Changes for page NDDS75 -- NB-IoT Distance Detect Sensor User Manual
Last modified by Bei Jinggeng on 2024/05/31 09:53
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 23 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - NSE01NB-IoTSoil Moisture & EC Sensor User Manual1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -3,14 +3,6 @@ 3 3 4 4 5 5 6 - 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 14 **Table of Contents:** 15 15 16 16 {{toc/}} ... ... @@ -20,81 +20,66 @@ 20 20 21 21 22 22 15 += 1. Introduction = 23 23 24 -= 1. Introduction =17 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 25 25 26 -== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 27 - 28 28 ((( 29 29 30 30 31 -((( 32 -Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 22 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 33 33 ))) 34 34 35 35 ((( 36 -It candetect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and uploaditsvalueto the serverwirelessly.26 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 37 37 ))) 38 38 39 39 ((( 40 -The wireless technology used in NSE01 allowsthedevice to send data at a low data rate and reachultra-longdistances,providingultra-long-distance spread spectrumCommunication.30 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 41 41 ))) 42 42 43 43 ((( 44 - NSE01arepowered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%)batteries,whichcanbe usedforup to5years.34 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 45 45 ))) 46 46 47 - 37 +((( 38 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 48 48 ))) 49 49 41 + 50 50 [[image:1654503236291-817.png]] 51 51 52 52 53 -[[image:165 7245163077-232.png]]45 +[[image:1654503265560-120.png]] 54 54 55 55 56 56 57 -== 1.2 49 +== 1.2 Features == 58 58 59 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 51 +* LoRaWAN 1.0.3 Class A 52 +* Ultra low power consumption 60 60 * Monitor Soil Moisture 61 61 * Monitor Soil Temperature 62 62 * Monitor Soil Conductivity 56 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 63 63 * AT Commands to change parameters 64 64 * Uplink on periodically 65 65 * Downlink to change configure 66 66 * IP66 Waterproof Enclosure 67 -* Ultra-Low Power consumption 68 -* AT Commands to change parameters 69 -* Micro SIM card slot for NB-IoT SIM 70 -* 8500mAh Battery for long term use 61 +* 4000mAh or 8500mAh Battery for long term use 71 71 72 -== 1.3 Specification == 73 73 74 74 75 -(% style="color:#037691" %)**Common DC Characteristics:** 76 76 77 -* Supply Voltage: 2.1v ~~ 3.6v 78 -* Operating Temperature: -40 ~~ 85°C 66 +== 1.3 Specification == 79 79 80 -(% style="color:#037691" %)**NB-IoT Spec:** 81 - 82 -* - B1 @H-FDD: 2100MHz 83 -* - B3 @H-FDD: 1800MHz 84 -* - B8 @H-FDD: 900MHz 85 -* - B5 @H-FDD: 850MHz 86 -* - B20 @H-FDD: 800MHz 87 -* - B28 @H-FDD: 700MHz 88 - 89 -Probe(% style="color:#037691" %)** Specification:** 90 - 91 91 Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 92 92 93 -[[image:image-20220 708101224-1.png]]70 +[[image:image-20220606162220-5.png]] 94 94 95 95 96 96 97 -== 1.4 74 +== 1.4 Applications == 98 98 99 99 * Smart Agriculture 100 100 ... ... @@ -101,784 +101,1006 @@ 101 101 (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 102 102 103 103 104 -== 1.5 Pin Definitions==81 +== 1.5 Firmware Change log == 105 105 106 106 107 - [[image:1657246476176-652.png]]84 +**LSE01 v1.0 :** Release 108 108 109 109 110 110 111 -= 2. UseNSE01 to communicatewithIoTServer=88 += 2. Configure LSE01 to connect to LoRaWAN network = 112 112 113 -== 2.1 90 +== 2.1 How it works == 114 114 115 - 116 116 ((( 117 -The NSE01 isequippedwithaNB-IoT module,thepre-loadedfirmwareinNSE01willgetenvironmentdatafrom sensorsandsend thevaluetolocalNB-IoTnetworkviatheNB-IoTmodule.The NB-IoTnetworkwillforwardthisvaluetoIoTserver viatheprotocoldefinedbyNSE01.93 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 118 118 ))) 119 119 120 - 121 121 ((( 122 - Thediagrambelowshows theworkingflowindefaultfirmware ofNSE01:97 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 123 123 ))) 124 124 125 -[[image:image-20220708101605-2.png]] 126 126 127 -((( 128 - 129 -))) 130 130 102 +== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 131 131 104 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 132 132 133 -== 2.2 Configure the NSE01 == 134 134 107 +[[image:1654503992078-669.png]] 135 135 136 -=== 2.2.1 Test Requirement === 137 137 110 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 138 138 112 + 113 +**(% style="color:blue" %)Step 1**(%%): Create a device in TTN with the OTAA keys from LSE01. 114 + 115 +Each LSE01 is shipped with a sticker with the default device EUI as below: 116 + 117 +[[image:image-20220606163732-6.jpeg]] 118 + 119 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 120 + 121 +**Add APP EUI in the application** 122 + 123 + 124 +[[image:1654504596150-405.png]] 125 + 126 + 127 + 128 +**Add APP KEY and DEV EUI** 129 + 130 +[[image:1654504683289-357.png]] 131 + 132 + 133 + 134 +**(% style="color:blue" %)Step 2**(%%): Power on LSE01 135 + 136 + 137 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 138 + 139 +[[image:image-20220606163915-7.png]] 140 + 141 + 142 +**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 143 + 144 +[[image:1654504778294-788.png]] 145 + 146 + 147 + 148 +== 2.3 Uplink Payload == 149 + 150 +=== === 151 + 152 +=== 2.3.1 MOD~=0(Default Mode) === 153 + 154 +LSE01 will uplink payload via LoRaWAN with below payload format: 155 + 139 139 ((( 140 - To useNSE01inyour city, makesuremeetbelow requirements:157 +Uplink payload includes in total 11 bytes. 