Last modified by Bei Jinggeng on 2024/05/31 09:53

From version 65.2
edited by Xiaoling
on 2022/07/08 15:03
Change comment: There is no comment for this version
To version 32.12
edited by Xiaoling
on 2022/06/07 11:40
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
Content
... ... @@ -3,7 +3,9 @@
3 3  
4 4  
5 5  
6 +**Contents:**
6 6  
8 +{{toc/}}
7 7  
8 8  
9 9  
... ... @@ -10,805 +10,1045 @@
10 10  
11 11  
12 12  
15 += 1. Introduction =
13 13  
14 -**Table of Contents:**
17 +== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
15 15  
19 +(((
20 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
21 +)))
16 16  
23 +(((
24 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
25 +)))
17 17  
27 +(((
28 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 +)))
18 18  
19 -
20 -
21 -= 1.  Introduction =
22 -
23 -== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
24 -
25 25  (((
26 -
32 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
33 +)))
27 27  
28 -Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
29 -
30 -It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
31 -
32 -The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33 -
34 -NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
35 -
36 -
35 +(((
36 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 37  )))
38 38  
39 +
39 39  [[image:1654503236291-817.png]]
40 40  
41 41  
42 -[[image:1657245163077-232.png]]
43 +[[image:1654503265560-120.png]]
43 43  
44 44  
45 45  
46 46  == 1.2 ​Features ==
47 47  
48 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
49 +* LoRaWAN 1.0.3 Class A
50 +* Ultra low power consumption
49 49  * Monitor Soil Moisture
50 50  * Monitor Soil Temperature
51 51  * Monitor Soil Conductivity
54 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
52 52  * AT Commands to change parameters
53 53  * Uplink on periodically
54 54  * Downlink to change configure
55 55  * IP66 Waterproof Enclosure
56 -* Ultra-Low Power consumption
57 -* AT Commands to change parameters
58 -* Micro SIM card slot for NB-IoT SIM
59 -* 8500mAh Battery for long term use
59 +* 4000mAh or 8500mAh Battery for long term use
60 60  
61 +== 1.3 Specification ==
61 61  
63 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
62 62  
65 +[[image:image-20220606162220-5.png]]
63 63  
64 -== 1.3  Specification ==
65 65  
66 66  
67 -(% style="color:#037691" %)**Common DC Characteristics:**
69 +== ​1.4 Applications ==
68 68  
69 -* Supply Voltage: 2.1v ~~ 3.6v
70 -* Operating Temperature: -40 ~~ 85°C
71 +* Smart Agriculture
71 71  
73 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
74 +​
72 72  
76 +== 1.5 Firmware Change log ==
73 73  
74 -(% style="color:#037691" %)**NB-IoT Spec:**
75 75  
76 -* - B1 @H-FDD: 2100MHz
77 -* - B3 @H-FDD: 1800MHz
78 -* - B8 @H-FDD: 900MHz
79 -* - B5 @H-FDD: 850MHz
80 -* - B20 @H-FDD: 800MHz
81 -* - B28 @H-FDD: 700MHz
79 +**LSE01 v1.0 :**  Release
82 82  
83 83  
84 84  
85 -Probe(% style="color:#037691" %)** Specification:**
83 += 2. Configure LSE01 to connect to LoRaWAN network =
86 86  
87 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
85 +== 2.1 How it works ==
88 88  
89 -[[image:image-20220708101224-1.png]]
87 +(((
88 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
89 +)))
90 90  
91 +(((
92 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
93 +)))
91 91  
92 92  
93 -== ​1.4  Applications ==
94 94  
95 -* Smart Agriculture
97 +== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
96 96  
97 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
98 -​
99 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
99 99  
100 -== 1.5  Pin Definitions ==
101 101  
102 +[[image:1654503992078-669.png]]
102 102  
103 -[[image:1657246476176-652.png]]
104 104  
105 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
105 105  
106 106  
107 -= 2.  Use NSE01 to communicate with IoT Server =
108 +**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
108 108  
109 -== 2.1  How it works ==
110 +Each LSE01 is shipped with a sticker with the default device EUI as below:
110 110  
112 +[[image:image-20220606163732-6.jpeg]]
111 111  
114 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
115 +
116 +**Add APP EUI in the application**
117 +
118 +
119 +[[image:1654504596150-405.png]]
120 +
121 +
122 +
123 +**Add APP KEY and DEV EUI**
124 +
125 +[[image:1654504683289-357.png]]
126 +
127 +
128 +
129 +**Step 2**: Power on LSE01
130 +
131 +
132 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
133 +
134 +[[image:image-20220606163915-7.png]]
135 +
136 +
137 +**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
138 +
139 +[[image:1654504778294-788.png]]
140 +
141 +
142 +
143 +== 2.3 Uplink Payload ==
144 +
145 +(% class="wikigeneratedid" %)
146 +=== ===
147 +
148 +=== 2.3.1 MOD~=0(Default Mode) ===
149 +
150 +LSE01 will uplink payload via LoRaWAN with below payload format: 
151 +
112 112  (((
113 -The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
153 +Uplink payload includes in total 11 bytes.
