Changes for page NDDS75 -- NB-IoT Distance Detect Sensor User Manual
Last modified by Bei Jinggeng on 2024/05/31 09:53
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 24 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - NSE01NB-IoTSoil Moisture & EC Sensor User Manual1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -3,7 +3,9 @@ 3 3 4 4 5 5 6 +**Contents:** 6 6 8 +{{toc/}} 7 7 8 8 9 9 ... ... @@ -10,805 +10,1045 @@ 10 10 11 11 12 12 15 += 1. Introduction = 13 13 14 - **TableofContents:**17 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 15 15 19 +((( 20 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 21 +))) 16 16 23 +((( 24 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 25 +))) 17 17 27 +((( 28 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 29 +))) 18 18 19 - 20 - 21 -= 1. Introduction = 22 - 23 -== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 24 - 25 25 ((( 26 - 32 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 33 +))) 27 27 28 -Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 29 - 30 -It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 31 - 32 -The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 33 - 34 -NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years. 35 - 36 - 35 +((( 36 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 37 37 ))) 38 38 39 + 39 39 [[image:1654503236291-817.png]] 40 40 41 41 42 -[[image:165 7245163077-232.png]]43 +[[image:1654503265560-120.png]] 43 43 44 44 45 45 46 46 == 1.2 Features == 47 47 48 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 49 +* LoRaWAN 1.0.3 Class A 50 +* Ultra low power consumption 49 49 * Monitor Soil Moisture 50 50 * Monitor Soil Temperature 51 51 * Monitor Soil Conductivity 54 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 52 52 * AT Commands to change parameters 53 53 * Uplink on periodically 54 54 * Downlink to change configure 55 55 * IP66 Waterproof Enclosure 56 -* Ultra-Low Power consumption 57 -* AT Commands to change parameters 58 -* Micro SIM card slot for NB-IoT SIM 59 -* 8500mAh Battery for long term use 59 +* 4000mAh or 8500mAh Battery for long term use 60 60 61 +== 1.3 Specification == 61 61 63 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 62 62 65 +[[image:image-20220606162220-5.png]] 63 63 64 -== 1.3 Specification == 65 65 66 66 67 - (% style="color:#037691"%)**Common DC Characteristics:**69 +== 1.4 Applications == 68 68 69 -* Supply Voltage: 2.1v ~~ 3.6v 70 -* Operating Temperature: -40 ~~ 85°C 71 +* Smart Agriculture 71 71 73 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 74 + 72 72 76 +== 1.5 Firmware Change log == 73 73 74 -(% style="color:#037691" %)**NB-IoT Spec:** 75 75 76 -* - B1 @H-FDD: 2100MHz 77 -* - B3 @H-FDD: 1800MHz 78 -* - B8 @H-FDD: 900MHz 79 -* - B5 @H-FDD: 850MHz 80 -* - B20 @H-FDD: 800MHz 81 -* - B28 @H-FDD: 700MHz 79 +**LSE01 v1.0 :** Release 82 82 83 83 84 84 85 - Probe(% style="color:#037691"%)**Specification:**83 += 2. Configure LSE01 to connect to LoRaWAN network = 86 86 87 - MeasureVolume:Baseonthe centra pin oftheprobe, a cylinderwith 7cm diameter and 10cm height.85 +== 2.1 How it works == 88 88 89 -[[image:image-20220708101224-1.png]] 87 +((( 88 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 89 +))) 90 90 91 +((( 92 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 93 +))) 91 91 92 92 93 -== 1.4 Applications == 94 94 95 - *SmartAgriculture97 +== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 96 96 97 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 98 - 99 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 99 99 100 -== 1.5 Pin Definitions == 101 101 102 +[[image:1654503992078-669.png]] 102 102 103 -[[image:1657246476176-652.png]] 104 104 105 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 105 105 106 106 107 - = 2. UseNSE01 tocommunicate withIoTServer=108 +**Step 1**: Create a device in TTN with the OTAA keys from LSE01. 108 108 109 - ==2.1Howitworks==110 +Each LSE01 is shipped with a sticker with the default device EUI as below: 110 110 112 +[[image:image-20220606163732-6.jpeg]] 111 111 114 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 115 + 116 +**Add APP EUI in the application** 117 + 118 + 119 +[[image:1654504596150-405.png]] 120 + 121 + 122 + 123 +**Add APP KEY and DEV EUI** 124 + 125 +[[image:1654504683289-357.png]] 126 + 127 + 128 + 129 +**Step 2**: Power on LSE01 130 + 131 + 132 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 133 + 134 +[[image:image-20220606163915-7.png]] 135 + 136 + 137 +**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 138 + 139 +[[image:1654504778294-788.png]] 140 + 141 + 142 + 143 +== 2.3 Uplink Payload == 144 + 145 +(% class="wikigeneratedid" %) 146 +=== === 147 + 148 +=== 2.3.1 MOD~=0(Default Mode) === 149 + 150 +LSE01 will uplink payload via LoRaWAN with below payload format: 151 + 112 112 ((( 113 - The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware inNSE01 will get environment data from sensors and send the value to local NB-IoT networkviathe NB-IoT module. The NB-IoT network will forwardthis valueto IoTserverviathe protocoldefinedbyNSE01.153 +Uplink payload includes in total 11 bytes. 