141 141 ))) 142 142 143 - *Yourlocaloperatorhasalready distributeda NB-IoT Networkthere.144 - * The local NB-IoT network used the band that NSE01 supports.145 -* Your operatoris ableto distribute the data received in their NB-IoT network to your IoT server.160 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 161 +|((( 162 +**Size** 146 146 147 -((( 148 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 164 +**(bytes)** 165 +)))|**2**|**2**|**2**|**2**|**2**|**1** 166 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 167 +Temperature 168 + 169 +(Reserve, Ignore now) 170 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 171 +MOD & Digital Interrupt 172 + 173 +(Optional) 149 149 ))) 150 150 176 +=== 2.3.2 MOD~=1(Original value) === 151 151 152 - [[image:1657249419225-449.png]]178 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 153 153 180 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 181 +|((( 182 +**Size** 154 154 184 +**(bytes)** 185 +)))|**2**|**2**|**2**|**2**|**2**|**1** 186 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 187 +Temperature 155 155 156 -=== 2.2.2 Insert SIM card === 189 +(Reserve, Ignore now) 190 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 191 +MOD & Digital Interrupt 157 157 193 +(Optional) 194 +))) 195 + 196 +=== 2.3.3 Battery Info === 197 + 158 158 ((( 159 - InserttheNB-IoT Cardgetfrom yourprovider.199 +Check the battery voltage for LSE01. 160 160 ))) 161 161 162 162 ((( 163 - Userneed to take out the NB-IoTmoduleand insert the SIM card like below:203 +Ex1: 0x0B45 = 2885mV 164 164 ))) 165 165 206 +((( 207 +Ex2: 0x0B49 = 2889mV 208 +))) 166 166 167 -[[image:1657249468462-536.png]] 168 168 169 169 212 +=== 2.3.4 Soil Moisture === 170 170 171 -=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 214 +((( 215 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 216 +))) 172 172 173 173 ((( 219 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 220 +))) 221 + 174 174 ((( 175 - Userneed to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.223 + 176 176 ))) 225 + 226 +((( 227 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 177 177 ))) 178 178 179 179 180 -**Connection:** 181 181 182 - (%style="background-color:yellow"%)USB TTL GND <~-~-~-~-> GND232 +=== 2.3.5 Soil Temperature === 183 183 184 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 234 +((( 235 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 236 +))) 185 185 186 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 238 +((( 239 +**Example**: 240 +))) 187 187 242 +((( 243 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 244 +))) 188 188 189 -In the PC, use below serial tool settings: 246 +((( 247 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 248 +))) 190 190 191 -* Baud: (% style="color:green" %)**9600** 192 -* Data bits:** (% style="color:green" %)8(%%)** 193 -* Stop bits: (% style="color:green" %)**1** 194 -* Parity: (% style="color:green" %)**None** 195 -* Flow Control: (% style="color:green" %)**None** 196 196 251 + 252 +=== 2.3.6 Soil Conductivity (EC) === 253 + 197 197 ((( 198 - Make surethe switch is inFLASHposition, then power on devicebyconnectingthe jumperNSE01.NSE01 willoutputsysteminfo oncepowerasbelow,wecan enterthe(% style="color:green" %)**password:12345678**(%%)toaccessATCommandinput.255 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 199 199 ))) 200 200 201 -[[image:image-20220708110657-3.png]] 258 +((( 259 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 260 +))) 202 202 203 203 ((( 204 - (% style="color:red"%)Note: the validAT Commandscan be foundat: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]263 +Generally, the EC value of irrigation water is less than 800uS / cm. 205 205 ))) 206 206 266 +((( 267 + 268 +))) 207 207 270 +((( 271 + 272 +))) 208 208 209 -=== 2. 2.4Use CoAP protocol to uplink data===274 +=== 2.3.7 MOD === 210 210 211 - (% style="color:red"%)Note:if you don'thaveCoAP server, you can refer thislinktosetupne:(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]276 +Firmware version at least v2.1 supports changing mode. 212 212 278 +For example, bytes[10]=90 213 213 214 - **Use below commands:**280 +mod=(bytes[10]>>7)&0x01=1. 215 215 216 -* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 217 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 218 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 219 219 220 - For parameter description,please refer toAT commandset283 +**Downlink Command:** 221 221 222 - [[image:1657249793983-486.png]]285 +If payload = 0x0A00, workmode=0 223 223 287 +If** **payload =** **0x0A01, workmode=1 224 224 225 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 226 226 227 -[[image:1657249831934-534.png]] 228 228 291 +=== 2.3.8 Decode payload in The Things Network === 229 229 293 +While using TTN network, you can add the payload format to decode the payload. 