114 114  )))
115 115  
156 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
157 +|(((
158 +**Size**
116 116  
117 -(((
118 -The diagram below shows the working flow in default firmware of NSE01:
160 +**(bytes)**
161 +)))|**2**|**2**|**2**|**2**|**2**|**1**
162 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
163 +Temperature
164 +
165 +(Reserve, Ignore now)
166 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
167 +MOD & Digital Interrupt
168 +
169 +(Optional)
119 119  )))
120 120  
121 -[[image:image-20220708101605-2.png]]
122 122  
173 +
174 +=== 2.3.2 MOD~=1(Original value) ===
175 +
176 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
177 +
178 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
179 +|(((
180 +**Size**
181 +
182 +**(bytes)**
183 +)))|**2**|**2**|**2**|**2**|**2**|**1**
184 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
185 +Temperature
186 +
187 +(Reserve, Ignore now)
188 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
189 +MOD & Digital Interrupt
190 +
191 +(Optional)
192 +)))
193 +
194 +
195 +
196 +=== 2.3.3 Battery Info ===
197 +
123 123  (((
124 -
199 +Check the battery voltage for LSE01.
125 125  )))
126 126  
202 +(((
203 +Ex1: 0x0B45 = 2885mV
204 +)))
127 127  
206 +(((
207 +Ex2: 0x0B49 = 2889mV
208 +)))
128 128  
129 -== 2.2 ​ Configure the NSE01 ==
130 130  
131 131  
132 -=== 2.2.1 Test Requirement ===
212 +=== 2.3.4 Soil Moisture ===
133 133  
214 +(((
215 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
216 +)))
134 134  
135 -To use NSE01 in your city, make sure meet below requirements:
218 +(((
219 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
220 +)))
136 136  
137 -* Your local operator has already distributed a NB-IoT Network there.
138 -* The local NB-IoT network used the band that NSE01 supports.
139 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
222 +(((
223 +
224 +)))
140 140  
141 141  (((
142 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
227 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
143 143  )))
144 144  
145 145  
146 -[[image:1657249419225-449.png]]
147 147  
232 +=== 2.3.5 Soil Temperature ===
148 148  
234 +(((
235 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
236 +)))
149 149  
150 -=== 2.2.2 Insert SIM card ===
238 +(((
239 +**Example**:
240 +)))
151 151  
152 -Insert the NB-IoT Card get from your provider.
242 +(((
243 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
244 +)))
153 153  
154 -User need to take out the NB-IoT module and insert the SIM card like below:
246 +(((
247 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
248 +)))
155 155  
156 156  
157 -[[image:1657249468462-536.png]]
158 158  
252 +=== 2.3.6 Soil Conductivity (EC) ===
159 159  
254 +(((
255 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
256 +)))
160 160  
161 -=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
258 +(((
259 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
260 +)))
162 162  
163 163  (((
263 +Generally, the EC value of irrigation water is less than 800uS / cm.
264 +)))
265 +
164 164  (((
165 -User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
267 +
166 166  )))
269 +
270 +(((
271 +
167 167  )))
168 168  
274 +=== 2.3.7 MOD ===
169 169  
170 -**Connection:**
276 +Firmware version at least v2.1 supports changing mode.
171 171  
172 - (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
278 +For example, bytes[10]=90
173 173  
174 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
280 +mod=(bytes[10]>>7)&0x01=1.
175 175  
176 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
177 177  
283 +**Downlink Command:**
178 178  
179 -In the PC, use below serial tool settings:
285 +If payload = 0x0A00, workmode=0
180 180  
181 -* Baud:  (% style="color:green" %)**9600**
182 -* Data bits:** (% style="color:green" %)8(%%)**
183 -* Stop bits: (% style="color:green" %)**1**
184 -* Parity:  (% style="color:green" %)**None**
185 -* Flow Control: (% style="color:green" %)**None**
287 +If** **payload =** **0x0A01, workmode=1
186 186  
289 +
290 +
291 +=== 2.3.8 ​Decode payload in The Things Network ===
292 +
293 +While using TTN network, you can add the payload format to decode the payload.
294 +
295 +
296 +[[image:1654505570700-128.png]]
297 +
187 187  (((
188 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
299 +The payload decoder function for TTN is here:
189 189  )))
190 190  
191 -[[image:image-20220708110657-3.png]]
302 +(((
303 +LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
304 +)))
192 192  
193 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
194 194  
195 195  
308 +== 2.4 Uplink Interval ==
196 196  
197 -=== 2.2.4 Use CoAP protocol to uplink data ===
310 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
198 198  
199 -(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
200 200  
201 201  
202 -**Use below commands:**
314 +== 2.5 Downlink Payload ==
203 203  
204 -* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
205 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
206 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
316 +By default, LSE50 prints the downlink payload to console port.
