Changes for page NDDS75 -- NB-IoT Distance Detect Sensor User Manual
Last modified by Bei Jinggeng on 2024/05/31 09:53
From version 65.19
edited by Xiaoling
on 2022/07/08 15:55
on 2022/07/08 15:55
Change comment:
There is no comment for this version
To version 40.1
edited by Edwin Chen
on 2022/06/29 19:12
on 2022/06/29 19:12
Change comment:
There is no comment for this version
Summary
-
Page properties (3 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 23 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - NSE01NB-IoTSoil Moisture & EC Sensor User Manual1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual - Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Xiaoling1 +XWiki.Edwin - Content
-
... ... @@ -20,707 +20,769 @@ 20 20 21 21 22 22 23 += 1. Introduction = 23 23 24 -= 1. Introduction =25 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 25 25 26 -== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 27 - 28 28 ((( 29 29 30 30 31 -((( 32 -Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 30 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 33 33 ))) 34 34 35 35 ((( 36 -It candetect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and uploaditsvalueto the serverwirelessly.34 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 37 37 ))) 38 38 39 39 ((( 40 -The wireless technology used in NSE01 allowsthedevice to send data at a low data rate and reachultra-longdistances,providingultra-long-distance spread spectrumCommunication.38 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 41 41 ))) 42 42 43 43 ((( 44 - NSE01arepowered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%)batteries,whichcanbe usedforup to5years.42 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 45 45 ))) 46 46 47 - 45 +((( 46 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 48 48 ))) 49 49 49 + 50 50 [[image:1654503236291-817.png]] 51 51 52 52 53 -[[image:165 7245163077-232.png]]53 +[[image:1654503265560-120.png]] 54 54 55 55 56 56 57 -== 1.2 57 +== 1.2 Features == 58 58 59 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 59 +* LoRaWAN 1.0.3 Class A 60 +* Ultra low power consumption 60 60 * Monitor Soil Moisture 61 61 * Monitor Soil Temperature 62 62 * Monitor Soil Conductivity 64 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 63 63 * AT Commands to change parameters 64 64 * Uplink on periodically 65 65 * Downlink to change configure 66 66 * IP66 Waterproof Enclosure 67 -* Ultra-Low Power consumption 68 -* AT Commands to change parameters 69 -* Micro SIM card slot for NB-IoT SIM 70 -* 8500mAh Battery for long term use 69 +* 4000mAh or 8500mAh Battery for long term use 71 71 72 -== 1.3 71 +== 1.3 Specification == 73 73 73 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 74 74 75 - (% style="color:#037691" %)**CommonDC Characteristics:**75 +[[image:image-20220606162220-5.png]] 76 76 77 -* Supply Voltage: 2.1v ~~ 3.6v 78 -* Operating Temperature: -40 ~~ 85°C 79 79 80 -(% style="color:#037691" %)**NB-IoT Spec:** 81 81 82 -* - B1 @H-FDD: 2100MHz 83 -* - B3 @H-FDD: 1800MHz 84 -* - B8 @H-FDD: 900MHz 85 -* - B5 @H-FDD: 850MHz 86 -* - B20 @H-FDD: 800MHz 87 -* - B28 @H-FDD: 700MHz 79 +== 1.4 Applications == 88 88 89 - Probe(%style="color:#037691"%)** Specification:**81 +* Smart Agriculture 90 90 91 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 83 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 84 + 92 92 93 - [[image:image-20220708101224-1.png]]86 +== 1.5 Firmware Change log == 94 94 95 95 89 +**LSE01 v1.0 :** Release 96 96 97 -== 1.4 Applications == 98 98 99 -* Smart Agriculture 100 100 101 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 102 - 93 += 2. Configure LSE01 to connect to LoRaWAN network = 103 103 104 -== 1.5PinDefinitions ==95 +== 2.1 How it works == 105 105 97 +((( 98 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 99 +))) 106 106 107 -[[image:1657246476176-652.png]] 101 +((( 102 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 103 +))) 108 108 109 109 110 110 111 -= 2. UseNSE01to communicatewithIoTServer =107 +== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 112 112 113 - ==2.1How it works==109 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 114 114 115 115 112 +[[image:1654503992078-669.png]] 113 + 114 + 115 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 116 + 117 + 118 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSE01. 119 + 120 +Each LSE01 is shipped with a sticker with the default device EUI as below: 121 + 122 +[[image:image-20220606163732-6.jpeg]] 123 + 124 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 125 + 126 +**Add APP EUI in the application** 127 + 128 + 129 +[[image:1654504596150-405.png]] 130 + 131 + 132 + 133 +**Add APP KEY and DEV EUI** 134 + 135 +[[image:1654504683289-357.png]] 136 + 137 + 138 + 139 +(% style="color:blue" %)**Step 2**(%%): Power on LSE01 140 + 141 + 142 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 143 + 144 +[[image:image-20220606163915-7.png]] 145 + 146 + 147 +(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 148 + 149 +[[image:1654504778294-788.png]] 150 + 151 + 152 + 153 +== 2.3 Uplink Payload == 154 + 155 + 156 +=== 2.3.1 MOD~=0(Default Mode) === 157 + 158 +LSE01 will uplink payload via LoRaWAN with below payload format: 159 + 116 116 ((( 117 - The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware inNSE01 will get environment data from sensors and send the value to local NB-IoT networkviathe NB-IoT module. The NB-IoT network will forwardthis valueto IoTserverviathe protocoldefinedbyNSE01.161 +Uplink payload includes in total 11 bytes. 