230 230 231 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 232 232 233 - This feature is supported since firmwareversion v1.0.1296 +[[image:1654505570700-128.png]] 234 234 298 +((( 299 +The payload decoder function for TTN is here: 300 +))) 235 235 236 - *(% style="color:blue" %)**AT+PRO=2 **(%%) ~/~/ Set to use UDP protocol to uplink237 - *(%style="color:blue"%)**AT+SERVADDR=120.24.4.116,5601 ** (%%)~/~/tot UDPserverress andt238 - * (% style="color:blue" %)**AT+CFM=1 ** (%%)~/~/If the server does not respond, this command is unnecessary302 +((( 303 +LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 304 +))) 239 239 240 -[[image:1657249864775-321.png]] 241 241 242 242 243 - [[image:1657249930215-289.png]]308 +== 2.4 Uplink Interval == 244 244 310 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 245 245 246 246 247 -=== 2.2.6 Use MQTT protocol to uplink data === 248 248 249 - Thisfeatureis supported sincefirmware versionv110314 +== 2.5 Downlink Payload == 250 250 316 +By default, LSE50 prints the downlink payload to console port. 251 251 252 -* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 253 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 254 -* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 255 -* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 256 -* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 257 -* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 258 -* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 318 +[[image:image-20220606165544-8.png]] 259 259 260 -[[image:1657249978444-674.png]] 261 261 321 +((( 322 +**Examples:** 323 +))) 262 262 263 -[[image:1657249990869-686.png]] 325 +((( 326 + 327 +))) 264 264 329 +* ((( 330 +**Set TDC** 331 +))) 265 265 266 266 ((( 267 - MQTTprotocolhas a much higherpower consumption compare vs UDP /CoAPprotocol.Pleasecheckthepoweranalyze documentandadjusttheuplink periodtoa suitable interval.334 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 268 268 ))) 269 269 337 +((( 338 +Payload: 01 00 00 1E TDC=30S 339 +))) 270 270 341 +((( 342 +Payload: 01 00 00 3C TDC=60S 343 +))) 271 271 272 -=== 2.2.7 Use TCP protocol to uplink data === 345 +((( 346 + 347 +))) 273 273 274 -This feature is supported since firmware version v110 349 +* ((( 350 +**Reset** 351 +))) 275 275 353 +((( 354 +If payload = 0x04FF, it will reset the LSE01 355 +))) 276 276 277 -* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 278 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 279 279 280 - [[image:1657250217799-140.png]]358 +* **CFM** 281 281 360 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 282 282 283 -[[image:1657250255956-604.png]] 284 284 285 285 364 +== 2.6 Show Data in DataCake IoT Server == 286 286 287 -=== 2.2.8 Change Update Interval === 366 +((( 367 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 368 +))) 288 288 289 -User can use below command to change the (% style="color:green" %)**uplink interval**. 370 +((( 371 + 372 +))) 290 290 291 -* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 292 - 293 293 ((( 294 - (%style="color:red"%)**NOTE:**375 +**Step 1**: Be sure that your device is programmed and properly connected to the network at this time. 295 295 ))) 296 296 297 297 ((( 298 - (% style="color:red"%)1. Bydefault,thedevicewillsend anuplink message every1hour.379 +**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 299 299 ))) 300 300 301 301 383 +[[image:1654505857935-743.png]] 302 302 303 -== 2.3 Uplink Payload == 304 304 305 - In thismode, uplink payload includes in total18bytes386 +[[image:1654505874829-548.png]] 306 306 307 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 308 -|=(% style="width: 60px;" %)((( 309 -**Size(bytes)** 310 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1** 311 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 388 +Step 3: Create an account or log in Datacake. 312 312 313 -((( 314 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 315 -))) 390 +Step 4: Search the LSE01 and add DevEUI. 316 316 317 317 318 -[[image: image-20220708111918-4.png]]393 +[[image:1654505905236-553.png]] 319 319 320 320 321 - Thepayloadis ASCII string,representative sameHEX:396 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 322 322 323 - 0x72403155615900640c7817075e0a8c02f900 where:398 +[[image:1654505925508-181.png]] 324 324 325 -* Device ID: 0x 724031556159 = 724031556159 326 -* Version: 0x0064=100=1.0.0 327 327 328 -* BAT: 0x0c78 = 3192 mV = 3.192V 329 -* Singal: 0x17 = 23 330 -* Soil Moisture: 0x075e= 1886 = 18.86 % 331 -* Soil Temperature:0x0a8c =2700=27 °C 332 -* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 333 -* Interrupt: 0x00 = 0 334 334 402 +== 2.7 Frequency Plans == 335 335 404 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 336 336 337 337 338 -== 2. 