207 207  
208 -For parameter description, please refer to AT command set
318 +[[image:image-20220606165544-8.png]]
209 209  
210 -[[image:1657249793983-486.png]]
211 211  
321 +**Examples:**
212 212  
213 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
214 214  
215 -[[image:1657249831934-534.png]]
324 +* **Set TDC**
216 216  
326 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
217 217  
328 +Payload:    01 00 00 1E    TDC=30S
218 218  
219 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
330 +Payload:    01 00 00 3C    TDC=60S
220 220  
221 -This feature is supported since firmware version v1.0.1
222 222  
333 +* **Reset**
223 223  
224 -* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
225 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
226 -* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
335 +If payload = 0x04FF, it will reset the LSE01
227 227  
228 -[[image:1657249864775-321.png]]
229 229  
338 +* **CFM**
230 230  
231 -[[image:1657249930215-289.png]]
340 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
232 232  
233 233  
234 234  
235 -=== 2.2.6 Use MQTT protocol to uplink data ===
344 +== 2.6 ​Show Data in DataCake IoT Server ==
236 236  
237 -This feature is supported since firmware version v110
346 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
238 238  
239 239  
240 -* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
241 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
242 -* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
243 -* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
244 -* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
245 -* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
246 -* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
349 +**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
247 247  
248 -[[image:1657249978444-674.png]]
351 +**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
249 249  
250 250  
251 -[[image:1657249990869-686.png]]
354 +[[image:1654505857935-743.png]]
252 252  
253 253  
254 -(((
255 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
256 -)))
357 +[[image:1654505874829-548.png]]
257 257  
359 +Step 3: Create an account or log in Datacake.
258 258  
361 +Step 4: Search the LSE01 and add DevEUI.
259 259  
260 -=== 2.2.7 Use TCP protocol to uplink data ===
261 261  
262 -This feature is supported since firmware version v110
364 +[[image:1654505905236-553.png]]
263 263  
264 264  
265 -* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
266 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
367 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
267 267  
268 -[[image:1657250217799-140.png]]
369 +[[image:1654505925508-181.png]]
269 269  
270 270  
271 -[[image:1657250255956-604.png]]
272 272  
373 +== 2.7 Frequency Plans ==
273 273  
375 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
274 274  
275 -=== 2.2.8 Change Update Interval ===
276 276  
277 -User can use below command to change the (% style="color:green" %)**uplink interval**.
378 +=== 2.7.1 EU863-870 (EU868) ===
278 278  
279 -* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
380 +(% style="color:#037691" %)** Uplink:**
280 280  
281 -(((
282 -(% style="color:red" %)**NOTE:**
283 -)))
382 +868.1 - SF7BW125 to SF12BW125
284 284  
285 -(((
286 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
287 -)))
384 +868.3 - SF7BW125 to SF12BW125 and SF7BW250
288 288  
386 +868.5 - SF7BW125 to SF12BW125
289 289  
388 +867.1 - SF7BW125 to SF12BW125
290 290  
291 -== 2.3  Uplink Payload ==
390 +867.3 - SF7BW125 to SF12BW125
292 292  
293 -In this mode, uplink payload includes in total 18 bytes
392 +867.5 - SF7BW125 to SF12BW125
294 294  
295 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
296 -|=(% style="width: 50px;" %)(((
297 -**Size(bytes)**
298 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
299 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]]
394 +867.7 - SF7BW125 to SF12BW125
300 300  
301 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
396 +867.9 - SF7BW125 to SF12BW125
302 302  
398 +868.8 - FSK
303 303  
304 -[[image:image-20220708111918-4.png]]
305 305  
401 +(% style="color:#037691" %)** Downlink:**
306 306  
307 -The payload is ASCII string, representative same HEX:
403 +Uplink channels 1-9 (RX1)
308 308  
309 -0x72403155615900640c7817075e0a8c02f900 where:
405 +869.525 - SF9BW125 (RX2 downlink only)
310 310  
311 -* Device ID: 0x 724031556159 = 724031556159
312 -* Version: 0x0064=100=1.0.0
313 313  
314 -* BAT: 0x0c78 = 3192 mV = 3.192V
315 -* Singal: 0x17 = 23
316 -* Soil Moisture: 0x075e= 1886 = 18.86  %
317 -* Soil Temperature:0x0a8c =2700=27 °C
318 -* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
319 -* Interrupt: 0x00 = 0
320 320  
409 +=== 2.7.2 US902-928(US915) ===
321 321  
411 +Used in USA, Canada and South America. Default use CHE=2
322 322  
413 +(% style="color:#037691" %)**Uplink:**
323 323  
324 -== 2. Payload Explanation and Sensor Interface ==
415 +903.9 - SF7BW125 to SF10BW125
325 325  
417 +904.1 - SF7BW125 to SF10BW125
326 326  
327 -=== 2.4.1  Device ID ===
419 +904.3 - SF7BW125 to SF10BW125
328 328  
329 -By default, the Device ID equal to the last 6 bytes of IMEI.