118 118 ))) 119 119 164 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 165 +|((( 166 +**Size** 120 120 168 +**(bytes)** 169 +)))|**2**|**2**|**2**|**2**|**2**|**1** 170 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 171 +Temperature 172 + 173 +(Reserve, Ignore now) 174 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 175 +MOD & Digital Interrupt 176 + 177 +(Optional) 178 +))) 179 + 180 +=== 2.3.2 MOD~=1(Original value) === 181 + 182 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 183 + 184 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 185 +|((( 186 +**Size** 187 + 188 +**(bytes)** 189 +)))|**2**|**2**|**2**|**2**|**2**|**1** 190 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 191 +Temperature 192 + 193 +(Reserve, Ignore now) 194 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 195 +MOD & Digital Interrupt 196 + 197 +(Optional) 198 +))) 199 + 200 +=== 2.3.3 Battery Info === 201 + 121 121 ((( 122 - Thediagram below showstheworkingflow in defaultfirmwareofNSE01:203 +Check the battery voltage for LSE01. 123 123 ))) 124 124 125 -[[image:image-20220708101605-2.png]] 206 +((( 207 +Ex1: 0x0B45 = 2885mV 208 +))) 126 126 127 127 ((( 211 +Ex2: 0x0B49 = 2889mV 212 +))) 213 + 214 + 215 + 216 +=== 2.3.4 Soil Moisture === 217 + 218 +((( 219 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 220 +))) 221 + 222 +((( 223 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 224 +))) 225 + 226 +((( 128 128 129 129 ))) 130 130 230 +((( 231 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 232 +))) 131 131 132 132 133 -== 2.2 Configure the NSE01 == 134 134 236 +=== 2.3.5 Soil Temperature === 135 135 136 -=== 2.2.1 Test Requirement === 238 +((( 239 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 240 +))) 137 137 242 +((( 243 +**Example**: 244 +))) 138 138 139 139 ((( 140 - TouseNSE01inyourcity,makesureeetbelowrequirements:247 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 141 141 ))) 142 142 143 - * Your local operator has already distributed a NB-IoT Network there.144 - *ThelocalNB-IoTnetworkusedthebandthatNSE01supports.145 - * Your operator is able to distribute the data received in their NB-IoT network to your IoT server.250 +((( 251 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 252 +))) 146 146 254 + 255 + 256 +=== 2.3.6 Soil Conductivity (EC) === 257 + 147 147 ((( 148 - Below figureshows our testingstructure.Here we have NB-IoTnetwork coverage by ChinaMobile, the bandthey useis B8. The NSE01 willuse CoAP((% style="color:red" %)120.24.4.116:5683)(%%)orrawUDP((%style="color:red" %)120.24.4.116:5601)(%%) orMQTT((% style="color:red" %)120.24.4.116:1883)(%%)orTCP((%style="color:red"%)120.24.4.116:5600)(%%)protocoltosenddatato thetest server259 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 149 149 ))) 150 150 262 +((( 263 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 264 +))) 151 151 152 -[[image:1657249419225-449.png]] 266 +((( 267 +Generally, the EC value of irrigation water is less than 800uS / cm. 268 +))) 153 153 270 +((( 271 + 272 +))) 154 154 274 +((( 275 + 276 +))) 155 155 156 -=== 2. 2.2Insert SIMcard===278 +=== 2.3.7 MOD === 157 157 280 +Firmware version at least v2.1 supports changing mode. 281 + 282 +For example, bytes[10]=90 283 + 284 +mod=(bytes[10]>>7)&0x01=1. 285 + 286 + 287 +**Downlink Command:** 288 + 289 +If payload = 0x0A00, workmode=0 290 + 291 +If** **payload =** **0x0A01, workmode=1 292 + 293 + 294 + 295 +=== 2.3.8 Decode payload in The Things Network === 296 + 297 +While using TTN network, you can add the payload format to decode the payload. 298 + 299 + 300 +[[image:1654505570700-128.png]] 301 + 158 158 ((( 159 - Insert theNB-IoT Cardgetfromyourprovider.303 +The payload decoder function for TTN is here: 160 160 ))) 161 161 162 162 ((( 163 - Userneedtotakeout theNB-IoT moduleandinsertthe SIM cardkebelow:307 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]] 164 164 ))) 165 165 166 166 167 - [[image:1657249468462-536.png]]311 +== 2.4 Uplink Interval == 168 168 313 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 169 169 170 170 171 -=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 172 172 317 +== 2.5 Downlink Payload == 318 + 319 +By default, LSE50 prints the downlink payload to console port. 320 + 321 +[[image:image-20220606165544-8.png]] 322 + 323 + 173 173 ((( 325 +**Examples:** 326 +))) 327 + 174 174 ((( 175 - Userneed to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.329 + 176 176 ))) 331 + 332 +* ((( 333 +**Set TDC** 177 177 ))) 178 178 336 +((( 337 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 338 +))) 179 179 180 -**Connection:** 340 +((( 341 +Payload: 01 00 00 1E TDC=30S 342 +))) 181 181 182 - (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 344 +((( 345 +Payload: 01 00 00 3C TDC=60S 346 +))) 183 183 184 