4PayloadExplanationand Sensor Interface==407 +=== 2.7.1 EU863-870 (EU868) === 339 339 409 +(% style="color:#037691" %)** Uplink:** 340 340 341 - === 2.4.1DeviceID===411 +868.1 - SF7BW125 to SF12BW125 342 342 343 -((( 344 -By default, the Device ID equal to the last 6 bytes of IMEI. 345 -))) 413 +868.3 - SF7BW125 to SF12BW125 and SF7BW250 346 346 347 -((( 348 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 349 -))) 415 +868.5 - SF7BW125 to SF12BW125 350 350 351 -((( 352 -**Example:** 353 -))) 417 +867.1 - SF7BW125 to SF12BW125 354 354 355 -((( 356 -AT+DEUI=A84041F15612 357 -))) 419 +867.3 - SF7BW125 to SF12BW125 358 358 359 -((( 360 -The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 361 -))) 421 +867.5 - SF7BW125 to SF12BW125 362 362 423 +867.7 - SF7BW125 to SF12BW125 363 363 425 +867.9 - SF7BW125 to SF12BW125 364 364 365 - === 2.4.2Version Info ===427 +868.8 - FSK 366 366 367 -((( 368 -Specify the software version: 0x64=100, means firmware version 1.00. 369 -))) 370 370 371 -((( 372 -For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 373 -))) 430 +(% style="color:#037691" %)** Downlink:** 374 374 432 +Uplink channels 1-9 (RX1) 375 375 434 +869.525 - SF9BW125 (RX2 downlink only) 376 376 377 -=== 2.4.3 Battery Info === 378 378 379 -((( 380 -Check the battery voltage for LSE01. 381 -))) 382 382 383 -((( 384 -Ex1: 0x0B45 = 2885mV 385 -))) 438 +=== 2.7.2 US902-928(US915) === 386 386 387 -((( 388 -Ex2: 0x0B49 = 2889mV 389 -))) 440 +Used in USA, Canada and South America. Default use CHE=2 390 390 442 +(% style="color:#037691" %)**Uplink:** 391 391 444 +903.9 - SF7BW125 to SF10BW125 392 392 393 - === 2.4.4SignalStrength===446 +904.1 - SF7BW125 to SF10BW125 394 394 395 -((( 396 -NB-IoT Network signal Strength. 397 -))) 448 +904.3 - SF7BW125 to SF10BW125 398 398 399 -((( 400 -**Ex1: 0x1d = 29** 401 -))) 450 +904.5 - SF7BW125 to SF10BW125 402 402 403 -((( 404 -(% style="color:blue" %)**0**(%%) -113dBm or less 405 -))) 452 +904.7 - SF7BW125 to SF10BW125 406 406 407 -((( 408 -(% style="color:blue" %)**1**(%%) -111dBm 409 -))) 454 +904.9 - SF7BW125 to SF10BW125 410 410 411 -((( 412 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 413 -))) 456 +905.1 - SF7BW125 to SF10BW125 414 414 415 -((( 416 -(% style="color:blue" %)**31** (%%) -51dBm or greater 417 -))) 458 +905.3 - SF7BW125 to SF10BW125 418 418 419 -((( 420 -(% style="color:blue" %)**99** (%%) Not known or not detectable 421 -))) 422 422 461 +(% style="color:#037691" %)**Downlink:** 423 423 463 +923.3 - SF7BW500 to SF12BW500 424 424 425 - ===2.4.5SoilMoisture===465 +923.9 - SF7BW500 to SF12BW500 426 426 427 -((( 428 -((( 429 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 430 -))) 431 -))) 467 +924.5 - SF7BW500 to SF12BW500 432 432 433 -((( 434 -((( 435 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 436 -))) 437 -))) 469 +925.1 - SF7BW500 to SF12BW500 438 438 439 -((( 440 - 441 -))) 471 +925.7 - SF7BW500 to SF12BW500 442 442 443 -((( 444 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 445 -))) 473 +926.3 - SF7BW500 to SF12BW500 446 446 475 +926.9 - SF7BW500 to SF12BW500 447 447 477 +927.5 - SF7BW500 to SF12BW500 448 448 449 - ===2.4.6SoilTemperature ===479 +923.3 - SF12BW500(RX2 downlink only) 450 450 451 -((( 452 -Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 453 -))) 454 454 455 -((( 456 -**Example**: 457 -))) 458 458 459 -((( 460 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 461 -))) 483 +=== 2.7.3 CN470-510 (CN470) === 462 462 463 -((( 464 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 465 -))) 485 +Used in China, Default use CHE=1 466 466 487 +(% style="color:#037691" %)**Uplink:** 467 467 489 +486.3 - SF7BW125 to SF12BW125 468 468 469 - === 2.4.7SoilConductivity(EC) ===491 +486.5 - SF7BW125 to SF12BW125 470 470 471 -((( 472 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 473 -))) 493 +486.7 - SF7BW125 to SF12BW125 474 474 475 -((( 476 -For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 477 -))) 495 +486.9 - SF7BW125 to SF12BW125 478 478 479 -((( 480 -Generally, the EC value of irrigation water is less than 800uS / cm. 481 -))) 497 +487.1 - SF7BW125 to SF12BW125 482 482 483 -((( 484 - 485 -))) 499 +487.3 - SF7BW125 to SF12BW125 486 486 487 -((( 488 - 489 -))) 501 +487.5 - SF7BW125 to SF12BW125 490 490 491 - === 2.4.8DigitalInterrupt===503 +487.7 - SF7BW125 to SF12BW125 492 492 493 -((( 494 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 495 -))) 496 496 497 -((( 498 -The command is: 499 -))) 506 +(% style="color:#037691" %)**Downlink:** 500 500 501 -((( 502 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 503 -))) 508 +506.7 - SF7BW125 to SF12BW125 504 504 510 +506.9 - SF7BW125 to SF12BW125 505 505 506 -((( 507 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up. 508 -))) 512 +507.1 - SF7BW125 to SF12BW125 509 509 514 +507.3 - SF7BW125 to SF12BW125 510 510 511 -((( 512 -Example: 513 -))) 516 +507.5 - SF7BW125 to SF12BW125 514 514 515 -((( 516 -0x(00): Normal uplink packet. 517 -))) 518 +507.7 - SF7BW125 to SF12BW125 518 518 519 -((( 520 -0x(01): Interrupt Uplink Packet. 521 -))) 520 +507.9 - SF7BW125 to SF12BW125 522 522 522 +508.1 - SF7BW125 to SF12BW125 523 523 524 +505.3 - SF12BW125 (RX2 downlink only) 524 524 525 -=== 2.4.9 +5V Output === 526 526 527 -((( 528 -NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 529 -))) 530 530 528 +=== 2.7.4 AU915-928(AU915) === 531 531 532 -((( 533 -The 5V output time can be controlled by AT Command. 