period transmit method. Therecommendedminimum period for use ofthis batteryis5minutes. Ifyou useshorterperiod time to transmitLoRa,thenthe battery life may be decreased.762 +The battery is designed to last for more than 5 years for the LSN50. 648 648 ))) 649 649 765 +((( 766 +((( 767 +The battery-related documents are as below: 768 +))) 769 +))) 650 650 771 +* ((( 772 +[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], 773 +))) 774 +* ((( 775 +[[Lithium-Thionyl Chloride Battery datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], 776 +))) 777 +* ((( 778 +[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]] 779 +))) 651 651 652 - ===2.9.4 Replacethe battery ===781 + [[image:image-20220610172436-1.png]] 653 653 783 + 784 + 785 +=== 2.11.2 Battery Note === 786 + 654 654 ((( 655 -The defaultbatterypackofNSE01includesaER26500 plussupercapacitor. Ifusercan'tfind this pack locally,theycanfindER26500 orquivalence withoutthe SPC1520 capacitor, which will alsowork inmostcase. TheSPCcanlarge thebatterylifeforhigh frequency use(update periodbelow5minutes).788 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 656 656 ))) 657 657 658 658 659 659 660 -= 3. AccessNB-IoTModule =793 +=== 2.11.3 Replace the battery === 661 661 662 662 ((( 663 - Userscan directlyaccesstheAT command setoftheNB-IoTmodule.796 +If Battery is lower than 2.7v, user should replace the battery of LSE01. 664 664 ))) 665 665 666 666 ((( 667 - The AT Commandsetcanrefer theBC35-G NB-IoTModuleATCommand: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]]800 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 668 668 ))) 669 669 670 -[[image:1657261278785-153.png]] 803 +((( 804 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 805 +))) 671 671 672 672 673 673 674 -= 4.809 += 3. Using the AT Commands = 675 675 676 -== 4.1811 +== 3.1 Access AT Commands == 677 677 678 -See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 679 679 814 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 680 680 681 - AT+<CMD>? : Helpon<CMD>816 +[[image:1654501986557-872.png||height="391" width="800"]] 682 682 683 -AT+<CMD> : Run <CMD> 684 684 685 - AT+<CMD>=<value>: Setthevalue819 +Or if you have below board, use below connection: 686 686 687 -AT+<CMD>=? : Get the value 688 688 822 +[[image:1654502005655-729.png||height="503" width="801"]] 689 689 824 + 825 + 826 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 827 + 828 + 829 + [[image:1654502050864-459.png||height="564" width="806"]] 830 + 831 + 832 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]] 833 + 834 + 835 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 836 + 837 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 838 + 839 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 840 + 841 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 842 + 843 + 690 690 (% style="color:#037691" %)**General Commands**(%%) 691 691 692 -AT 846 +(% style="background-color:#dcdcdc" %)**AT**(%%) : Attention 693 693 694 -AT? 848 +(% style="background-color:#dcdcdc" %)**AT?**(%%) : Short Help 695 695 696 -ATZ 850 +(% style="background-color:#dcdcdc" %)**ATZ**(%%) : MCU Reset 697 697 698 -AT+TDC 852 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%) : Application Data Transmission Interval 699 699 700 -AT+CFG : Print all configurations 701 701 702 - AT+CFGMOD: Workingmode selection855 +(% style="color:#037691" %)**Keys, IDs and EUIs management** 703 703 704 -AT+I NTMOD:Setthe trigger interruptmode857 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%) : Application EUI 705 705 706 -AT+ 5VTSetextend the timeof5V power859 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%) : Application Key 707 707 708 -AT+P ROChooseagreement861 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%) : Application Session Key 709 709 710 -AT+ WEIGREGet weightorsetweight to 0863 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%) : Device Address 711 711 712 -AT+ WEIGAPGet or SettheGapValue of weight865 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%) : Device EUI 713 713 714 -AT+ RXDL: Extendthe sendingandreceivingtime867 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%) : Network ID (You can enter this command change only after successful network connection) 715 715 716 -AT+ CNTFACGettcountingparameters869 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%) : Network Session Key Joining and sending date on LoRa network 717 717 718 -AT+ SERVADDR:ServerAddress871 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%) : Confirm Mode 719 719 873 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 720 720 721 -(% style="color:# 037691" %)**COAPManagement**875 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%) : Join LoRa? Network 722 722 723 -AT+ URIsourceparameters877 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%) : LoRa? Network Join Mode 724 724 879 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 725 725 726 -(% style="color:# 037691" %)**UDPManagement**881 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%) : Print Last Received Data in Raw Format 727 727 728 -AT+C FM:Uploadconfirmationmode (onlyvalid forUDP)883 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%) : Print Last Received Data in Binary Format 729 729 885 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 730 730 731 -(% style="color:# 037691" %)**MQTTManagement**887 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%) : Send Hexadecimal Data 732 732 733 -AT+CLIENT : Get or Set MQTT client 734 734 735 - AT+UNAMEGetSetMQTT Username890 +(% style="color:#037691" %)**LoRa Network Management** 736 736 737 -AT+ PWDGetor SetMQTT password892 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%) : Adaptive Rate 738 738 739 -AT+ PUBTOPICGetorSetMQTTpublishtopic894 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%) : LoRa Class(Currently only support class A 740 740 741 -AT+ SUBTOPIC :GetorSetMQTT subscriptiontopic896 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%) : Duty Cycle Setting 742 742 898 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 743 743 744 -(% style="color:# 037691" %)**Information**900 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink 745 745 746 -AT+F DRctoryDataReset902 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%) : Frame Counter Uplink 747 747 748 -AT+ PWORDSerialAccessPassword904 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%) : Join