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 348 +((( 349 + 350 +))) 185 185 186 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 352 +* ((( 353 +**Reset** 354 +))) 187 187 356 +((( 357 +If payload = 0x04FF, it will reset the LSE01 358 +))) 188 188 189 -In the PC, use below serial tool settings: 190 190 191 -* Baud: (% style="color:green" %)**9600** 192 -* Data bits:** (% style="color:green" %)8(%%)** 193 -* Stop bits: (% style="color:green" %)**1** 194 -* Parity: (% style="color:green" %)**None** 195 -* Flow Control: (% style="color:green" %)**None** 361 +* **CFM** 196 196 363 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 364 + 365 + 366 + 367 +== 2.6 Show Data in DataCake IoT Server == 368 + 197 197 ((( 198 - Make sure the switch is in FLASHposition,thenpowern devicebyconnectingthejumper onNSE01. NSE01willoutputsystem info oncepoweronasbelow, we can enterthe (%style="color:green"%)**password:12345678**(%%)toaccessATmmandinput.370 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 199 199 ))) 200 200 201 -[[image:image-20220708110657-3.png]] 373 +((( 374 + 375 +))) 202 202 203 203 ((( 204 -(% style="color: red" %)Note: thevalidATCommandscanbe foundat: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]378 +(% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time. 205 205 ))) 206 206 381 +((( 382 +(% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 383 +))) 207 207 208 208 209 - === 2.2.4 UseCoAPprotocol to uplink data ===386 +[[image:1654505857935-743.png]] 210 210 211 -(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 212 212 389 +[[image:1654505874829-548.png]] 213 213 214 -**Use below commands:** 215 215 216 -* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 217 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 218 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 392 +(% style="color:blue" %)**Step 3**(%%)**:** Create an account or log in Datacake. 219 219 220 - Forparameterdescription,pleaserefertoATcommandset394 +(% style="color:blue" %)**Step 4**(%%)**:** Search the LSE01 and add DevEUI. 221 221 222 -[[image:1657249793983-486.png]] 223 223 397 +[[image:1654505905236-553.png]] 224 224 225 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 226 226 227 - [[image:1657249831934-534.png]]400 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 228 228 402 +[[image:1654505925508-181.png]] 229 229 230 230 231 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 232 232 233 - Thisfeatureis supported sincefirmware versionv1.0.1406 +== 2.7 Frequency Plans == 234 234 408 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 235 235 236 -* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 237 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 238 -* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 239 239 240 - [[image:1657249864775-321.png]]411 +=== 2.7.1 EU863-870 (EU868) === 241 241 413 +(% style="color:#037691" %)** Uplink:** 242 242 243 - [[image:1657249930215-289.png]]415 +868.1 - SF7BW125 to SF12BW125 244 244 417 +868.3 - SF7BW125 to SF12BW125 and SF7BW250 245 245 419 +868.5 - SF7BW125 to SF12BW125 246 246 247 - === 2.2.6UseMQTT protocolto uplink data ===421 +867.1 - SF7BW125 to SF12BW125 248 248 249 - Thisfeatureissupported since firmware versionv110423 +867.3 - SF7BW125 to SF12BW125 250 250 425 +867.5 - SF7BW125 to SF12BW125 251 251 252 -* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 253 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 254 -* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 255 -* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 256 -* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 257 -* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 258 -* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 427 +867.7 - SF7BW125 to SF12BW125 259 259 260 - [[image:1657249978444-674.png]]429 +867.9 - SF7BW125 to SF12BW125 261 261 431 +868.8 - FSK 262 262 263 -[[image:1657249990869-686.png]] 264 264 434 +(% style="color:#037691" %)** Downlink:** 265 265 266 -((( 267 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 268 -))) 436 +Uplink channels 1-9 (RX1) 269 269 438 +869.525 - SF9BW125 (RX2 downlink only) 270 270 271 271 272 -=== 2.2.7 Use TCP protocol to uplink data === 273 273 274 - Thisfeatureis supported since firmware version v110442 +=== 2.7.2 US902-928(US915) === 275 275 444 +Used in USA, Canada and South America. Default use CHE=2 276 276 277 -* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 278 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 446 +(% style="color:#037691" %)**Uplink:** 279 279 280 - [[image:1657250217799-140.png]]448 +903.9 - SF7BW125 to SF10BW125 281 281 450 +904.1 - SF7BW125 to SF10BW125 282 282 283 - [[image:1657250255956-604.png]]452 +904.3 - SF7BW125 to SF10BW125 284 284 454 +904.5 - SF7BW125 to SF10BW125 285 285 456 +904.7 - SF7BW125 to SF10BW125 286 286 287 - === 2.2.8ChangeUpdateInterval ===458 +904.9 - SF7BW125 to SF10BW125 288 288 289 - Usercanusebelow commandtochange the (% style="color:green" %)**uplink interval**.460 +905.1 - SF7BW125 to SF10BW125 290 290 291 - * (% style="color:blue" %)**AT+TDC=600**(%%)~/~/SetUpdate Interval to600s462 +905.3 - SF7BW125 to SF10BW125 