114 114 ))) 115 115 156 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 157 +|((( 158 +**Size** 116 116 117 -((( 118 -The diagram below shows the working flow in default firmware of NSE01: 160 +**(bytes)** 161 +)))|**2**|**2**|**2**|**2**|**2**|**1** 162 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 163 +Temperature 164 + 165 +(Reserve, Ignore now) 166 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 167 +MOD & Digital Interrupt 168 + 169 +(Optional) 119 119 ))) 120 120 121 -[[image:image-20220708101605-2.png]] 122 122 173 + 174 +=== 2.3.2 MOD~=1(Original value) === 175 + 176 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 177 + 178 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 179 +|((( 180 +**Size** 181 + 182 +**(bytes)** 183 +)))|**2**|**2**|**2**|**2**|**2**|**1** 184 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 185 +Temperature 186 + 187 +(Reserve, Ignore now) 188 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 189 +MOD & Digital Interrupt 190 + 191 +(Optional) 192 +))) 193 + 194 + 195 + 196 +=== 2.3.3 Battery Info === 197 + 123 123 ((( 124 - 199 +Check the battery voltage for LSE01. 125 125 ))) 126 126 202 +((( 203 +Ex1: 0x0B45 = 2885mV 204 +))) 127 127 206 +((( 207 +Ex2: 0x0B49 = 2889mV 208 +))) 128 128 129 -== 2.2 Configure the NSE01 == 130 130 131 131 132 -=== 2. 2.1TestRequirement===212 +=== 2.3.4 Soil Moisture === 133 133 214 +((( 215 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 216 +))) 134 134 135 -To use NSE01 in your city, make sure meet below requirements: 218 +((( 219 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 220 +))) 136 136 137 - * Your local operator has already distributed a NB-IoT Network there.138 - *The local NB-IoT network used the band that NSE01 supports.139 - * Your operator is able to distribute the data received in their NB-IoT network to your IoT server.222 +((( 223 + 224 +))) 140 140 141 141 ((( 142 - Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%)or raw UDP((% style="color:red"%)120.24.4.116:5601)(%%)or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)orTCP((% style="color:red"%)120.24.4.116:5600)(%%)protocol to send data to the test server227 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 143 143 ))) 144 144 145 145 146 -[[image:1657249419225-449.png]] 147 147 232 +=== 2.3.5 Soil Temperature === 148 148 234 +((( 235 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 236 +))) 149 149 150 -=== 2.2.2 Insert SIM card === 238 +((( 239 +**Example**: 240 +))) 151 151 152 -Insert the NB-IoT Card get from your provider. 242 +((( 243 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 244 +))) 153 153 154 -User need to take out the NB-IoT module and insert the SIM card like below: 246 +((( 247 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 248 +))) 155 155 156 156 157 -[[image:1657249468462-536.png]] 158 158 252 +=== 2.3.6 Soil Conductivity (EC) === 159 159 254 +((( 255 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 256 +))) 160 160 161 -=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 258 +((( 259 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 260 +))) 162 162 163 163 ((( 263 +Generally, the EC value of irrigation water is less than 800uS / cm. 264 +))) 265 + 164 164 ((( 165 - Userneed to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.267 + 166 166 ))) 269 + 270 +((( 271 + 167 167 ))) 168 168 274 +=== 2.3.7 MOD === 169 169 170 - **Connection:**276 +Firmware version at least v2.1 supports changing mode. 171 171 172 - (% style="background-color:yellow"%)USB TTL GND <~-~-~-~-> GND278 +For example, bytes[10]=90 173 173 174 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~->UART_RXD280 +mod=(bytes[10]>>7)&0x01=1. 175 175 176 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 177 177 283 +**Downlink Command:** 178 178 179 -I nthePC,usebelowserial tool settings:285 +If payload = 0x0A00, workmode=0 180 180 181 -* Baud: (% style="color:green" %)**9600** 182 -* Data bits:** (% style="color:green" %)8(%%)** 183 -* Stop bits: (% style="color:green" %)**1** 184 -* Parity: (% style="color:green" %)**None** 185 -* Flow Control: (% style="color:green" %)**None** 287 +If** **payload =** **0x0A01, workmode=1 186 186 289 + 290 + 291 +=== 2.3.8 Decode payload in The Things Network === 292 + 293 +While using TTN network, you can add the payload format to decode the payload. 