534 -))) 530 +Default use CHE=2 535 535 536 -((( 537 -(% style="color:blue" %)**AT+5VT=1000** 538 -))) 532 +(% style="color:#037691" %)**Uplink:** 539 539 540 -((( 541 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 542 -))) 534 +916.8 - SF7BW125 to SF12BW125 543 543 536 +917.0 - SF7BW125 to SF12BW125 544 544 538 +917.2 - SF7BW125 to SF12BW125 545 545 546 - ==2.5DownlinkPayload ==540 +917.4 - SF7BW125 to SF12BW125 547 547 548 - Bydefault,NSE01prints the downlinkpayload to console port.542 +917.6 - SF7BW125 to SF12BW125 549 549 550 - [[image:image-20220708133731-5.png]]544 +917.8 - SF7BW125 to SF12BW125 551 551 546 +918.0 - SF7BW125 to SF12BW125 552 552 553 -((( 554 -(% style="color:blue" %)**Examples:** 555 -))) 548 +918.2 - SF7BW125 to SF12BW125 556 556 557 -((( 558 - 559 -))) 560 560 561 -* ((( 562 -(% style="color:blue" %)**Set TDC** 563 -))) 551 +(% style="color:#037691" %)**Downlink:** 564 564 565 -((( 566 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 567 -))) 553 +923.3 - SF7BW500 to SF12BW500 568 568 569 -((( 570 -Payload: 01 00 00 1E TDC=30S 571 -))) 555 +923.9 - SF7BW500 to SF12BW500 572 572 573 -((( 574 -Payload: 01 00 00 3C TDC=60S 575 -))) 557 +924.5 - SF7BW500 to SF12BW500 576 576 577 -((( 578 - 579 -))) 559 +925.1 - SF7BW500 to SF12BW500 580 580 581 -* ((( 582 -(% style="color:blue" %)**Reset** 583 -))) 561 +925.7 - SF7BW500 to SF12BW500 584 584 585 -((( 586 -If payload = 0x04FF, it will reset the NSE01 587 -))) 563 +926.3 - SF7BW500 to SF12BW500 588 588 565 +926.9 - SF7BW500 to SF12BW500 589 589 590 - *(%style="color:blue"%)**INTMOD**567 +927.5 - SF7BW500 to SF12BW500 591 591 592 -((( 593 -Downlink Payload: 06000003, Set AT+INTMOD=3 594 -))) 569 +923.3 - SF12BW500(RX2 downlink only) 595 595 596 596 597 597 598 -== 2. 6LEDIndicator==573 +=== 2.7.5 AS920-923 & AS923-925 (AS923) === 599 599 600 -((( 601 -The NSE01 has an internal LED which is to show the status of different state. 575 +(% style="color:#037691" %)**Default Uplink channel:** 602 602 577 +923.2 - SF7BW125 to SF10BW125 603 603 604 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 605 -* Then the LED will be on for 1 second means device is boot normally. 606 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 607 -* For each uplink probe, LED will be on for 500ms. 608 -))) 579 +923.4 - SF7BW125 to SF10BW125 609 609 610 610 582 +(% style="color:#037691" %)**Additional Uplink Channel**: 611 611 584 +(OTAA mode, channel added by JoinAccept message) 612 612 613 -= =2.7InstallationinSoil ==586 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 614 614 615 - __**Measurementthesoilsurface**__588 +922.2 - SF7BW125 to SF10BW125 616 616 617 - Choose the proper measuring position.Avoidthe probe to touch rocks or hard things.Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]590 +922.4 - SF7BW125 to SF10BW125 618 618 619 - [[image:1657259653666-883.png]]592 +922.6 - SF7BW125 to SF10BW125 620 620 594 +922.8 - SF7BW125 to SF10BW125 621 621 622 -((( 623 - 596 +923.0 - SF7BW125 to SF10BW125 624 624 625 -((( 626 -Dig a hole with diameter > 20CM. 627 -))) 598 +922.0 - SF7BW125 to SF10BW125 628 628 629 -((( 630 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 631 -))) 632 -))) 633 633 634 - [[image:1654506665940-119.png]]601 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 635 635 636 -((( 637 - 638 -))) 603 +923.6 - SF7BW125 to SF10BW125 639 639 605 +923.8 - SF7BW125 to SF10BW125 640 640 641 - ==2.8FirmwareChange Log==607 +924.0 - SF7BW125 to SF10BW125 642 642 609 +924.2 - SF7BW125 to SF10BW125 643 643 644 - DownloadURL&FirmwareChange log611 +924.4 - SF7BW125 to SF10BW125 645 645 646 - [[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]613 +924.6 - SF7BW125 to SF10BW125 647 647 648 648 649 - UpgradeInstruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]616 +(% style="color:#037691" %)** Downlink:** 650 650 618 +Uplink channels 1-8 (RX1) 651 651 620 +923.2 - SF10BW125 (RX2) 652 652 653 -== 2.9 Battery Analysis == 654 654 655 -=== 2.9.1 Battery Type === 656 656 624 +=== 2.7.6 KR920-923 (KR920) === 657 657 658 - TheNSE01 battery is a combination ofn 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable batterytype with a low discharge rate (<2% per year). This type of battery is commonly used inIoT devices such as water meter.626 +Default channel: 659 659 628 +922.1 - SF7BW125 to SF12BW125 660 660 661 - Thebatteryisdesignedtolast for several years depends on the actually use environment and update interval.630 +922.3 - SF7BW125 to SF12BW125 662 662 632 +922.5 - SF7BW125 to SF12BW125 663 663 664 -The battery related documents as below: 665 665 666 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 667 -* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 668 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 635 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 669 669 637 +922.1 - SF7BW125 to SF12BW125 638 + 639 +922.3 - SF7BW125 to SF12BW125 640 + 641 +922.5 - SF7BW125 to SF12BW125 642 + 643 +922.7 - SF7BW125 to SF12BW125 644 + 645 +922.9 - SF7BW125 to SF12BW125 646 + 647 +923.1 - SF7BW125 to SF12BW125 648 + 649 +923.3 - SF7BW125 to SF12BW125 650 + 651 + 652 +(% style="color:#037691" %)**Downlink:** 653 + 654 +Uplink channels 1-7(RX1) 655 + 656 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 657 + 658 + 659 + 660 +=== 2.7.7 IN865-867 (IN865) === 661 + 662 +(% style="color:#037691" %)** Uplink:** 663 + 664 +865.0625 - SF7BW125 to SF12BW125 665 + 666 +865.4025 - SF7BW125 to SF12BW125 667 + 668 +865.9850 - SF7BW125 to SF12BW125 669 + 670 + 671 +(% style="color:#037691" %) **Downlink:** 672 + 673 +Uplink channels 1-3 (RX1) 674 + 675 +866.550 - SF10BW125 (RX2) 676 + 677 + 678 + 679 + 680 +== 2.8 LED Indicator == 681 + 682 +The LSE01 has an internal LED which is to show the status of different state. 