421 +904.5 - SF7BW125 to SF10BW125
330 330  
331 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
423 +904.7 - SF7BW125 to SF10BW125
332 332  
333 -**Example:**
425 +904.9 - SF7BW125 to SF10BW125
334 334  
335 -AT+DEUI=A84041F15612
427 +905.1 - SF7BW125 to SF10BW125
336 336  
337 -The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
429 +905.3 - SF7BW125 to SF10BW125
338 338  
339 339  
432 +(% style="color:#037691" %)**Downlink:**
340 340  
341 -=== 2.4.2  Version Info ===
434 +923.3 - SF7BW500 to SF12BW500
342 342  
343 -Specify the software version: 0x64=100, means firmware version 1.00.
436 +923.9 - SF7BW500 to SF12BW500
344 344  
345 -For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
438 +924.5 - SF7BW500 to SF12BW500
346 346  
440 +925.1 - SF7BW500 to SF12BW500
347 347  
442 +925.7 - SF7BW500 to SF12BW500
348 348  
349 -=== 2.4.3  Battery Info ===
444 +926.3 - SF7BW500 to SF12BW500
350 350  
351 -(((
352 -Check the battery voltage for LSE01.
353 -)))
446 +926.9 - SF7BW500 to SF12BW500
354 354  
355 -(((
356 -Ex1: 0x0B45 = 2885mV
357 -)))
448 +927.5 - SF7BW500 to SF12BW500
358 358  
359 -(((
360 -Ex2: 0x0B49 = 2889mV
361 -)))
450 +923.3 - SF12BW500(RX2 downlink only)
362 362  
363 363  
364 364  
365 -=== 2.4.4  Signal Strength ===
454 +=== 2.7.3 CN470-510 (CN470) ===
366 366  
367 -NB-IoT Network signal Strength.
456 +Used in China, Default use CHE=1
368 368  
369 -**Ex1: 0x1d = 29**
458 +(% style="color:#037691" %)**Uplink:**
370 370  
371 -(% style="color:blue" %)**0**(%%)  -113dBm or less
460 +486.3 - SF7BW125 to SF12BW125
372 372  
373 -(% style="color:blue" %)**1**(%%)  -111dBm
462 +486.5 - SF7BW125 to SF12BW125
374 374  
375 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
464 +486.7 - SF7BW125 to SF12BW125
376 376  
377 -(% style="color:blue" %)**31**  (%%) -51dBm or greater
466 +486.9 - SF7BW125 to SF12BW125
378 378  
379 -(% style="color:blue" %)**99**   (%%) Not known or not detectable
468 +487.1 - SF7BW125 to SF12BW125
380 380  
470 +487.3 - SF7BW125 to SF12BW125
381 381  
472 +487.5 - SF7BW125 to SF12BW125
382 382  
383 -=== 2.4. Soil Moisture ===
474 +487.7 - SF7BW125 to SF12BW125
384 384  
385 -(((
386 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
387 -)))
388 388  
389 -(((
390 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
391 -)))
477 +(% style="color:#037691" %)**Downlink:**
392 392  
393 -(((
394 -
395 -)))
479 +506.7 - SF7BW125 to SF12BW125
396 396  
397 -(((
398 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
399 -)))
481 +506.9 - SF7BW125 to SF12BW125
400 400  
483 +507.1 - SF7BW125 to SF12BW125
401 401  
485 +507.3 - SF7BW125 to SF12BW125
402 402  
403 -=== 2.4.6  Soil Temperature ===
487 +507.5 - SF7BW125 to SF12BW125
404 404  
405 -(((
406 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
407 -)))
489 +507.7 - SF7BW125 to SF12BW125
408 408  
409 -(((
410 -**Example**:
411 -)))
491 +507.9 - SF7BW125 to SF12BW125
412 412  
413 -(((
414 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
415 -)))
493 +508.1 - SF7BW125 to SF12BW125
416 416  
417 -(((
418 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
419 -)))
495 +505.3 - SF12BW125 (RX2 downlink only)
420 420  
421 421  
422 422  
423 -=== 2.4.7  Soil Conductivity (EC) ===
499 +=== 2.7.4 AU915-928(AU915) ===
424 424  
425 -(((
426 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
427 -)))
501 +Default use CHE=2
428 428  
429 -(((
430 -For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
431 -)))
503 +(% style="color:#037691" %)**Uplink:**
432 432  
433 -(((
434 -Generally, the EC value of irrigation water is less than 800uS / cm.