294 + 295 + 296 +[[image:1654505570700-128.png]] 297 + 187 187 ((( 188 - Make sure theswitch is in FLASHposition,then powerondevice by connecting the jumperonNSE01. NSE01 will output system infoonce poweronasbelow, we can enter the(% style="color:green" %)**password:12345678**(%%) to access AT Command input.299 +The payload decoder function for TTN is here: 189 189 ))) 190 190 191 -[[image:image-20220708110657-3.png]] 302 +((( 303 +LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 304 +))) 192 192 193 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 194 194 195 195 308 +== 2.4 Uplink Interval == 196 196 197 - ===2.2.4APprotocoltouplink data ===310 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 198 198 199 -(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 200 200 201 201 202 - **Usebelowcommands:**314 +== 2.5 Downlink Payload == 203 203 204 -* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 205 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 206 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 316 +By default, LSE50 prints the downlink payload to console port. 207 207 208 - For parameter description, pleaserefer to AT command set318 +[[image:image-20220606165544-8.png]] 209 209 210 -[[image:1657249793983-486.png]] 211 211 321 +**Examples:** 212 212 213 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 214 214 215 - [[image:1657249831934-534.png]]324 +* **Set TDC** 216 216 326 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 217 217 328 +Payload: 01 00 00 1E TDC=30S 218 218 219 - === 2.2.5 Use UDPprotocoltouplinkdata(Defaultprotocol)===330 +Payload: 01 00 00 3C TDC=60S 220 220 221 -This feature is supported since firmware version v1.0.1 222 222 333 +* **Reset** 223 223 224 -* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 225 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 226 -* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 335 +If payload = 0x04FF, it will reset the LSE01 227 227 228 -[[image:1657249864775-321.png]] 229 229 338 +* **CFM** 230 230 231 - [[image:1657249930215-289.png]]340 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 232 232 233 233 234 234 235 -== =2.2.6Use MQTT protocoltouplinkdata ===344 +== 2.6 Show Data in DataCake IoT Server == 236 236 237 -Th isfeature is supportedsincefirmwareversionv110346 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 238 238 239 239 240 -* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 241 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 242 -* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 243 -* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 244 -* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 245 -* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 246 -* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 349 +**Step 1**: Be sure that your device is programmed and properly connected to the network at this time. 247 247 248 - [[image:1657249978444-674.png]]351 +**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 249 249 250 250 251 -[[image:165 7249990869-686.png]]354 +[[image:1654505857935-743.png]] 252 252 253 253 254 -((( 255 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 256 -))) 357 +[[image:1654505874829-548.png]] 257 257 359 +Step 3: Create an account or log in Datacake. 258 258 361 +Step 4: Search the LSE01 and add DevEUI. 259 259 260 -=== 2.2.7 Use TCP protocol to uplink data === 261 261 262 - This feature is supported since firmwareversion v110364 +[[image:1654505905236-553.png]] 263 263 264 264 265 -* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 266 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 367 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 267 267 268 -[[image:165 7250217799-140.png]]369 +[[image:1654505925508-181.png]] 269 269 270 270 271 -[[image:1657250255956-604.png]] 272 272 373 +== 2.7 Frequency Plans == 273 273 375 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 274 274 275 -=== 2.2.8 Change Update Interval === 276 276 277 - Usercanusebelow command to change the(% style="color:green" %)**uplinkinterval**.378 +=== 2.7.1 EU863-870 (EU868) === 278 278 279 - *(% style="color:blue" %)**AT+TDC=600** (%%)~/~/ SetUpdate Intervalto 600s380 +(% style="color:#037691" %)** Uplink:** 280 280 281 -((( 282 -(% style="color:red" %)**NOTE:** 283 -))) 382 +868.1 - SF7BW125 to SF12BW125 284 284 285 -((( 286 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 287 -))) 384 +868.3 - SF7BW125 to SF12BW125 and SF7BW250 288 288 386 +868.5 - SF7BW125 to SF12BW125 289 289 388 +867.1 - SF7BW125 to SF12BW125 290 290 291 - == 2.3UplinkPayload==390 +867.3 - SF7BW125 to SF12BW125 292 292 293 - Inthismode,uplink payload includes intotal18 bytes392 +867.5 - SF7BW125 to SF12BW125 294 294 295 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 296 -|=(% style="width: 50px;" %)((( 297 -**Size(bytes)** 298 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1** 299 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]] 394 +867.7 - SF7BW125 to SF12BW125 300 300 301 - Ifweusethe MQTT client tosubscribe to this MQTT topic, we can see the following information when the NSE01uplink data.396 +867.9 - SF7BW125 to SF12BW125 302 302 398 +868.8 - FSK 303 303 304 -[[image:image-20220708111918-4.png]] 305 305 401 +(% style="color:#037691" %)** Downlink:** 306 306 307 - Thepayloadis ASCII string,representativeameHEX:403 +Uplink channels 1-9 (RX1) 308 308 309 - 0x72403155615900640c7817075e0a8c02f900where:405 +869.525 - SF9BW125 (RX2 downlink only) 310 310 311 -* Device ID: 0x 724031556159 = 724031556159 312 -* Version: 0x0064=100=1.0.0 313 313 314 -* BAT: 0x0c78 = 3192 mV = 3.192V 315 -* Singal: 0x17 = 23 316 -* Soil Moisture: 0x075e= 1886 = 18.86 % 317 -* Soil