683 + 684 +* Blink once when device power on. 685 +* Solid ON for 5 seconds once device successful Join the network. 686 +* Blink once when device transmit a packet. 687 + 688 +== 2.9 Installation in Soil == 689 + 690 +**Measurement the soil surface** 691 + 692 + 693 +[[image:1654506634463-199.png]] 694 + 670 670 ((( 671 -[[image:image-20220708140453-6.png]] 696 +((( 697 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 672 672 ))) 699 +))) 673 673 674 674 702 +[[image:1654506665940-119.png]] 675 675 676 -=== 2.9.2 Power consumption Analyze === 704 +((( 705 +Dig a hole with diameter > 20CM. 706 +))) 677 677 678 678 ((( 679 - Draginobattery powered productare allrunsinLow Powermode. Wehavean update battery calculator whichbase onthemeasurementof the realdevice. User canuse this calculatorto checkthebatterylife andcalculatethe batterylifeif want to use different transmit interval.709 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 680 680 ))) 681 681 682 682 713 +== 2.10 Firmware Change Log == 714 + 683 683 ((( 684 - Instructiontouseasbelow:716 +**Firmware download link:** 685 685 ))) 686 686 687 687 ((( 688 - (% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:[[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]720 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 689 689 ))) 690 690 723 +((( 724 + 725 +))) 691 691 692 692 ((( 693 - (% style="color:blue" %)**Step2: **(%%)Openithoose728 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 694 694 ))) 695 695 696 - *(((697 - ProductModel731 +((( 732 + 698 698 ))) 699 -* ((( 700 -Uplink Interval 734 + 735 +((( 736 +**V1.0.** 701 701 ))) 702 -* ((( 703 -Working Mode 704 -))) 705 705 706 706 ((( 707 - And theLifeexpectation in difference casewill be shown on the right.740 +Release 708 708 ))) 709 709 710 -[[image:image-20220708141352-7.jpeg]] 711 711 744 +== 2.11 Battery Analysis == 712 712 746 +=== 2.11.1 Battery Type === 713 713 714 -=== 2.9.3 Battery Note === 748 +((( 749 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 750 +))) 715 715 716 716 ((( 717 -The Li-SICObattery is designedfor small current/ longperiod application. It isnotgood to use a high current,short period transmit method. Therecommendedminimum period for use ofthis batteryis5minutes. Ifyou useshorterperiod time to transmitLoRa,thenthe battery life may be decreased.753 +The battery is designed to last for more than 5 years for the LSN50. 718 718 ))) 719 719 756 +((( 757 +((( 758 +The battery-related documents are as below: 759 +))) 760 +))) 720 720 762 +* ((( 763 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 764 +))) 765 +* ((( 766 +[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 767 +))) 768 +* ((( 769 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 770 +))) 721 721 722 - ===2.9.4 Replacethe battery ===772 + [[image:image-20220610172436-1.png]] 723 723 774 + 775 + 776 +=== 2.11.2 Battery Note === 777 + 724 724 ((( 725 -The defaultbatterypackofNSE01includesaER26500 plussupercapacitor. Ifusercan'tfind this pack locally,theycanfindER26500 orquivalence withoutthe SPC1520 capacitor, which will alsowork inmostcase. TheSPCcanlarge thebatterylifeforhigh frequency use(update periodbelow5minutes).779 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 726 726 ))) 727 727 728 728 729 729 730 -= 3. AccessNB-IoTModule =784 +=== 2.11.3 Replace the battery === 731 731 732 732 ((( 733 - Userscan directlyaccesstheAT command setoftheNB-IoTmodule.787 +If Battery is lower than 2.7v, user should replace the battery of LSE01. 734 734 ))) 735 735 736 736 ((( 737 - The AT Commandsetcanrefer theBC35-G NB-IoTModuleATCommand: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]]791 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 738 738 ))) 739 739 740 -[[image:1657261278785-153.png]] 794 +((( 795 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 796 +))) 741 741 742 742 743 743 744 -= 4.800 += 3. Using the AT Commands = 745 745 746 -== 4.1802 +== 3.1 Access AT Commands == 747 747 748 -See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 749 749 805 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 750 750 751 - AT+<CMD>? : Helpon<CMD>807 +[[image:1654501986557-872.png||height="391" width="800"]] 752 752 753 -AT+<CMD> : Run <CMD> 754 754 755 - AT+<CMD>=<value>: Setthevalue810 +Or if you have below board, use below connection: 756 756 757 -AT+<CMD>=? : Get the value 758 758 813 +[[image:1654502005655-729.png||height="503" width="801"]] 759 759 815 + 816 + 817 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 818 + 819 + 820 + [[image:1654502050864-459.png||height="564" width="806"]] 821 + 822 + 823 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]] 824 + 825 + 826 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 827 + 828 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 829 + 830 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 831 + 832 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 833 + 834 + 760 760 (% style="color:#037691" %)**General Commands**(%%) 761 761 762 -AT 837 +(% style="background-color:#dcdcdc" %)**AT**(%%) : Attention 763 763 764 -AT? 839 +(% style="background-color:#dcdcdc" %)**AT?