435 -)))
505 +916.8 - SF7BW125 to SF12BW125
436 436  
437 -(((
438 -
439 -)))
507 +917.0 - SF7BW125 to SF12BW125
440 440  
441 -(((
442 -
443 -)))
509 +917.2 - SF7BW125 to SF12BW125
444 444  
445 -=== 2.4.8  Digital Interrupt ===
511 +917.4 - SF7BW125 to SF12BW125
446 446  
447 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
513 +917.6 - SF7BW125 to SF12BW125
448 448  
449 -The command is:
515 +917.8 - SF7BW125 to SF12BW125
450 450  
451 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
517 +918.0 - SF7BW125 to SF12BW125
452 452  
519 +918.2 - SF7BW125 to SF12BW125
453 453  
454 -The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up.
455 455  
522 +(% style="color:#037691" %)**Downlink:**
456 456  
457 -Example:
524 +923.3 - SF7BW500 to SF12BW500
458 458  
459 -0x(00): Normal uplink packet.
526 +923.9 - SF7BW500 to SF12BW500
460 460  
461 -0x(01): Interrupt Uplink Packet.
528 +924.5 - SF7BW500 to SF12BW500
462 462  
530 +925.1 - SF7BW500 to SF12BW500
463 463  
532 +925.7 - SF7BW500 to SF12BW500
464 464  
465 -=== 2.4.9  ​+5V Output ===
534 +926.3 - SF7BW500 to SF12BW500
466 466  
467 -NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
536 +926.9 - SF7BW500 to SF12BW500
468 468  
538 +927.5 - SF7BW500 to SF12BW500
469 469  
470 -The 5V output time can be controlled by AT Command.
540 +923.3 - SF12BW500(RX2 downlink only)
471 471  
472 -(% style="color:blue" %)**AT+5VT=1000**
473 473  
474 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
475 475  
544 +=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
476 476  
546 +(% style="color:#037691" %)**Default Uplink channel:**
477 477  
478 -== 2.5  Downlink Payload ==
548 +923.2 - SF7BW125 to SF10BW125
479 479  
480 -By default, NSE01 prints the downlink payload to console port.
550 +923.4 - SF7BW125 to SF10BW125
481 481  
482 -[[image:image-20220708133731-5.png]]
483 483  
553 +(% style="color:#037691" %)**Additional Uplink Channel**:
484 484  
485 -(((
486 -(% style="color:blue" %)**Examples:**
487 -)))
555 +(OTAA mode, channel added by JoinAccept message)
488 488  
489 -(((
490 -
491 -)))
557 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
492 492  
493 -* (((
494 -(% style="color:blue" %)**Set TDC**
495 -)))
559 +922.2 - SF7BW125 to SF10BW125
496 496  
497 -(((
498 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
499 -)))
561 +922.4 - SF7BW125 to SF10BW125
500 500  
501 -(((
502 -Payload:    01 00 00 1E    TDC=30S
503 -)))
563 +922.6 - SF7BW125 to SF10BW125
504 504  
505 -(((
506 -Payload:    01 00 00 3C    TDC=60S
507 -)))
565 +922.8 - SF7BW125 to SF10BW125
508 508  
509 -(((
510 -
511 -)))
567 +923.0 - SF7BW125 to SF10BW125
512 512  
513 -* (((
514 -(% style="color:blue" %)**Reset**
515 -)))
569 +922.0 - SF7BW125 to SF10BW125
516 516  
517 -(((
518 -If payload = 0x04FF, it will reset the NSE01
519 -)))
520 520  
572 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
521 521  
522 -* (% style="color:blue" %)**INTMOD**
574 +923.6 - SF7BW125 to SF10BW125
523 523  
524 -Downlink Payload: 06000003, Set AT+INTMOD=3
576 +923.8 - SF7BW125 to SF10BW125
525 525  
578 +924.0 - SF7BW125 to SF10BW125
526 526  
580 +924.2 - SF7BW125 to SF10BW125
527 527  
528 -== 2. ​LED Indicator ==
582 +924.4 - SF7BW125 to SF10BW125
529 529  
530 -(((
531 -The NSE01 has an internal LED which is to show the status of different state.
584 +924.6 - SF7BW125 to SF10BW125
532 532  
533 533  
534 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
535 -* Then the LED will be on for 1 second means device is boot normally.
536 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
537 -* For each uplink probe, LED will be on for 500ms.