Temperature:0x0a8c =2700=27 °C 318 -* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 319 -* Interrupt: 0x00 = 0 320 320 409 +=== 2.7.2 US902-928(US915) === 321 321 411 +Used in USA, Canada and South America. Default use CHE=2 322 322 413 +(% style="color:#037691" %)**Uplink:** 323 323 324 - == 2.4PayloadExplanation andSensorInterface==415 +903.9 - SF7BW125 to SF10BW125 325 325 417 +904.1 - SF7BW125 to SF10BW125 326 326 327 - === 2.4.1DeviceID===419 +904.3 - SF7BW125 to SF10BW125 328 328 329 - Bydefault,theDevice ID equaltothe last 6 bytes of IMEI.421 +904.5 - SF7BW125 to SF10BW125 330 330 331 - Usercanuse(% style="color:blue"%)**AT+DEUI**(%%) to set Device ID423 +904.7 - SF7BW125 to SF10BW125 332 332 333 - **Example:**425 +904.9 - SF7BW125 to SF10BW125 334 334 335 - AT+DEUI=A84041F15612427 +905.1 - SF7BW125 to SF10BW125 336 336 337 - TheDevice ID is stored in a none-erasearea,Upgradethe firmwareorrun AT+FDR won't erase Device ID.429 +905.3 - SF7BW125 to SF10BW125 338 338 339 339 432 +(% style="color:#037691" %)**Downlink:** 340 340 341 - ===2.4.2VersionInfo===434 +923.3 - SF7BW500 to SF12BW500 342 342 343 - Specifythesoftware version:0x64=100,means firmware version1.00.436 +923.9 - SF7BW500 to SF12BW500 344 344 345 - For example: 0x00 64:this device is NSE01with firmware version1.0.0.438 +924.5 - SF7BW500 to SF12BW500 346 346 440 +925.1 - SF7BW500 to SF12BW500 347 347 442 +925.7 - SF7BW500 to SF12BW500 348 348 349 - ===2.4.3atteryInfo===444 +926.3 - SF7BW500 to SF12BW500 350 350 351 -((( 352 -Check the battery voltage for LSE01. 353 -))) 446 +926.9 - SF7BW500 to SF12BW500 354 354 355 -((( 356 -Ex1: 0x0B45 = 2885mV 357 -))) 448 +927.5 - SF7BW500 to SF12BW500 358 358 359 -((( 360 -Ex2: 0x0B49 = 2889mV 361 -))) 450 +923.3 - SF12BW500(RX2 downlink only) 362 362 363 363 364 364 365 -=== 2. 4.4SignalStrength===454 +=== 2.7.3 CN470-510 (CN470) === 366 366 367 - NB-IoT NetworksignalStrength.456 +Used in China, Default use CHE=1 368 368 369 - **Ex1:0x1d= 29**458 +(% style="color:#037691" %)**Uplink:** 370 370 371 - (%style="color:blue" %)**0**(%%)-113dBmorless460 +486.3 - SF7BW125 to SF12BW125 372 372 373 - (%style="color:blue"%)**1**(%%)-111dBm462 +486.5 - SF7BW125 to SF12BW125 374 374 375 - (%style="color:blue"%)**2...30**(%%)-109dBm... -53dBm464 +486.7 - SF7BW125 to SF12BW125 376 376 377 - (%style="color:blue"%)**31** (%%) -51dBmorgreater466 +486.9 - SF7BW125 to SF12BW125 378 378 379 - (%style="color:blue"%)**99**(%%) Notknownor not detectable468 +487.1 - SF7BW125 to SF12BW125 380 380 470 +487.3 - SF7BW125 to SF12BW125 381 381 472 +487.5 - SF7BW125 to SF12BW125 382 382 383 - === 2.4.5SoilMoisture===474 +487.7 - SF7BW125 to SF12BW125 384 384 385 -((( 386 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 387 -))) 388 388 389 -((( 390 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 391 -))) 477 +(% style="color:#037691" %)**Downlink:** 392 392 393 -((( 394 - 395 -))) 479 +506.7 - SF7BW125 to SF12BW125 396 396 397 -((( 398 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 399 -))) 481 +506.9 - SF7BW125 to SF12BW125 400 400 483 +507.1 - SF7BW125 to SF12BW125 401 401 485 +507.3 - SF7BW125 to SF12BW125 402 402 403 - === 2.4.6SoilTemperature===487 +507.5 - SF7BW125 to SF12BW125 404 404 405 -((( 406 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 407 -))) 489 +507.7 - SF7BW125 to SF12BW125 408 408 409 -((( 410 -**Example**: 411 -))) 491 +507.9 - SF7BW125 to SF12BW125 412 412 413 -((( 414 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 415 -))) 493 +508.1 - SF7BW125 to SF12BW125 416 416 417 -((( 418 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 419 -))) 495 +505.3 - SF12BW125 (RX2 downlink only) 420 420 421 421 422 422 423 -=== 2. 4.7Soil Conductivity(EC) ===499 +=== 2.7.4 AU915-928(AU915) === 424 424 425 -((( 426 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 427 -))) 501 +Default use CHE=2 428 428 429 -((( 430 -For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 431 -))) 503 +(% style="color:#037691" %)**Uplink:** 432 432 433 -((( 434 -Generally, the EC value of irrigation water is less than 800uS / cm. 435 -))) 505 +916.8 - SF7BW125 to SF12BW125 436 436 437 -((( 438 - 439 -))) 507 +917.0 - SF7BW125 to SF12BW125 440 440 441 -((( 442 - 443 -))) 509 +917.2 - SF7BW125 to SF12BW125 444 444 445 - === 2.4.8DigitalInterrupt===511 +917.4 - SF7BW125 to SF12BW125 446 446 447 - Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods.Whenthere is a trigger, the NSE01will send a packettothe server.513 +917.6 - SF7BW125 to SF12BW125 448 448 449 - Thecommandis:515 +917.8 - SF7BW125 to SF12BW125 450 450 451 - (%style="color:blue"%)**AT+INTMOD=3**(%%) ~/~/(more info aboutINMOD please refer [[**AT CommandManual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**517 +918.0 - SF7BW125 to SF12BW125 452 452 519 +918.2 - SF7BW125 to SF12BW125 453 453 454 -The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up. 455 455 522 +(% style="color:#037691" %)**Downlink:** 456 456 457 - Example:524 +923.3 - SF7BW500 to SF12BW500 458 458 459 -0 x(00):Normaluplink packet.526 +923.9 - SF7BW500 to SF12BW500 