Changes for page NDDS75 -- NB-IoT Distance Detect Sensor User Manual
Last modified by Bei Jinggeng on 2024/05/31 09:53
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 19 removed)
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
Details
- Page properties
-
- Content
-
... ... @@ -13,14 +13,11 @@ 13 13 14 14 **Table of Contents:** 15 15 16 -{{toc/}} 17 17 18 18 19 19 20 20 21 21 22 - 23 - 24 24 = 1. Introduction = 25 25 26 26 == 1.1 What is LoRaWAN Soil Moisture & EC Sensor == ... ... @@ -28,21 +28,13 @@ 28 28 ((( 29 29 30 30 31 -((( 32 32 Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 33 -))) 34 34 35 -((( 36 36 It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 37 -))) 38 38 39 -((( 40 40 The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 41 -))) 42 42 43 -((( 44 44 NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years. 45 -))) 46 46 47 47 48 48 ))) ... ... @@ -54,8 +54,9 @@ 54 54 55 55 56 56 57 -== 1.2 46 +== 1.2 Features == 58 58 48 + 59 59 * NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 60 60 * Monitor Soil Moisture 61 61 * Monitor Soil Temperature ... ... @@ -69,6 +69,8 @@ 69 69 * Micro SIM card slot for NB-IoT SIM 70 70 * 8500mAh Battery for long term use 71 71 62 + 63 + 72 72 == 1.3 Specification == 73 73 74 74 ... ... @@ -77,6 +77,7 @@ 77 77 * Supply Voltage: 2.1v ~~ 3.6v 78 78 * Operating Temperature: -40 ~~ 85°C 79 79 72 + 80 80 (% style="color:#037691" %)**NB-IoT Spec:** 81 81 82 82 * - B1 @H-FDD: 2100MHz ... ... @@ -86,8 +86,9 @@ 86 86 * - B20 @H-FDD: 800MHz 87 87 * - B28 @H-FDD: 700MHz 88 88 89 -Probe(% style="color:#037691" %)** Specification:** 90 90 83 +(% style="color:#037691" %)**Probe Specification:** 84 + 91 91 Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 92 92 93 93 [[image:image-20220708101224-1.png]] ... ... @@ -130,753 +130,984 @@ 130 130 131 131 132 132 133 -== 2.2 Configure the NSE01==127 +== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 134 134 129 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 135 135 136 -=== 2.2.1 Test Requirement === 137 137 132 +[[image:1654503992078-669.png]] 138 138 139 -((( 140 -To use NSE01 in your city, make sure meet below requirements: 141 -))) 142 142 143 -* Your local operator has already distributed a NB-IoT Network there. 144 -* The local NB-IoT network used the band that NSE01 supports. 145 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 135 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 146 146 147 -((( 148 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 149 -))) 150 150 138 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSE01. 151 151 152 - [[image:1657249419225-449.png]]140 +Each LSE01 is shipped with a sticker with the default device EUI as below: 153 153 142 +[[image:image-20220606163732-6.jpeg]] 154 154 144 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 155 155 156 - ===2.2.2sertSIMcard ===146 +**Add APP EUI in the application** 157 157 158 -((( 159 -Insert the NB-IoT Card get from your provider. 160 -))) 161 161 162 -((( 163 -User need to take out the NB-IoT module and insert the SIM card like below: 164 -))) 149 +[[image:1654504596150-405.png]] 165 165 166 166 167 -[[image:1657249468462-536.png]] 168 168 153 +**Add APP KEY and DEV EUI** 169 169 155 +[[image:1654504683289-357.png]] 170 170 171 -=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 172 172 173 -((( 174 -((( 175 -User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 176 -))) 177 -))) 178 178 159 +(% style="color:blue" %)**Step 2**(%%): Power on LSE01 179 179 180 -**Connection:** 181 181 182 - (%style="background-color:yellow"%)USBTTLGND<~-~-~-~->GND162 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 183 183 184 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD164 +[[image:image-20220606163915-7.png]] 185 185 186 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 187 187 167 +(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 188 188 189 - In the PC, use below serial tool settings:169 +[[image:1654504778294-788.png]] 190 190 191 -* Baud: (% style="color:green" %)**9600** 192 -* Data bits:** (% style="color:green" %)8(%%)** 193 -* Stop bits: (% style="color:green" %)**1** 194 -* Parity: (% style="color:green" %)**None** 195 -* Flow Control: (% style="color:green" %)**None** 196 196 172 + 173 +== 2.3 Uplink Payload == 174 + 175 + 176 +=== 2.3.1 MOD~=0(Default Mode) === 177 + 178 +LSE01 will uplink payload via LoRaWAN with below payload format: 179 + 197 197 ((( 198 - Make sure the switch is in FLASHposition,thenpower ondeviceby connecting the jumper on NSE01. NSE01 will output systeminfoonce power onas below,we can enter the (% style="color:green" %)**password:12345678**(%%)to access AT Command input.181 +Uplink payload includes in total 11 bytes. 