**(%%) : Short Help 765 765 766 -ATZ 841 +(% style="background-color:#dcdcdc" %)**ATZ**(%%) : MCU Reset 767 767 768 -AT+TDC 843 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%) : Application Data Transmission Interval 769 769 770 -AT+CFG : Print all configurations 771 771 772 - AT+CFGMOD: Workingmode selection846 +(% style="color:#037691" %)**Keys, IDs and EUIs management** 773 773 774 -AT+I NTMOD:Setthe trigger interruptmode848 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%) : Application EUI 775 775 776 -AT+ 5VTSetextend the timeof5V power850 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%) : Application Key 777 777 778 -AT+P ROChooseagreement852 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%) : Application Session Key 779 779 780 -AT+ WEIGREGet weightorsetweight to 0854 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%) : Device Address 781 781 782 -AT+ WEIGAPGet or SettheGapValue of weight856 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%) : Device EUI 783 783 784 -AT+ RXDL: Extendthe sendingandreceivingtime858 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%) : Network ID (You can enter this command change only after successful network connection) 785 785 786 -AT+ CNTFACGettcountingparameters860 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%) : Network Session Key Joining and sending date on LoRa network 787 787 788 -AT+ SERVADDR:ServerAddress862 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%) : Confirm Mode 789 789 864 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 790 790 791 -(% style="color:# 037691" %)**COAPManagement**866 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%) : Join LoRa? Network 792 792 793 -AT+ URIsourceparameters868 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%) : LoRa? Network Join Mode 794 794 870 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 795 795 796 -(% style="color:# 037691" %)**UDPManagement**872 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%) : Print Last Received Data in Raw Format 797 797 798 -AT+C FM:Uploadconfirmationmode (onlyvalid forUDP)874 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%) : Print Last Received Data in Binary Format 799 799 876 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 800 800 801 -(% style="color:# 037691" %)**MQTTManagement**878 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%) : Send Hexadecimal Data 802 802 803 -AT+CLIENT : Get or Set MQTT client 804 804 805 - AT+UNAMEGetSetMQTT Username881 +(% style="color:#037691" %)**LoRa Network Management** 806 806 807 -AT+ PWDGetor SetMQTT password883 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%) : Adaptive Rate 808 808 809 -AT+ PUBTOPICGetorSetMQTTpublishtopic885 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%) : LoRa Class(Currently only support class A 810 810 811 -AT+ SUBTOPIC :GetorSetMQTT subscriptiontopic887 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%) : Duty Cycle Setting 812 812 889 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 813 813 814 -(% style="color:# 037691" %)**Information**891 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink 815 815 816 -AT+F DRctoryDataReset893 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%) : Frame Counter Uplink 817 817 818 -AT+ PWORDSerialAccessPassword895 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%) : Join Accept Delay1 819 819 897 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 820 820 899 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 821 821 822 -= 5.FAQ=901 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%) : Receive Delay1 823 823 824 -= =5.1HowtoUpgradeFirmware==903 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%) : Receive Delay2 825 825 905 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 826 826 907 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 908 + 909 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 910 + 911 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 912 + 913 + 914 +(% style="color:#037691" %)**Information** 915 + 916 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 917 + 918 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 919 + 920 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 921 + 922 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 923 + 924 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 925 + 926 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 927 + 928 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 929 + 930 + 931 += 4. FAQ = 932 + 933 +== 4.1 How to change the LoRa Frequency Bands/Region? == 934 + 827 827 ((( 828 -User can upgrade the firmware for 1) bug fix, 2) new feature release. 