460 460 461 -0 x(01):InterruptUplink Packet.528 +924.5 - SF7BW500 to SF12BW500 462 462 530 +925.1 - SF7BW500 to SF12BW500 463 463 532 +925.7 - SF7BW500 to SF12BW500 464 464 465 - ===2.4.9+5VOutput===534 +926.3 - SF7BW500 to SF12BW500 466 466 467 - NSE01willenable +5Voutput beforeall sampling and disable the +5v after all sampling.536 +926.9 - SF7BW500 to SF12BW500 468 468 538 +927.5 - SF7BW500 to SF12BW500 469 469 470 - The5Voutput time canbe controlled byAT Command.540 +923.3 - SF12BW500(RX2 downlink only) 471 471 472 -(% style="color:blue" %)**AT+5VT=1000** 473 473 474 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 475 475 544 +=== 2.7.5 AS920-923 & AS923-925 (AS923) === 476 476 546 +(% style="color:#037691" %)**Default Uplink channel:** 477 477 478 - ==2.5DownlinkPayload ==548 +923.2 - SF7BW125 to SF10BW125 479 479 480 - Bydefault,NSE01prints the downlinkpayload to console port.550 +923.4 - SF7BW125 to SF10BW125 481 481 482 -[[image:image-20220708133731-5.png]] 483 483 553 +(% style="color:#037691" %)**Additional Uplink Channel**: 484 484 485 -((( 486 -(% style="color:blue" %)**Examples:** 487 -))) 555 +(OTAA mode, channel added by JoinAccept message) 488 488 489 -((( 490 - 491 -))) 557 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 492 492 493 -* ((( 494 -(% style="color:blue" %)**Set TDC** 495 -))) 559 +922.2 - SF7BW125 to SF10BW125 496 496 497 -((( 498 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 499 -))) 561 +922.4 - SF7BW125 to SF10BW125 500 500 501 -((( 502 -Payload: 01 00 00 1E TDC=30S 503 -))) 563 +922.6 - SF7BW125 to SF10BW125 504 504 505 -((( 506 -Payload: 01 00 00 3C TDC=60S 507 -))) 565 +922.8 - SF7BW125 to SF10BW125 508 508 509 -((( 510 - 511 -))) 567 +923.0 - SF7BW125 to SF10BW125 512 512 513 -* ((( 514 -(% style="color:blue" %)**Reset** 515 -))) 569 +922.0 - SF7BW125 to SF10BW125 516 516 517 -((( 518 -If payload = 0x04FF, it will reset the NSE01 519 -))) 520 520 572 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 521 521 522 - *(%style="color:blue"%)**INTMOD**574 +923.6 - SF7BW125 to SF10BW125 523 523 524 - Downlink Payload: 06000003,SetAT+INTMOD=3576 +923.8 - SF7BW125 to SF10BW125 525 525 578 +924.0 - SF7BW125 to SF10BW125 526 526 580 +924.2 - SF7BW125 to SF10BW125 527 527 528 - ==2.6LEDIndicator==582 +924.4 - SF7BW125 to SF10BW125 529 529 530 -((( 531 -The NSE01 has an internal LED which is to show the status of different state. 584 +924.6 - SF7BW125 to SF10BW125 532 532 533 533 534 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 535 -* Then the LED will be on for 1 second means device is boot normally. 536 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 537 -* For each uplink probe, LED will be on for 500ms. 538 -))) 587 +(% style="color:#037691" %)** Downlink:** 539 539 589 +Uplink channels 1-8 (RX1) 540 540 591 +923.2 - SF10BW125 (RX2) 541 541 542 542 543 -== 2.7 Installation in Soil == 544 544 545 - __**Measurementthesoilsurface**__595 +=== 2.7.6 KR920-923 (KR920) === 546 546 547 - Choosethe proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as originaldensity.Vertical insert the probe into the soil to be measured. Make surenot shake wheninserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]597 +Default channel: 548 548 549 - [[image:1657259653666-883.png]]599 +922.1 - SF7BW125 to SF12BW125 550 550 601 +922.3 - SF7BW125 to SF12BW125 551 551 552 -((( 553 - 603 +922.5 - SF7BW125 to SF12BW125 554 554 555 -((( 556 -Dig a hole with diameter > 20CM. 557 -))) 558 558 559 -((( 560 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 561 -))) 562 -))) 606 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 563 563 564 - [[image:1654506665940-119.png]]608 +922.1 - SF7BW125 to SF12BW125 565 565 566 -((( 567 - 568 -))) 610 +922.3 - SF7BW125 to SF12BW125 569 569 612 +922.5 - SF7BW125 to SF12BW125 570 570 571 - ==2.8FirmwareChange Log==614 +922.7 - SF7BW125 to SF12BW125 572 572 616 +922.9 - SF7BW125 to SF12BW125 573 573 574 - DownloadURL&FirmwareChange log618 +923.1 - SF7BW125 to SF12BW125 575 575 576 - [[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]620 +923.3 - SF7BW125 to SF12BW125 577 577 578 578 579 - UpgradeInstruction:[[Upgrade_Firmware>>||anchor="H"]]623 +(% style="color:#037691" %)**Downlink:** 580 580 625 +Uplink channels 1-7(RX1) 581 581 627 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 582 582 583 -== 2.9 Battery Analysis == 584 584 585 -=== 2.9.1 Battery Type === 586 586 631 +=== 2.7.7 IN865-867 (IN865) === 587 587 588 - TheNSE01 battery isa combination of an 8500mAh Li/SOCI2 Batteryand a Super Capacitor. The battery is none-rechargeable battery type with a low dischargerate (<2%per year).This type of battery is commonly usedinIoT devices such as water meter.633 +(% style="color:#037691" %)** Uplink:** 589 589 635 +865.0625 - SF7BW125 to SF12BW125 590 590 591 - Thebatteryisdesignedtolast for several years depends on the actually use environment and update interval.637 +865.4025 - SF7BW125 to SF12BW125 592 592 639 +865.9850 - SF7BW125 to SF12BW125 593 593 594 -The battery related documents as below: 595 595 596 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 597 -* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 598 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 642 +(% style="color:#037691" %) **Downlink:** 599 599 644 +Uplink channels 1-3 (RX1) 645 + 646 +866.550 - SF10BW125 (RX2) 647 + 648 + 649 + 650 + 651 +== 2.8 LED Indicator == 652 + 653 +The LSE01 has an internal LED which is to show the status of different state. 