292 292 293 -((( 294 -(% style="color:red" %)**NOTE:** 295 -))) 296 296 297 -((( 298 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 299 -))) 465 +(% style="color:#037691" %)**Downlink:** 300 300 467 +923.3 - SF7BW500 to SF12BW500 301 301 469 +923.9 - SF7BW500 to SF12BW500 302 302 303 - ==2.3UplinkPayload==471 +924.5 - SF7BW500 to SF12BW500 304 304 305 - Inthismode,uplink payload includes intotal18 bytes473 +925.1 - SF7BW500 to SF12BW500 306 306 307 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 308 -|=(% style="width: 60px;" %)((( 309 -**Size(bytes)** 310 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1** 311 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 475 +925.7 - SF7BW500 to SF12BW500 312 312 313 -((( 314 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 315 -))) 477 +926.3 - SF7BW500 to SF12BW500 316 316 479 +926.9 - SF7BW500 to SF12BW500 317 317 318 - [[image:image-20220708111918-4.png]]481 +927.5 - SF7BW500 to SF12BW500 319 319 483 +923.3 - SF12BW500(RX2 downlink only) 320 320 321 -The payload is ASCII string, representative same HEX: 322 322 323 -0x72403155615900640c7817075e0a8c02f900 where: 324 324 325 -* Device ID: 0x 724031556159 = 724031556159 326 -* Version: 0x0064=100=1.0.0 487 +=== 2.7.3 CN470-510 (CN470) === 327 327 328 -* BAT: 0x0c78 = 3192 mV = 3.192V 329 -* Singal: 0x17 = 23 330 -* Soil Moisture: 0x075e= 1886 = 18.86 % 331 -* Soil Temperature:0x0a8c =2700=27 °C 332 -* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 333 -* Interrupt: 0x00 = 0 489 +Used in China, Default use CHE=1 334 334 491 +(% style="color:#037691" %)**Uplink:** 335 335 493 +486.3 - SF7BW125 to SF12BW125 336 336 495 +486.5 - SF7BW125 to SF12BW125 337 337 338 - == 2.4PayloadExplanation andSensorInterface==497 +486.7 - SF7BW125 to SF12BW125 339 339 499 +486.9 - SF7BW125 to SF12BW125 340 340 341 - === 2.4.1DeviceID===501 +487.1 - SF7BW125 to SF12BW125 342 342 343 -((( 344 -By default, the Device ID equal to the last 6 bytes of IMEI. 345 -))) 503 +487.3 - SF7BW125 to SF12BW125 346 346 347 -((( 348 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 349 -))) 505 +487.5 - SF7BW125 to SF12BW125 350 350 351 -((( 352 -**Example:** 353 -))) 507 +487.7 - SF7BW125 to SF12BW125 354 354 355 -((( 356 -AT+DEUI=A84041F15612 357 -))) 358 358 359 -((( 360 -The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 361 -))) 510 +(% style="color:#037691" %)**Downlink:** 362 362 512 +506.7 - SF7BW125 to SF12BW125 363 363 514 +506.9 - SF7BW125 to SF12BW125 364 364 365 - ===2.4.2VersionInfo ===516 +507.1 - SF7BW125 to SF12BW125 366 366 367 -((( 368 -Specify the software version: 0x64=100, means firmware version 1.00. 369 -))) 518 +507.3 - SF7BW125 to SF12BW125 370 370 371 -((( 372 -For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 373 -))) 520 +507.5 - SF7BW125 to SF12BW125 374 374 522 +507.7 - SF7BW125 to SF12BW125 375 375 524 +507.9 - SF7BW125 to SF12BW125 376 376 377 - === 2.4.3BatteryInfo===526 +508.1 - SF7BW125 to SF12BW125 378 378 379 -((( 380 -Check the battery voltage for LSE01. 381 -))) 528 +505.3 - SF12BW125 (RX2 downlink only) 382 382 383 -((( 384 -Ex1: 0x0B45 = 2885mV 385 -))) 386 386 387 -((( 388 -Ex2: 0x0B49 = 2889mV 389 -))) 390 390 532 +=== 2.7.4 AU915-928(AU915) === 391 391 534 +Default use CHE=2 392 392 393 - ===2.4.4 Signal Strength===536 +(% style="color:#037691" %)**Uplink:** 394 394 395 -((( 396 -NB-IoT Network signal Strength. 397 -))) 538 +916.8 - SF7BW125 to SF12BW125 398 398 399 -((( 400 -**Ex1: 0x1d = 29** 401 -))) 540 +917.0 - SF7BW125 to SF12BW125 402 402 403 -((( 404 -(% style="color:blue" %)**0**(%%) -113dBm or less 405 -))) 542 +917.2 - SF7BW125 to SF12BW125 406 406 407 -((( 408 -(% style="color:blue" %)**1**(%%) -111dBm 409 -))) 544 +917.4 - SF7BW125 to SF12BW125 410 410 411 -((( 412 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 413 -))) 546 +917.6 - SF7BW125 to SF12BW125 414 414 415 -((( 416 -(% style="color:blue" %)**31** (%%) -51dBm or greater 417 -))) 548 +917.8 - SF7BW125 to SF12BW125 418 418 419 -((( 420 -(% style="color:blue" %)**99** (%%) Not known or not detectable 421 -))) 550 +918.0 - SF7BW125 to SF12BW125 422 422 552 +918.2 - SF7BW125 to SF12BW125 423 423 424 424 425 - ===2.4.5 SoilMoisture===555 +(% style="color:#037691" %)**Downlink:** 426 426 427 -((( 428 -((( 429 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 430 -))) 431 -))) 557 +923.3 - SF7BW500 to SF12BW500 432 432 433 -((( 434 -((( 435 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 436 -))) 437 -))) 559 +923.9 - SF7BW500 to SF12BW500 438 438 439 -((( 440 - 441 -))) 561 +924.5 - SF7BW500 to SF12BW500 442 442 443 -((( 444 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 445 -))) 563 +925.1 - SF7BW500 to SF12BW500 446 446 565 +925.7 - SF7BW500 to SF12BW500 447 447 567 +926.3 - SF7BW500 to SF12BW500 448 448 449 - ===2.4.6oilTemperature===569 +926.9 - SF7BW500 to SF12BW500 450 450 451 -((( 452 -Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 453 -))) 571 +927.5 - SF7BW500 to SF12BW500 454 454 455 -((( 456 -**Example**: 457 -))) 573 +923.3 - SF12BW500(RX2 downlink only) 458 458 459 -((( 460 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 461 -))) 462 462 463 -((( 464 