199 199 ))) 200 200 201 -[[image:image-20220708110657-3.png]] 184 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 185 +|((( 186 +**Size** 202 202 203 -((( 204 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 188 +**(bytes)** 189 +)))|**2**|**2**|**2**|**2**|**2**|**1** 190 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 191 +Temperature 192 + 193 +(Reserve, Ignore now) 194 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 195 +MOD & Digital Interrupt 196 + 197 +(Optional) 205 205 ))) 206 206 200 +=== 2.3.2 MOD~=1(Original value) === 207 207 202 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 208 208 209 -=== 2.2.4 Use CoAP protocol to uplink data === 204 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 205 +|((( 206 +**Size** 210 210 211 -(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 208 +**(bytes)** 209 +)))|**2**|**2**|**2**|**2**|**2**|**1** 210 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 211 +Temperature 212 212 213 +(Reserve, Ignore now) 214 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 215 +MOD & Digital Interrupt 213 213 214 -**Use below commands:** 217 +(Optional) 218 +))) 215 215 216 -* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 217 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 218 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 220 +=== 2.3.3 Battery Info === 219 219 220 -For parameter description, please refer to AT command set 222 +((( 223 +Check the battery voltage for LSE01. 224 +))) 221 221 222 -[[image:1657249793983-486.png]] 226 +((( 227 +Ex1: 0x0B45 = 2885mV 228 +))) 223 223 230 +((( 231 +Ex2: 0x0B49 = 2889mV 232 +))) 224 224 225 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 226 226 227 -[[image:1657249831934-534.png]] 228 228 236 +=== 2.3.4 Soil Moisture === 229 229 238 +((( 239 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 240 +))) 230 230 231 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 242 +((( 243 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 244 +))) 232 232 233 -This feature is supported since firmware version v1.0.1 246 +((( 247 + 248 +))) 234 234 250 +((( 251 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 252 +))) 235 235 236 -* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 237 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 238 -* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 239 239 240 -[[image:1657249864775-321.png]] 241 241 256 +=== 2.3.5 Soil Temperature === 242 242 243 -[[image:1657249930215-289.png]] 258 +((( 259 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 260 +))) 244 244 262 +((( 263 +**Example**: 264 +))) 245 245 266 +((( 267 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 268 +))) 246 246 247 -=== 2.2.6 Use MQTT protocol to uplink data === 270 +((( 271 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 272 +))) 248 248 249 -This feature is supported since firmware version v110 250 250 251 251 252 -* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 253 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 254 -* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 255 -* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 256 -* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 257 -* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 258 -* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 276 +=== 2.3.6 Soil Conductivity (EC) === 259 259 260 -[[image:1657249978444-674.png]] 278 +((( 279 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 280 +))) 261 261 282 +((( 283 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 284 +))) 262 262 263 -[[image:1657249990869-686.png]] 286 +((( 287 +Generally, the EC value of irrigation water is less than 800uS / cm. 288 +))) 264 264 290 +((( 291 + 292 +))) 265 265 266 266 ((( 267 - MQTTprotocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.295 + 268 268 ))) 269 269 298 +=== 2.3.7 MOD === 270 270 300 +Firmware version at least v2.1 supports changing mode. 271 271 272 - ===2.2.7 UseTCPprotocol to uplink data===302 +For example, bytes[10]=90 273 273 274 - This feature is supportedsince firmware version v110304 +mod=(bytes[10]>>7)&0x01=1. 275 275 276 276 277 -* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 278 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 307 +**Downlink Command:** 279 279 280 - [[image:1657250217799-140.png]]309 +If payload = 0x0A00, workmode=0 281 281 311 +If** **payload =** **0x0A01, workmode=1 282 282 283 -[[image:1657250255956-604.png]] 284 284 285 285 315 +=== 2.3.8 Decode payload in The Things Network === 286 286 287 - ===2.2.8ChangeUpdateInterval===317 +While using TTN network, you can add the payload format to decode the payload. 288 288 289 -User can use below command to change the (% style="color:green" %)**uplink interval**. 