654 + 655 +* Blink once when device power on. 656 +* Solid ON for 5 seconds once device successful Join the network. 657 +* Blink once when device transmit a packet. 658 + 659 + 660 + 661 +== 2.9 Installation in Soil == 662 + 663 +**Measurement the soil surface** 664 + 665 + 666 +[[image:1654506634463-199.png]] 667 + 600 600 ((( 601 -[[image:image-20220708140453-6.png]] 669 +((( 670 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 602 602 ))) 672 +))) 603 603 604 604 675 +[[image:1654506665940-119.png]] 605 605 606 -=== 2.9.2 Power consumption Analyze === 677 +((( 678 +Dig a hole with diameter > 20CM. 679 +))) 607 607 608 608 ((( 609 - Draginobattery powered productare allrunsinLow Powermode. Wehavean update battery calculator whichbase onthemeasurementof the realdevice. User canuse this calculatorto checkthebatterylife andcalculatethe batterylifeif want to use different transmit interval.682 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 610 610 ))) 611 611 612 612 686 +== 2.10 Firmware Change Log == 687 + 613 613 ((( 614 - Instructiontouseasbelow:689 +**Firmware download link:** 615 615 ))) 616 616 617 617 ((( 618 - (% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:[[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]693 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 619 619 ))) 620 620 696 +((( 697 + 698 +))) 621 621 622 622 ((( 623 - (% style="color:blue" %)**Step2: **(%%)Openithoose701 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 624 624 ))) 625 625 626 - *(((627 - ProductModel704 +((( 705 + 628 628 ))) 629 -* ((( 630 -Uplink Interval 707 + 708 +((( 709 +**V1.0.** 631 631 ))) 632 -* ((( 633 -Working Mode 634 -))) 635 635 636 636 ((( 637 - And theLifeexpectation in difference casewill be shown on the right.713 +Release 638 638 ))) 639 639 640 -[[image:image-20220708141352-7.jpeg]] 641 641 717 +== 2.11 Battery Analysis == 642 642 719 +=== 2.11.1 Battery Type === 643 643 644 -=== 2.9.3 Battery Note === 721 +((( 722 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 723 +))) 645 645 646 646 ((( 647 -The Li-SICObattery is designedfor small current/ longperiod application. It isnotgood to use a high current,short period transmit method. Therecommendedminimum period for use ofthis batteryis5minutes. Ifyou useshorterperiod time to transmitLoRa,thenthe battery life may be decreased.726 +The battery is designed to last for more than 5 years for the LSN50. 648 648 ))) 649 649 729 +((( 730 +((( 731 +The battery-related documents are as below: 732 +))) 733 +))) 650 650 735 +* ((( 736 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 737 +))) 738 +* ((( 739 +[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 740 +))) 741 +* ((( 742 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 743 +))) 651 651 652 - ===2.9.4 Replacethe battery ===745 + [[image:image-20220606171726-9.png]] 653 653 747 + 748 + 749 +=== 2.11.2 Battery Note === 750 + 654 654 ((( 655 -The defaultbatterypackofNSE01includesaER26500 plussupercapacitor. Ifusercan'tfind this pack locally,theycanfindER26500 orquivalence withoutthe SPC1520 capacitor, which will alsowork inmostcase. TheSPCcanlarge thebatterylifeforhigh frequency use(update periodbelow5minutes).752 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 656 656 ))) 657 657 658 658 659 659 660 -= 3. AccessNB-IoTModule =757 +=== 2.11.3 Replace the battery === 661 661 662 662 ((( 663 - Userscan directlyaccesstheAT command setoftheNB-IoTmodule.760 +If Battery is lower than 2.7v, user should replace the battery of LSE01. 664 664 ))) 665 665 666 666 ((( 667 - The AT Commandsetcanrefer theBC35-G NB-IoTModuleATCommand: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]]764 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 668 668 ))) 669 669 670 -[[image:1657261278785-153.png]] 767 +((( 768 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 769 +))) 671 671 672 672 673 673 674 -= 4.773 += 3. Using the AT Commands = 675 675 676 -== 4.1775 +== 3.1 Access AT Commands == 677 677 678 -See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 679 679 778 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 680 680 681 - AT+<CMD>? : Helpon<CMD>780 +[[image:1654501986557-872.png||height="391" width="800"]] 682 682 683 -AT+<CMD> : Run <CMD> 684 684 685 - AT+<CMD>=<value>: Setthevalue783 +Or if you have below board, use below connection: 686 686 687 -AT+<CMD>=? : Get the value 688 688 786 +[[image:1654502005655-729.png||height="503" width="801"]] 689 689 788 + 789 + 790 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 791 + 792 + 793 + [[image:1654502050864-459.png||height="564" width="806"]] 794 + 795 + 796 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]] 797 + 798 + 799 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 800 + 801 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 802 + 803 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 804 + 805 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 806 + 807 + 690 690 (% style="color:#037691" %)**General Commands**(%%) 691 691 692 -AT 810 +(% style="background-color:#dcdcdc" %)**AT**(%%) : Attention 693 693 694 -AT? 812 +(% style="background-color:#dcdcdc" %)**AT?