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 465 -))) 466 466 577 +=== 2.7.5 AS920-923 & AS923-925 (AS923) === 467 467 579 +(% style="color:#037691" %)**Default Uplink channel:** 468 468 469 - ===2.4.7SoilConductivity(EC) ===581 +923.2 - SF7BW125 to SF10BW125 470 470 471 -((( 472 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 473 -))) 583 +923.4 - SF7BW125 to SF10BW125 474 474 475 -((( 476 -For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 477 -))) 478 478 479 -((( 480 -Generally, the EC value of irrigation water is less than 800uS / cm. 481 -))) 586 +(% style="color:#037691" %)**Additional Uplink Channel**: 482 482 483 -((( 484 - 485 -))) 588 +(OTAA mode, channel added by JoinAccept message) 486 486 487 -((( 488 - 489 -))) 590 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 490 490 491 - ===2.4.8DigitalInterrupt===592 +922.2 - SF7BW125 to SF10BW125 492 492 493 -((( 494 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 495 -))) 594 +922.4 - SF7BW125 to SF10BW125 496 496 497 -((( 498 -The command is: 499 -))) 596 +922.6 - SF7BW125 to SF10BW125 500 500 501 -((( 502 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 503 -))) 598 +922.8 - SF7BW125 to SF10BW125 504 504 600 +923.0 - SF7BW125 to SF10BW125 505 505 506 -((( 507 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up. 508 -))) 602 +922.0 - SF7BW125 to SF10BW125 509 509 510 510 511 -((( 512 -Example: 513 -))) 605 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 514 514 515 -((( 516 -0x(00): Normal uplink packet. 517 -))) 607 +923.6 - SF7BW125 to SF10BW125 518 518 519 -((( 520 -0x(01): Interrupt Uplink Packet. 521 -))) 609 +923.8 - SF7BW125 to SF10BW125 522 522 611 +924.0 - SF7BW125 to SF10BW125 523 523 613 +924.2 - SF7BW125 to SF10BW125 524 524 525 - ===2.4.9+5VOutput===615 +924.4 - SF7BW125 to SF10BW125 526 526 527 -((( 528 -NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 529 -))) 617 +924.6 - SF7BW125 to SF10BW125 530 530 531 531 532 -((( 533 -The 5V output time can be controlled by AT Command. 534 -))) 620 +(% style="color:#037691" %)** Downlink:** 535 535 536 -((( 537 -(% style="color:blue" %)**AT+5VT=1000** 538 -))) 622 +Uplink channels 1-8 (RX1) 539 539 540 -((( 541 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 542 -))) 624 +923.2 - SF10BW125 (RX2) 543 543 544 544 545 545 546 -== 2. 5DownlinkPayload==628 +=== 2.7.6 KR920-923 (KR920) === 547 547 548 - By default,NSE01 prints the downlink payload to consoleport.630 +Default channel: 549 549 550 - [[image:image-20220708133731-5.png]]632 +922.1 - SF7BW125 to SF12BW125 551 551 634 +922.3 - SF7BW125 to SF12BW125 552 552 553 -((( 554 -(% style="color:blue" %)**Examples:** 555 -))) 636 +922.5 - SF7BW125 to SF12BW125 556 556 557 -((( 558 - 559 -))) 560 560 561 -* ((( 562 -(% style="color:blue" %)**Set TDC** 563 -))) 639 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 564 564 565 -((( 566 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 567 -))) 641 +922.1 - SF7BW125 to SF12BW125 568 568 569 -((( 570 -Payload: 01 00 00 1E TDC=30S 571 -))) 643 +922.3 - SF7BW125 to SF12BW125 572 572 573 -((( 574 -Payload: 01 00 00 3C TDC=60S 575 -))) 645 +922.5 - SF7BW125 to SF12BW125 576 576 577 -((( 578 - 579 -))) 647 +922.7 - SF7BW125 to SF12BW125 580 580 581 -* ((( 582 -(% style="color:blue" %)**Reset** 583 -))) 649 +922.9 - SF7BW125 to SF12BW125 584 584 585 -((( 586 -If payload = 0x04FF, it will reset the NSE01 587 -))) 651 +923.1 - SF7BW125 to SF12BW125 588 588 653 +923.3 - SF7BW125 to SF12BW125 589 589 590 -* (% style="color:blue" %)**INTMOD** 591 591 592 -((( 593 -Downlink Payload: 06000003, Set AT+INTMOD=3 594 -))) 656 +(% style="color:#037691" %)**Downlink:** 595 595 658 +Uplink channels 1-7(RX1) 596 596 660 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 597 597 598 -== 2.6 LED Indicator == 599 599 600 -((( 601 -The NSE01 has an internal LED which is to show the status of different state. 602 602 664 +=== 2.7.7 IN865-867 (IN865) === 603 603 604 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 605 -* Then the LED will be on for 1 second means device is boot normally. 606 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 607 -* For each uplink probe, LED will be on for 500ms. 608 -))) 666 +(% style="color:#037691" %)** Uplink:** 609 609 668 +865.0625 - SF7BW125 to SF12BW125 610 610 670 +865.4025 - SF7BW125 to SF12BW125 611 611 672 +865.9850 - SF7BW125 to SF12BW125 612 612 613 -== 2.7 Installation in Soil == 614 614 615 - __**Measurementthesoilsurface**__675 +(% style="color:#037691" %) **Downlink:** 616 616 617 -((( 618 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 619 -))) 677 +Uplink channels 1-3 (RX1) 620 620 621 - [[image:1657259653666-883.png]]679 +866.550 - SF10BW125 (RX2) 622 622 623 623 624 -((( 625 - 626 626 627 -((( 628 -Dig a hole with diameter > 20CM. 629 -))) 630 630 631 -((( 632 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 633 -))) 634 -))) 684 +== 2.8 LED Indicator == 635 635 636 - [[image:1654506665940-119.png]]686 +The LSE01 has an internal LED which is to show the status of different state. 637 637 638 - (((639 - 640 - )))688 +* Blink once when device power on. 689 +* Solid ON for 5 seconds once device successful Join the network. 