Accept Delay1 749 749 906 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 750 750 908 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 751 751 752 -= 5.FAQ=910 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%) : Receive Delay1 753 753 754 -= =5.1HowtoUpgradeFirmware==912 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%) : Receive Delay2 755 755 914 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 756 756 916 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 917 + 918 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 919 + 920 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 921 + 922 + 923 +(% style="color:#037691" %)**Information** 924 + 925 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 926 + 927 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 928 + 929 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 930 + 931 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 932 + 933 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 934 + 935 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 936 + 937 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 938 + 939 + 940 += 4. FAQ = 941 + 942 +== 4.1 How to change the LoRa Frequency Bands/Region? == 943 + 757 757 ((( 758 -User can upgrade the firmware for 1) bug fix, 2) new feature release. 945 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 946 +When downloading the images, choose the required image file for download. 759 759 ))) 760 760 761 761 ((( 762 - Pleasesee this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]950 + 763 763 ))) 764 764 765 765 ((( 766 - (%style="color:red"%)Notice,NSE01andLSE01share thememotherboard.Theyuse thesameconnection andmethodto update.954 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 767 767 ))) 768 768 957 +((( 958 + 959 +))) 769 769 961 +((( 962 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 963 +))) 770 770 771 -= 6. Trouble Shooting = 965 +((( 966 + 967 +))) 772 772 773 -== 6.1 Connection problem when uploading firmware == 969 +((( 970 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 971 +))) 774 774 973 +[[image:image-20220606154726-3.png]] 775 775 776 -(% class="wikigeneratedid" %) 975 + 976 +When you use the TTN network, the US915 frequency bands use are: 977 + 978 +* 903.9 - SF7BW125 to SF10BW125 979 +* 904.1 - SF7BW125 to SF10BW125 980 +* 904.3 - SF7BW125 to SF10BW125 981 +* 904.5 - SF7BW125 to SF10BW125 982 +* 904.7 - SF7BW125 to SF10BW125 983 +* 904.9 - SF7BW125 to SF10BW125 984 +* 905.1 - SF7BW125 to SF10BW125 985 +* 905.3 - SF7BW125 to SF10BW125 986 +* 904.6 - SF8BW500 987 + 777 777 ((( 778 -(% style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]] 989 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 990 + 991 +* (% style="color:#037691" %)**AT+CHE=2** 992 +* (% style="color:#037691" %)**ATZ** 779 779 ))) 780 780 995 +((( 996 + 781 781 998 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 999 +))) 782 782 783 -== 6.2 AT Command input doesn't work == 1001 +((( 1002 + 1003 +))) 784 784 785 785 ((( 786 - In thecaseif user can seethe console output but can't typeinput to the device. Pleasecheck if youalreadyincludethe(%style="color:green" %)**ENTER**(%%) while sendingout the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.1006 +The **AU915** band is similar. Below are the AU915 Uplink Channels. 787 787 ))) 788 788 1009 +[[image:image-20220606154825-4.png]] 789 789 790 790 791 -= 7.OrderInfo =1012 +== 4.2 Can I calibrate LSE01 to different soil types? == 792 792 1014 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]]. 793 793 794 -Part Number**:** (% style="color:#4f81bd" %)**NSE01** 795 795 1017 += 5. Trouble Shooting = 796 796 1019 +== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 1020 + 1021 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 1022 + 1023 + 1024 +== 5.2 AT Command input doesn’t work == 1025 + 1026 +((( 1027 +In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1028 +))) 1029 + 1030 + 1031 +== 5.3 Device rejoin in at the second uplink packet == 1032 + 1033 +(% style="color:#4f81bd" %)**Issue describe as below:** 1034 + 1035 +[[image:1654500909990-784.png]] 1036 + 1037 + 1038 +(% style="color:#4f81bd" %)**Cause for this issue:** 1039 + 1040 +((( 1041 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 1042 +))) 1043 + 1044 + 1045 +(% style="color:#4f81bd" %)**Solution: ** 1046 + 1047 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 1048 + 1049 +[[image:1654500929571-736.png||height="458" width="832"]] 1050 + 1051 + 1052 += 6. Order Info = 1053 + 1054 + 1055 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 1056 + 1057 + 1058 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 1059 + 1060 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 1061 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 1062 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 1063 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 1064 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1065 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1066 +* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1067 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1068 + 1069 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1070 + 1071 +* (% style="color:red" %)**4**(%%): 4000mAh battery 1072 +* (% style="color:red" %)**8**(%%): 8500mAh battery 1073 + 797 797 (% class="wikigeneratedid" %) 798 798 ((( 799 799 800 800 ))) 801 801 802 -= 8.1079 += 7. Packing Info = 803 803 804 804 ((( 805 805 806 806 807 807 (% style="color:#037691" %)**Package Includes**: 1085 +))) 808 808 809 - 810 -* NSE01 NB-IoT Soil Moisture & EC Sensor x 1 811 -* External antenna x 1 1087 +* ((( 1088 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 812 812 ))) 813 813 814 814 ((( ... ... @@ -815,20 +815,24 @@ 815 815 816 816 817 817 (% style="color:#037691" %)**Dimension and weight**: 1095 +))) 818 818 819 - 820 -* Size: 195 x 125 x 55 mm 821 -* Weight: 420g 1097 +* ((( 1098 +Device Size: cm 822 822 ))) 1100 +* ((( 1101 +Device Weight: g 1102 +))) 1103 +* ((( 1104 +Package Size / pcs : cm 1105 +))) 1106 +* ((( 1107 +Weight / pcs : g 823 823 824 -((( 825 825 826 - 827 - 828 - 829 829 ))) 830 830 831 -= 9.1112 += 8. Support = 832 832 833 833 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 834 834 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -102.7 KB - Content