936 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 937 +When downloading the images, choose the required image file for download. 829 829 ))) 830 830 831 831 ((( 832 - Pleasesee this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]941 + 833 833 ))) 834 834 835 835 ((( 836 - (%style="color:red"%)Notice,NSE01andLSE01share thememotherboard.Theyuse thesameconnection andmethodto update.945 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 837 837 ))) 838 838 948 +((( 949 + 950 +))) 839 839 952 +((( 953 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 954 +))) 840 840 841 -= 6. Trouble Shooting = 956 +((( 957 + 958 +))) 842 842 843 -== 6.1 Connection problem when uploading firmware == 960 +((( 961 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 962 +))) 844 844 964 +[[image:image-20220606154726-3.png]] 845 845 846 -(% class="wikigeneratedid" %) 966 + 967 +When you use the TTN network, the US915 frequency bands use are: 968 + 969 +* 903.9 - SF7BW125 to SF10BW125 970 +* 904.1 - SF7BW125 to SF10BW125 971 +* 904.3 - SF7BW125 to SF10BW125 972 +* 904.5 - SF7BW125 to SF10BW125 973 +* 904.7 - SF7BW125 to SF10BW125 974 +* 904.9 - SF7BW125 to SF10BW125 975 +* 905.1 - SF7BW125 to SF10BW125 976 +* 905.3 - SF7BW125 to SF10BW125 977 +* 904.6 - SF8BW500 978 + 847 847 ((( 848 - (%style="font-size:14px"%)**Pleasesee:**(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color:rgb(255,255,255);font-size:14px;"]]980 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 849 849 ))) 850 850 983 +(% class="box infomessage" %) 984 +((( 985 +**AT+CHE=2** 986 +))) 851 851 988 +(% class="box infomessage" %) 989 +((( 990 +**ATZ** 991 +))) 852 852 853 -== 6.2 AT Command input doesn't work == 993 +((( 994 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 995 +))) 854 854 855 855 ((( 856 - Inthe case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.998 + 857 857 ))) 858 858 1001 +((( 1002 +The **AU915** band is similar. Below are the AU915 Uplink Channels. 1003 +))) 859 859 1005 +[[image:image-20220606154825-4.png]] 860 860 861 -= 7. Order Info = 862 862 863 863 864 - PartNumber**:** (% style="color:#4f81bd"%)**NSE01**1009 += 5. Trouble Shooting = 865 865 1011 +== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 866 866 1013 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 1014 + 1015 + 1016 +== 5.2 AT Command input doesn’t work == 1017 + 1018 +((( 1019 +In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1020 +))) 1021 + 1022 + 1023 +== 5.3 Device rejoin in at the second uplink packet == 1024 + 1025 +(% style="color:#4f81bd" %)**Issue describe as below:** 1026 + 1027 +[[image:1654500909990-784.png]] 1028 + 1029 + 1030 +(% style="color:#4f81bd" %)**Cause for this issue:** 1031 + 1032 +((( 1033 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 1034 +))) 1035 + 1036 + 1037 +(% style="color:#4f81bd" %)**Solution: ** 1038 + 1039 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 1040 + 1041 +[[image:1654500929571-736.png||height="458" width="832"]] 1042 + 1043 + 1044 += 6. Order Info = 1045 + 1046 + 1047 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 1048 + 1049 + 1050 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 1051 + 1052 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 1053 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 1054 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 1055 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 1056 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1057 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1058 +* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1059 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1060 + 1061 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1062 + 1063 +* (% style="color:red" %)**4**(%%): 4000mAh battery 1064 +* (% style="color:red" %)**8**(%%): 8500mAh battery 1065 + 867 867 (% class="wikigeneratedid" %) 868 868 ((( 869 869 870 870 ))) 871 871 872 -= 8.1071 += 7. Packing Info = 873 873 874 874 ((( 875 875 876 876 877 877 (% style="color:#037691" %)**Package Includes**: 1077 +))) 878 878 879 - 880 -* NSE01 NB-IoT Soil Moisture & EC Sensor x 1 881 -* External antenna x 1 1079 +* ((( 1080 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 882 882 ))) 883 883 884 884 ((( ... ... @@ -885,20 +885,24 @@ 885 885 886 886 887 887 (% style="color:#037691" %)**Dimension and weight**: 1087 +))) 888 888 889 - 890 -* Size: 195 x 125 x 55 mm 891 -* Weight: 420g 1089 +* ((( 1090 +Device Size: cm 892 892 ))) 1092 +* ((( 1093 +Device Weight: g 1094 +))) 1095 +* ((( 1096 +Package Size / pcs : cm 1097 +))) 1098 +* ((( 1099 +Weight / pcs : g 893 893 894 -((( 895 895 896 - 897 - 898 - 899 899 ))) 900 900 901 -= 9.1104 += 8. Support = 902 902 903 903 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 904 904 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -102.7 KB - Content