690 +* Blink once when device transmit a packet. 641 641 642 642 643 -== 2.8 Firmware Change Log == 644 644 645 645 646 - Download URL & FirmwareChangelog695 +== 2.9 Installation in Soil == 647 647 648 - [[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]697 +**Measurement the soil surface** 649 649 650 650 651 - Upgrade Instruction:[[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]700 +[[image:1654506634463-199.png]] 652 652 702 +((( 703 +((( 704 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 705 +))) 706 +))) 653 653 654 654 655 -== 2.9 Battery Analysis == 656 656 657 - === 2.9.1 Battery Type ===710 +[[image:1654506665940-119.png]] 658 658 712 +((( 713 +Dig a hole with diameter > 20CM. 714 +))) 659 659 660 660 ((( 661 - The NSE01 batteryis a combination ofan8500mAh Li/SOCI2 Battery and a SuperCapacitor.Thebattery is none-rechargeablebatterytypewitha lowdischargerate(<2% peryear). This typeofbattery is commonlyused in IoT devices suchaswaterer.717 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 662 662 ))) 663 663 664 664 721 +== 2.10 Firmware Change Log == 722 + 665 665 ((( 666 - The batteryis designed to last forseveral years dependsonthe actually use environmentandupdateinterval.724 +**Firmware download link:** 667 667 ))) 668 668 727 +((( 728 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 729 +))) 669 669 670 670 ((( 671 - Thebattery related documents as below:732 + 672 672 ))) 673 673 674 - * [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]675 -* [[Lithium-ThionylChlorideBattery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]676 - * [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]735 +((( 736 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 737 +))) 677 677 678 678 ((( 679 - [[image:image-20220708140453-6.png]]740 + 680 680 ))) 681 681 743 +((( 744 +**V1.0.** 745 +))) 682 682 683 - 684 -=== 2.9.2 Power consumption Analyze === 685 - 686 686 ((( 687 - Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which baseon the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.748 +Release 688 688 ))) 689 689 690 690 752 +== 2.11 Battery Analysis == 753 + 754 +=== 2.11.1 Battery Type === 755 + 691 691 ((( 692 - Instruction touse as below:757 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 693 693 ))) 694 694 695 695 ((( 696 - (% style="color:blue" %)**Step 1: **(%%)Downlink theup-to-date DRAGINO_Battery_Life_Prediction_Table.xlsxfrom: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]761 +The battery is designed to last for more than 5 years for the LSN50. 697 697 ))) 698 698 699 - 700 700 ((( 701 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose 765 +((( 766 +The battery-related documents are as below: 702 702 ))) 768 +))) 703 703 704 704 * ((( 705 - Product Model771 +[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], 706 706 ))) 707 707 * ((( 708 - UplinkInterval774 +[[Lithium-Thionyl Chloride Battery datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], 709 709 ))) 710 710 * ((( 711 - WorkingMode777 +[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]] 712 712 ))) 713 713 714 -((( 715 -And the Life expectation in difference case will be shown on the right. 716 -))) 780 + [[image:image-20220610172436-1.png]] 717 717 718 -[[image:image-20220708141352-7.jpeg]] 719 719 720 720 784 +=== 2.11.2 Battery Note === 721 721 722 -=== 2.9.3 Battery Note === 723 - 724 724 ((( 725 725 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 726 726 ))) ... ... @@ -727,166 +727,302 @@ 727 727 728 728 729 729 730 -=== 2. 9.4Replace the battery ===792 +=== 2.11.3 Replace the battery === 731 731 732 732 ((( 733 - The defaultbatterypack of NSE01includesa ER26500 plus super capacitor. If usercan'tfind this pack locally, they canfind ER26500or equivalencewithouttheSPC1520 capacitor, which willalso work in mostcase.The SPC can enlargethe batterylife for highfrequencyuse (update period below 5 minutes).795 +If Battery is lower than 2.7v, user should replace the battery of LSE01. 734 734 ))) 735 735 736 - 737 - 738 -= 3. Access NB-IoT Module = 739 - 740 740 ((( 741 - Userscan directly accesstheATcommand set of theNB-IoTmodule.799 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 742 742 ))) 743 743 744 744 ((( 745 -The ATCommand setcanrefer theBC35-GNB-IoTModuleATCommand: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]]803 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 746 746 ))) 747 747 748 -[[image:1657261278785-153.png]] 749 749 750 750 808 += 3. Using the AT Commands = 751 751 752 -= 4.UsingtheAT Commands =810 +== 3.1 Access AT Commands == 753 753 754 -== 4.1 Access AT Commands == 755 755 756 -S eethislinkfordetail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]813 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 757 757 815 +[[image:1654501986557-872.png||height="391" width="800"]] 758 758 759 -AT+<CMD>? : Help on <CMD> 760 760 761 - AT+<CMD>: Run<CMD>818 +Or if you have below board, use below connection: 762 762 763 -AT+<CMD>=<value> : Set the value 764 764 765 - AT+<CMD>=?:Get the value821 +[[image:1654502005655-729.png||height="503" width="801"]] 766 766 767 767 824 + 825 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 826 + 827 + 828 + [[image:1654502050864-459.png||height="564" width="806"]] 829 + 830 + 831 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]] 832 + 833 + 834 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 835 + 836 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 837 + 838 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 839 + 840 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 841 + 842 + 768 768 (% style="color:#037691" %)**General Commands**(%%) 769 769 770 -AT 845 +(% style="background-color:#dcdcdc" %)**AT**(%%) : Attention 771 771 772 -AT? 847 +(% style="background-color:#dcdcdc" %)**AT?