**(%%) : Short Help 695 695 696 -ATZ 814 +(% style="background-color:#dcdcdc" %)**ATZ**(%%) : MCU Reset 697 697 698 -AT+TDC 816 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%) : Application Data Transmission Interval 699 699 700 -AT+CFG : Print all configurations 701 701 702 - AT+CFGMOD: Workingmode selection819 +(% style="color:#037691" %)**Keys, IDs and EUIs management** 703 703 704 -AT+I NTMOD:Setthe trigger interruptmode821 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%) : Application EUI 705 705 706 -AT+ 5VTSetextend the timeof5V power823 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%) : Application Key 707 707 708 -AT+P ROChooseagreement825 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%) : Application Session Key 709 709 710 -AT+ WEIGREGet weightorsetweight to 0827 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%) : Device Address 711 711 712 -AT+ WEIGAPGet or SettheGapValue of weight829 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%) : Device EUI 713 713 714 -AT+ RXDL: Extendthe sendingandreceivingtime831 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%) : Network ID (You can enter this command change only after successful network connection) 715 715 716 -AT+ CNTFACGettcountingparameters833 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%) : Network Session Key Joining and sending date on LoRa network 717 717 718 -AT+ SERVADDR:ServerAddress835 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%) : Confirm Mode 719 719 837 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 720 720 721 -(% style="color:# 037691" %)**COAPManagement**839 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%) : Join LoRa? Network 722 722 723 -AT+ URIsourceparameters841 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%) : LoRa? Network Join Mode 724 724 843 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 725 725 726 -(% style="color:# 037691" %)**UDPManagement**845 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%) : Print Last Received Data in Raw Format 727 727 728 -AT+C FM:Uploadconfirmationmode (onlyvalid forUDP)847 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%) : Print Last Received Data in Binary Format 729 729 849 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 730 730 731 -(% style="color:# 037691" %)**MQTTManagement**851 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%) : Send Hexadecimal Data 732 732 733 -AT+CLIENT : Get or Set MQTT client 734 734 735 - AT+UNAMEGetSetMQTT Username854 +(% style="color:#037691" %)**LoRa Network Management** 736 736 737 -AT+ PWDGetor SetMQTT password856 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%) : Adaptive Rate 738 738 739 -AT+ PUBTOPICGetorSetMQTTpublishtopic858 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%) : LoRa Class(Currently only support class A 740 740 741 -AT+ SUBTOPIC :GetorSetMQTT subscriptiontopic860 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%) : Duty Cycle Setting 742 742 862 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 743 743 744 -(% style="color:# 037691" %)**Information**864 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink 745 745 746 -AT+F DRctoryDataReset866 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%) : Frame Counter Uplink 747 747 748 -AT+ PWORDSerialAccessPassword868 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%) : Join Accept Delay1 749 749 870 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 750 750 872 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 751 751 752 -= 5.FAQ=874 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%) : Receive Delay1 753 753 754 -= =5.1HowtoUpgradeFirmware==876 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%) : Receive Delay2 755 755 878 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 756 756 880 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 881 + 882 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 883 + 884 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 885 + 886 + 887 +(% style="color:#037691" %)**Information** 888 + 889 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 890 + 891 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 892 + 893 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 894 + 895 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 896 + 897 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 898 + 899 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 900 + 901 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 902 + 903 + 904 += 4. FAQ = 905 + 906 +== 4.1 How to change the LoRa Frequency Bands/Region? == 907 + 757 757 ((( 758 -User can upgrade the firmware for 1) bug fix, 2) new feature release. 