538 -)))
587 +(% style="color:#037691" %)** Downlink:**
539 539  
589 +Uplink channels 1-8 (RX1)
540 540  
591 +923.2 - SF10BW125 (RX2)
541 541  
542 542  
543 -== 2.7  Installation in Soil ==
544 544  
545 -__**Measurement the soil surface**__
595 +=== 2.7.6 KR920-923 (KR920) ===
546 546  
547 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
597 +Default channel:
548 548  
549 -[[image:1657259653666-883.png]]
599 +922.1 - SF7BW125 to SF12BW125
550 550  
601 +922.3 - SF7BW125 to SF12BW125
551 551  
552 -(((
553 -
603 +922.5 - SF7BW125 to SF12BW125
554 554  
555 -(((
556 -Dig a hole with diameter > 20CM.
557 -)))
558 558  
559 -(((
560 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
561 -)))
562 -)))
606 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
563 563  
564 -[[image:1654506665940-119.png]]
608 +922.1 - SF7BW125 to SF12BW125
565 565  
566 -(((
567 -
568 -)))
610 +922.3 - SF7BW125 to SF12BW125
569 569  
612 +922.5 - SF7BW125 to SF12BW125
570 570  
571 -== 2. Firmware Change Log ==
614 +922.7 - SF7BW125 to SF12BW125
572 572  
616 +922.9 - SF7BW125 to SF12BW125
573 573  
574 -Download URL & Firmware Change log
618 +923.1 - SF7BW125 to SF12BW125
575 575  
576 -[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
620 +923.3 - SF7BW125 to SF12BW125
577 577  
578 578  
579 -Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]]
623 +(% style="color:#037691" %)**Downlink:**
580 580  
625 +Uplink channels 1-7(RX1)
581 581  
627 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
582 582  
583 -== 2.9  ​Battery Analysis ==
584 584  
585 -=== 2.9.1  ​Battery Type ===
586 586  
631 +=== 2.7.7 IN865-867 (IN865) ===
587 587  
588 -The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
633 +(% style="color:#037691" %)** Uplink:**
589 589  
635 +865.0625 - SF7BW125 to SF12BW125
590 590  
591 -The battery is designed to last for several years depends on the actually use environment and update interval. 
637 +865.4025 - SF7BW125 to SF12BW125
592 592  
639 +865.9850 - SF7BW125 to SF12BW125
593 593  
594 -The battery related documents as below:
595 595  
596 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
597 -* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
598 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
642 +(% style="color:#037691" %) **Downlink:**
599 599  
644 +Uplink channels 1-3 (RX1)
645 +
646 +866.550 - SF10BW125 (RX2)
647 +
648 +
649 +
650 +
651 +== 2.8 LED Indicator ==
652 +
653 +The LSE01 has an internal LED which is to show the status of different state.
654 +
655 +* Blink once when device power on.
656 +* Solid ON for 5 seconds once device successful Join the network.
657 +* Blink once when device transmit a packet.
658 +
659 +
660 +
661 +== 2.9 Installation in Soil ==
662 +
663 +**Measurement the soil surface**
664 +
665 +
666 +[[image:1654506634463-199.png]] ​
667 +
600 600  (((
601 -[[image:image-20220708140453-6.png]]
669 +(((
670 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
602 602  )))
672 +)))
603 603  
604 604  
675 +[[image:1654506665940-119.png]]
605 605  
606 -=== 2.9.2  Power consumption Analyze ===
677 +(((
678 +Dig a hole with diameter > 20CM.
679 +)))
607 607  
608 608  (((
609 -Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
682 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
610 610  )))
611 611  
612 612  
686 +== 2.10 ​Firmware Change Log ==
687 +
613 613  (((
614 -Instruction to use as below:
689 +**Firmware download link:**
615 615  )))
616 616  
617 617  (((
618 -(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
693 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
619 619  )))
620 620  
696 +(((
697 +
698 +)))
621 621  
622 622  (((
623 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose
701 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
624 624  )))
625 625  
626 -* (((
627 -Product Model
704 +(((
705 +
628 628  )))
629 -* (((
630 -Uplink Interval
707 +
708 +(((
709 +**V1.0.**
631 631  )))
632 -* (((
633 -Working Mode
634 -)))
635 635  
636 636  (((
637 -And the Life expectation in difference case will be shown on the right.
713 +Release
638 638  )))
639 639  
640 -[[image:image-20220708141352-7.jpeg]]
641 641  
717 +== 2.11 ​Battery Analysis ==
642 642  
719 +=== 2.11.1 ​Battery Type ===
643 643  
644 -=== 2.9.3  ​Battery Note ===
721 +(((
722 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
723 +)))
645 645  
646 646  (((
647 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
726 +The battery is designed to last for more than 5 years for the LSN50.