**(%%) : Short Help 773 773 774 -ATZ 849 +(% style="background-color:#dcdcdc" %)**ATZ**(%%) : MCU Reset 775 775 776 -AT+TDC 851 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%) : Application Data Transmission Interval 777 777 778 -AT+CFG : Print all configurations 779 779 780 - AT+CFGMOD: Workingmode selection854 +(% style="color:#037691" %)**Keys, IDs and EUIs management** 781 781 782 -AT+I NTMOD:Setthe trigger interruptmode856 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%) : Application EUI 783 783 784 -AT+ 5VTSetextend the timeof5V power858 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%) : Application Key 785 785 786 -AT+P ROChooseagreement860 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%) : Application Session Key 787 787 788 -AT+ WEIGREGet weightorsetweight to 0862 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%) : Device Address 789 789 790 -AT+ WEIGAPGet or SettheGapValue of weight864 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%) : Device EUI 791 791 792 -AT+ RXDL: Extendthe sendingandreceivingtime866 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%) : Network ID (You can enter this command change only after successful network connection) 793 793 794 -AT+ CNTFACGettcountingparameters868 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%) : Network Session Key Joining and sending date on LoRa network 795 795 796 -AT+ SERVADDR:ServerAddress870 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%) : Confirm Mode 797 797 872 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 798 798 799 -(% style="color:# 037691" %)**COAPManagement**874 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%) : Join LoRa? Network 800 800 801 -AT+ URIsourceparameters876 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%) : LoRa? Network Join Mode 802 802 878 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 803 803 804 -(% style="color:# 037691" %)**UDPManagement**880 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%) : Print Last Received Data in Raw Format 805 805 806 -AT+C FM:Uploadconfirmationmode (onlyvalid forUDP)882 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%) : Print Last Received Data in Binary Format 807 807 884 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 808 808 809 -(% style="color:# 037691" %)**MQTTManagement**886 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%) : Send Hexadecimal Data 810 810 811 -AT+CLIENT : Get or Set MQTT client 812 812 813 - AT+UNAMEGetSetMQTT Username889 +(% style="color:#037691" %)**LoRa Network Management** 814 814 815 -AT+ PWDGetor SetMQTT password891 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%) : Adaptive Rate 816 816 817 -AT+ PUBTOPICGetorSetMQTTpublishtopic893 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%) : LoRa Class(Currently only support class A 818 818 819 -AT+ SUBTOPIC :GetorSetMQTT subscriptiontopic895 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%) : Duty Cycle Setting 820 820 897 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 821 821 822 -(% style="color:# 037691" %)**Information**899 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink 823 823 824 -AT+F DRctoryDataReset901 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%) : Frame Counter Uplink 825 825 826 -AT+ PWORDSerialAccessPassword903 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%) : Join Accept Delay1 827 827 905 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 828 828 907 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 829 829 830 -= 5.FAQ=909 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%) : Receive Delay1 831 831 832 -= =5.1HowtoUpgradeFirmware==911 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%) : Receive Delay2 833 833 913 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 834 834 915 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 916 + 917 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 918 + 919 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 920 + 921 + 922 +(% style="color:#037691" %)**Information** 923 + 924 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 925 + 926 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 927 + 928 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 929 + 930 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 931 + 932 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 933 + 934 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 935 + 936 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 937 + 938 + 939 += 4. FAQ = 940 + 941 +== 4.1 How to change the LoRa Frequency Bands/Region? == 942 + 835 835 ((( 836 -User can upgrade the firmware for 1) bug fix, 2) new feature release. 