909 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 910 +When downloading the images, choose the required image file for download. 759 759 ))) 760 760 761 761 ((( 762 - Pleasesee this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]914 + 763 763 ))) 764 764 765 765 ((( 766 - (%style="color:red"%)Notice,NSE01andLSE01share thememotherboard.Theyuse thesameconnection andmethodto update.918 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 767 767 ))) 768 768 921 +((( 922 + 923 +))) 769 769 925 +((( 926 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 927 +))) 770 770 771 -= 6. Trouble Shooting = 929 +((( 930 + 931 +))) 772 772 773 -== 6.1 Connection problem when uploading firmware == 933 +((( 934 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 935 +))) 774 774 937 +[[image:image-20220606154726-3.png]] 775 775 776 -(% class="wikigeneratedid" %) 939 + 940 +When you use the TTN network, the US915 frequency bands use are: 941 + 942 +* 903.9 - SF7BW125 to SF10BW125 943 +* 904.1 - SF7BW125 to SF10BW125 944 +* 904.3 - SF7BW125 to SF10BW125 945 +* 904.5 - SF7BW125 to SF10BW125 946 +* 904.7 - SF7BW125 to SF10BW125 947 +* 904.9 - SF7BW125 to SF10BW125 948 +* 905.1 - SF7BW125 to SF10BW125 949 +* 905.3 - SF7BW125 to SF10BW125 950 +* 904.6 - SF8BW500 951 + 777 777 ((( 778 - (%style="font-size:14px"%)**Pleasesee:**(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color:rgb(255,255,255);font-size:14px;"]]953 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 779 779 ))) 780 780 956 +(% class="box infomessage" %) 957 +((( 958 +**AT+CHE=2** 959 +))) 781 781 961 +(% class="box infomessage" %) 962 +((( 963 +**ATZ** 964 +))) 782 782 783 -== 6.2 AT Command input doesn't work == 966 +((( 967 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 968 +))) 784 784 785 785 ((( 786 - Inthe case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.971 + 787 787 ))) 788 788 974 +((( 975 +The **AU915** band is similar. Below are the AU915 Uplink Channels. 976 +))) 789 789 978 +[[image:image-20220606154825-4.png]] 790 790 791 -= 7. Order Info = 792 792 793 793 794 - PartNumber**:** (% style="color:#4f81bd"%)**NSE01**982 += 5. Trouble Shooting = 795 795 984 +== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 796 796 986 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 987 + 988 + 989 +== 5.2 AT Command input doesn’t work == 990 + 991 +((( 992 +In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 993 +))) 994 + 995 + 996 +== 5.3 Device rejoin in at the second uplink packet == 997 + 998 +(% style="color:#4f81bd" %)**Issue describe as below:** 999 + 1000 +[[image:1654500909990-784.png]] 1001 + 1002 + 1003 +(% style="color:#4f81bd" %)**Cause for this issue:** 1004 + 1005 +((( 1006 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 1007 +))) 1008 + 1009 + 1010 +(% style="color:#4f81bd" %)**Solution: ** 1011 + 1012 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 1013 + 1014 +[[image:1654500929571-736.png||height="458" width="832"]] 1015 + 1016 + 1017 += 6. Order Info = 1018 + 1019 + 1020 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 1021 + 1022 + 1023 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 1024 + 1025 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 1026 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 1027 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 1028 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 1029 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1030 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1031 +* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1032 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1033 + 1034 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1035 + 1036 +* (% style="color:red" %)**4**(%%): 4000mAh battery 1037 +* (% style="color:red" %)**8**(%%): 8500mAh battery 1038 + 797 797 (% class="wikigeneratedid" %) 798 798 ((( 799 799 800 800 ))) 801 801 802 -= 8.1044 += 7. Packing Info = 803 803 804 804 ((( 805 805 806 806 807 807 (% style="color:#037691" %)**Package Includes**: 1050 +))) 808 808 809 - 810 -* NSE01 NB-IoT Soil Moisture & EC Sensor x 1 811 -* External antenna x 1 1052 +* ((( 1053 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 812 812 ))) 813 813 814 814 ((( ... ... @@ -815,20 +815,30 @@ 815 815 816 816 817 817 (% style="color:#037691" %)**Dimension and weight**: 1060 +))) 818 818 819 - 820 -* Size: 195 x 125 x 55 mm 821 -* Weight: 420g 1062 +* ((( 1063 +Device Size: cm 822 822 ))) 1065 +* ((( 1066 +Device Weight: g 1067 +))) 1068 +* ((( 1069 +Package Size / pcs : cm 1070 +))) 1071 +* ((( 1072 +Weight / pcs : g 823 823 824 -((( 825 - 826 826 827 - 828 828 829 829 ))) 830 830 831 -= 9.1078 += 8. Support = 832 832 833 833 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 834 834 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1082 + 1083 + 1084 +~)~)~) 1085 +~)~)~) 1086 +~)~)~)
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -102.7 KB - Content