648 648  )))
649 649  
729 +(((
730 +(((
731 +The battery-related documents are as below:
732 +)))
733 +)))
650 650  
735 +* (((
736 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
737 +)))
738 +* (((
739 +[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
740 +)))
741 +* (((
742 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
743 +)))
651 651  
652 -=== 2.9.4  Replace the battery ===
745 + [[image:image-20220606171726-9.png]]
653 653  
747 +
748 +
749 +=== 2.11.2 ​Battery Note ===
750 +
654 654  (((
655 -The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
752 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
656 656  )))
657 657  
658 658  
659 659  
660 -= 3. ​ Access NB-IoT Module =
757 +=== 2.11.3 Replace the battery ===
661 661  
662 662  (((
663 -Users can directly access the AT command set of the NB-IoT module.
760 +If Battery is lower than 2.7v, user should replace the battery of LSE01.
664 664  )))
665 665  
666 666  (((
667 -The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
764 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
668 668  )))
669 669  
670 -[[image:1657261278785-153.png]]
767 +(((
768 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
769 +)))
671 671  
672 672  
673 673  
674 -= 4.  Using the AT Commands =
773 += 3. Using the AT Commands =
675 675  
676 -== 4.1  Access AT Commands ==
775 +== 3.1 Access AT Commands ==
677 677  
678 -See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
679 679  
778 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
680 680  
681 -AT+<CMD>?  : Help on <CMD>
780 +[[image:1654501986557-872.png||height="391" width="800"]]
682 682  
683 -AT+<CMD>         : Run <CMD>
684 684  
685 -AT+<CMD>=<value> : Set the value
783 +Or if you have below board, use below connection:
686 686  
687 -AT+<CMD>=?  : Get the value
688 688  
786 +[[image:1654502005655-729.png||height="503" width="801"]]
689 689  
788 +
789 +
790 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
791 +
792 +
793 + [[image:1654502050864-459.png||height="564" width="806"]]
794 +
795 +
796 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
797 +
798 +
799 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
800 +
801 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
802 +
803 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
804 +
805 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
806 +
807 +
690 690  (% style="color:#037691" %)**General Commands**(%%)      
691 691  
692 -AT  : Attention       
810 +(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
693 693  
694 -AT?  : Short Help     
812 +(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
695 695  
696 -ATZ  : MCU Reset    
814 +(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
697 697  
698 -AT+TDC  : Application Data Transmission Interval
816 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
699 699  
700 -AT+CFG  : Print all configurations
701 701  
702 -AT+CFGMOD           : Working mode selection
819 +(% style="color:#037691" %)**Keys, IDs and EUIs management**
703 703  
704 -AT+INTMOD            : Set the trigger interrupt mode
821 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
705 705  
706 -AT+5VT  : Set extend the time of 5V power  
823 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
707 707  
708 -AT+PRO  : Choose agreement
825 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
709 709  
710 -AT+WEIGRE  : Get weight or set weight to 0
827 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
711 711  
712 -AT+WEIGAP  : Get or Set the GapValue of weight
829 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
713 713  
714 -AT+RXDL  : Extend the sending and receiving time
831 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
715 715  
716 -AT+CNTFAC  : Get or set counting parameters
833 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
717 717  
718 -AT+SERVADDR  : Server Address
835 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
719 719  
837 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
720 720  
721 -(% style="color:#037691" %)**COAP Management**      
839 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
722 722  
723 -AT+URI            : Resource parameters
841 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
724 724  
843 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
725 725  
726 -(% style="color:#037691" %)**UDP Management**
845 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
727 727  
728 -AT+CFM          : Upload confirmation mode (only valid for UDP)
847 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
729 729  
849 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
730 730  
731 -(% style="color:#037691" %)**MQTT Management**
851 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
732 732  
733 -AT+CLIENT               : Get or Set MQTT client
734 734  
735 -AT+UNAME  : Get or Set MQTT Username
854 +(% style="color:#037691" %)**LoRa Network Management**
736 736  
737 -AT+PWD                  : Get or Set MQTT password
856 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
738 738  
739 -AT+PUBTOPI : Get or Set MQTT publish topic
858 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
740 740  
741 -AT+SUBTOPIC  : Get or Set MQTT subscription topic
860 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
742 742  
862 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
743 743  
744 -(% style="color:#037691" %)**Information**          
864 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
745 745  
746 -AT+FDR  : Factory Data Reset
866 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
747 747  
748 -AT+PWOR : Serial Access Password
868 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
749 749  
870 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
750 750  
872 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
751 751  
752 -= ​5.  FAQ =
874 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
753 753  
754 -== 5.1 How to Upgrade Firmware ==
876 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
755 755  
878 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
756 756  
880 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
881 +
882 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
883 +
884 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
885 +
886 +
887 +(% style="color:#037691" %)**Information** 
888 +
889 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
890 +
891 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
892 +
893 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
894 +
895 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
896 +
897 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
898 +
899 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
900 +
901 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
902 +
903 +
904 += ​4. FAQ =
905 +
906 +== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
907 +
757 757  (((
758 -User can upgrade the firmware for 1) bug fix, 2) new feature release.