944 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 945 +When downloading the images, choose the required image file for download. 837 837 ))) 838 838 839 839 ((( 840 - Pleasesee this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]949 + 841 841 ))) 842 842 843 843 ((( 844 - (%style="color:red"%)Notice,NSE01andLSE01share thememotherboard.Theyuse thesameconnection andmethodto update.953 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 845 845 ))) 846 846 956 +((( 957 + 958 +))) 847 847 960 +((( 961 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 962 +))) 848 848 849 -= 6. Trouble Shooting = 964 +((( 965 + 966 +))) 850 850 851 -== 6.1 Connection problem when uploading firmware == 968 +((( 969 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 970 +))) 852 852 972 +[[image:image-20220606154726-3.png]] 853 853 854 -(% class="wikigeneratedid" %) 974 + 975 +When you use the TTN network, the US915 frequency bands use are: 976 + 977 +* 903.9 - SF7BW125 to SF10BW125 978 +* 904.1 - SF7BW125 to SF10BW125 979 +* 904.3 - SF7BW125 to SF10BW125 980 +* 904.5 - SF7BW125 to SF10BW125 981 +* 904.7 - SF7BW125 to SF10BW125 982 +* 904.9 - SF7BW125 to SF10BW125 983 +* 905.1 - SF7BW125 to SF10BW125 984 +* 905.3 - SF7BW125 to SF10BW125 985 +* 904.6 - SF8BW500 986 + 855 855 ((( 856 -(% style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]] 988 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 989 + 990 +* (% style="color:#037691" %)**AT+CHE=2** 991 +* (% style="color:#037691" %)**ATZ** 857 857 ))) 858 858 994 +((( 995 + 859 859 997 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 998 +))) 860 860 861 -== 6.2 AT Command input doesn't work == 1000 +((( 1001 + 1002 +))) 862 862 863 863 ((( 864 - In thecaseif user can seethe console output but can't typeinput to the device. Pleasecheck if youalreadyincludethe(%style="color:green" %)**ENTER**(%%) while sendingout the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.1005 +The **AU915** band is similar. Below are the AU915 Uplink Channels. 865 865 ))) 866 866 1008 +[[image:image-20220606154825-4.png]] 867 867 868 868 869 -= 7.OrderInfo =1011 +== 4.2 Can I calibrate LSE01 to different soil types? == 870 870 1013 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]]. 871 871 872 -Part Number**:** (% style="color:#4f81bd" %)**NSE01** 873 873 1016 += 5. Trouble Shooting = 874 874 1018 +== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 1019 + 1020 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 1021 + 1022 + 1023 +== 5.2 AT Command input doesn’t work == 1024 + 1025 +((( 1026 +In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1027 +))) 1028 + 1029 + 1030 +== 5.3 Device rejoin in at the second uplink packet == 1031 + 1032 +(% style="color:#4f81bd" %)**Issue describe as below:** 1033 + 1034 +[[image:1654500909990-784.png]] 1035 + 1036 + 1037 +(% style="color:#4f81bd" %)**Cause for this issue:** 1038 + 1039 +((( 1040 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 1041 +))) 1042 + 1043 + 1044 +(% style="color:#4f81bd" %)**Solution: ** 1045 + 1046 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 1047 + 1048 +[[image:1654500929571-736.png||height="458" width="832"]] 1049 + 1050 + 1051 += 6. Order Info = 1052 + 1053 + 1054 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 1055 + 1056 + 1057 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 1058 + 1059 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 1060 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 1061 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 1062 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 1063 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1064 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1065 +* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1066 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1067 + 1068 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1069 + 1070 +* (% style="color:red" %)**4**(%%): 4000mAh battery 1071 +* (% style="color:red" %)**8**(%%): 8500mAh battery 1072 + 875 875 (% class="wikigeneratedid" %) 876 876 ((( 877 877 878 878 ))) 879 879 880 -= 8.1078 += 7. Packing Info = 881 881 882 882 ((( 883 883 884 884 885 885 (% style="color:#037691" %)**Package Includes**: 1084 +))) 886 886 887 - 888 -* NSE01 NB-IoT Soil Moisture & EC Sensor x 1 889 -* External antenna x 1 1086 +* ((( 1087 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 890 890 ))) 891 891 892 892 ((( ... ... @@ -893,20 +893,24 @@ 893 893 894 894 895 895 (% style="color:#037691" %)**Dimension and weight**: 1094 +))) 896 896 897 - 898 -* Size: 195 x 125 x 55 mm 899 -* Weight: 420g 1096 +* ((( 1097 +Device Size: cm 900 900 ))) 1099 +* ((( 1100 +Device Weight: g 1101 +))) 1102 +* ((( 1103 +Package Size / pcs : cm 1104 +))) 1105 +* ((( 1106 +Weight / pcs : g 901 901 902 -((( 903 903 904 - 905 - 906 - 907 907 ))) 908 908 909 -= 9.1111 += 8. Support = 910 910 911 911 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 912 912 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -102.7 KB - Content