909 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
910 +When downloading the images, choose the required image file for download. ​
759 759  )))
760 760  
761 761  (((
762 -Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
914 +
763 763  )))
764 764  
765 765  (((
766 -(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
918 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
767 767  )))
768 768  
921 +(((
922 +
923 +)))
769 769  
925 +(((
926 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
927 +)))
770 770  
771 -= 6.  Trouble Shooting =
929 +(((
930 +
931 +)))
772 772  
773 -== 6.1  ​Connection problem when uploading firmware ==
933 +(((
934 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
935 +)))
774 774  
937 +[[image:image-20220606154726-3.png]]
775 775  
776 -(% class="wikigeneratedid" %)
939 +
940 +When you use the TTN network, the US915 frequency bands use are:
941 +
942 +* 903.9 - SF7BW125 to SF10BW125
943 +* 904.1 - SF7BW125 to SF10BW125
944 +* 904.3 - SF7BW125 to SF10BW125
945 +* 904.5 - SF7BW125 to SF10BW125
946 +* 904.7 - SF7BW125 to SF10BW125
947 +* 904.9 - SF7BW125 to SF10BW125
948 +* 905.1 - SF7BW125 to SF10BW125
949 +* 905.3 - SF7BW125 to SF10BW125
950 +* 904.6 - SF8BW500
951 +
777 777  (((
778 -(% style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]]
953 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
779 779  )))
780 780  
956 +(% class="box infomessage" %)
957 +(((
958 +**AT+CHE=2**
959 +)))
781 781  
961 +(% class="box infomessage" %)
962 +(((
963 +**ATZ**
964 +)))
782 782  
783 -== 6.2  AT Command input doesn't work ==
966 +(((
967 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
968 +)))
784 784  
785 785  (((
786 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
971 +
787 787  )))
788 788  
974 +(((
975 +The **AU915** band is similar. Below are the AU915 Uplink Channels.
976 +)))
789 789  
978 +[[image:image-20220606154825-4.png]]
790 790  
791 -= 7. ​ Order Info =
792 792  
793 793  
794 -Part Number**:** (% style="color:#4f81bd" %)**NSE01**
982 += 5. Trouble Shooting =
795 795  
984 +== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
796 796  
986 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
987 +
988 +
989 +== 5.2 AT Command input doesn’t work ==
990 +
991 +(((
992 +In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
993 +)))
994 +
995 +
996 +== 5.3 Device rejoin in at the second uplink packet ==
997 +
998 +(% style="color:#4f81bd" %)**Issue describe as below:**
999 +
1000 +[[image:1654500909990-784.png]]
1001 +
1002 +
1003 +(% style="color:#4f81bd" %)**Cause for this issue:**
1004 +
1005 +(((
1006 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
1007 +)))
1008 +
1009 +
1010 +(% style="color:#4f81bd" %)**Solution: **
1011 +
1012 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1013 +
1014 +[[image:1654500929571-736.png||height="458" width="832"]]
1015 +
1016 +
1017 += 6. ​Order Info =
1018 +
1019 +
1020 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1021 +
1022 +
1023 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1024 +
1025 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1026 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1027 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1028 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1029 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1030 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1031 +* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1032 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1033 +
1034 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1035 +
1036 +* (% style="color:red" %)**4**(%%): 4000mAh battery
1037 +* (% style="color:red" %)**8**(%%): 8500mAh battery
1038 +
797 797  (% class="wikigeneratedid" %)
798 798  (((
799 799  
800 800  )))
801 801  
802 -= 8.  Packing Info =
1044 += 7. Packing Info =
803 803  
804 804  (((
805 805  
806 806  
807 807  (% style="color:#037691" %)**Package Includes**:
1050 +)))
808 808  
809 -
810 -* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
811 -* External antenna x 1
1052 +* (((
1053 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
812 812  )))
813 813  
814 814  (((
... ... @@ -815,20 +815,30 @@
815 815  
816 816  
817 817  (% style="color:#037691" %)**Dimension and weight**:
1060 +)))
818 818  
819 -
820 -* Size: 195 x 125 x 55 mm
821 -* Weight:   420g
1062 +* (((
1063 +Device Size: cm
822 822  )))
1065 +* (((
1066 +Device Weight: g
1067 +)))
1068 +* (((
1069 +Package Size / pcs : cm
1070 +)))
1071 +* (((
1072 +Weight / pcs : g
823 823  
824 -(((
825 -
826 826  
827 -
828 828  
829 829  )))
830 830  
831 -= 9.  Support =
1078 += 8. Support =
832 832  
833 833  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
834 834  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1082 +
1083 +
1084 +~)~)~)
1085 +~)~)~)
1086 +~)~)~)
1657245163077-232.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
image-20220610172436-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -370.3 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -102.7 KB
Content