290 290 291 - * (% style="color:blue" %)**AT+TDC=600** (%%)~/~/ Set Update Interval to 600s320 +[[image:1654505570700-128.png]] 292 292 293 293 ((( 294 - (%style="color:red"%)**NOTE:**323 +The payload decoder function for TTN is here: 295 295 ))) 296 296 297 297 ((( 298 - (%style="color:red"%)1. By default,thedevicewillsendan uplinkmessage every 1 hour.327 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]] 299 299 ))) 300 300 301 301 331 +== 2.4 Uplink Interval == 302 302 303 - ==2.3UplinkPayload ==333 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 304 304 305 -In this mode, uplink payload includes in total 18 bytes 306 306 307 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 308 -|=(% style="width: 60px;" %)((( 309 -**Size(bytes)** 310 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1** 311 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 312 312 337 +== 2.5 Downlink Payload == 338 + 339 +By default, LSE50 prints the downlink payload to console port. 340 + 341 +[[image:image-20220606165544-8.png]] 342 + 343 + 313 313 ((( 314 - Ifwe usethe MQTT client to subscribe tothis MQTT topic, we can see the following information whenthe NSE01 uplink data.345 +(% style="color:blue" %)**Examples:** 315 315 ))) 316 316 348 +((( 349 + 350 +))) 317 317 318 -[[image:image-20220708111918-4.png]] 352 +* ((( 353 +(% style="color:blue" %)**Set TDC** 354 +))) 319 319 356 +((( 357 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 358 +))) 320 320 321 -The payload is ASCII string, representative same HEX: 360 +((( 361 +Payload: 01 00 00 1E TDC=30S 362 +))) 322 322 323 -0x72403155615900640c7817075e0a8c02f900 where: 364 +((( 365 +Payload: 01 00 00 3C TDC=60S 366 +))) 324 324 325 -* Device ID: 0x 724031556159 = 724031556159 326 -* Version: 0x0064=100=1.0.0 368 +((( 369 + 370 +))) 327 327 328 -* BAT: 0x0c78 = 3192 mV = 3.192V 329 -* Singal: 0x17 = 23 330 -* Soil Moisture: 0x075e= 1886 = 18.86 % 331 -* Soil Temperature:0x0a8c =2700=27 °C 332 -* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 333 -* Interrupt: 0x00 = 0 372 +* ((( 373 +(% style="color:blue" %)**Reset** 374 +))) 334 334 376 +((( 377 +If payload = 0x04FF, it will reset the LSE01 378 +))) 335 335 336 336 381 +* (% style="color:blue" %)**CFM** 337 337 338 - ==2.4PayloadExplanationandSensorInterface==383 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 339 339 340 340 341 -=== 2.4.1 Device ID === 342 342 343 -((( 344 -By default, the Device ID equal to the last 6 bytes of IMEI. 345 -))) 387 +== 2.6 Show Data in DataCake IoT Server == 346 346 347 347 ((( 348 - Usercanuse(% style="color:blue"%)**AT+DEUI**(%%)to set DeviceID390 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 349 349 ))) 350 350 351 351 ((( 352 - **Example:**394 + 353 353 ))) 354 354 355 355 ((( 356 - AT+DEUI=A84041F15612398 +(% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time. 357 357 ))) 358 358 359 359 ((( 360 - TheDeviceID is storedinanone-erasearea,UpgradethefirmwareorrunAT+FDRwon't erase DeviceID.402 +(% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 361 361 ))) 362 362 363 363 406 +[[image:1654505857935-743.png]] 364 364 365 -=== 2.4.2 Version Info === 366 366 367 -((( 368 -Specify the software version: 0x64=100, means firmware version 1.00. 369 -))) 409 +[[image:1654505874829-548.png]] 370 370 371 -((( 372 -For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 373 -))) 374 374 412 +(% style="color:blue" %)**Step 3**(%%)**:** Create an account or log in Datacake. 375 375 414 +(% style="color:blue" %)**Step 4**(%%)**:** Search the LSE01 and add DevEUI. 376 376 377 -=== 2.4.3 Battery Info === 378 378 379 -((( 380 -Check the battery voltage for LSE01. 381 -))) 417 +[[image:1654505905236-553.png]] 382 382 383 -((( 384 -Ex1: 0x0B45 = 2885mV 385 -))) 386 386 387 -((( 388 -Ex2: 0x0B49 = 2889mV 389 -))) 420 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 390 390 422 +[[image:1654505925508-181.png]] 391 391 392 392 393 -=== 2.4.4 Signal Strength === 394 394 395 -((( 396 -NB-IoT Network signal Strength. 397 -))) 426 +== 2.7 Frequency Plans == 398 398 399 -((( 400 -**Ex1: 0x1d = 29** 401 -))) 428 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 402 402 403 -((( 404 -(% style="color:blue" %)**0**(%%) -113dBm or less 405 -))) 406 406 407 -((( 408 -(% style="color:blue" %)**1**(%%) -111dBm 409 -))) 431 +=== 2.7.1 EU863-870 (EU868) === 410 410 411 -((( 412 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 413 -))) 433 +(% style="color:#037691" %)** Uplink:** 414 414 415 -((( 416 -(% style="color:blue" %)**31** (%%) -51dBm or greater 417 -))) 435 +868.1 - SF7BW125 to SF12BW125 418 418 419 -((( 420 -(% style="color:blue" %)**99** (%%) Not known or not detectable 421 -))) 437 +868.3 - SF7BW125 to SF12BW125 and SF7BW250 422 422 439 +868.5 - SF7BW125 to SF12BW125 423 423 441 +867.1 - SF7BW125 to SF12BW125 424 424 425 - ===2.4.5SoilMoisture ===443 +867.3 - SF7BW125 to SF12BW125 426 426 427 -((( 428 -((( 429 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 430 -))) 431 -))) 445 +867.5 - SF7BW125 to SF12BW125 432 432 433 -((( 434 -((( 435 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 436 -))) 437 -))) 447 +867.7 - SF7BW125 to SF12BW125 438 438 439 -((( 440 - 441 -))) 449 +867.9 - SF7BW125 to SF12BW125 442 442 443 -((( 444 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 445 -))) 451 +868.8 - FSK 446 446 447 447 454 +(% style="color:#037691" %)** Downlink:** 448 448 449 - === 2.4.6 SoilTemperature===456 +Uplink channels 1-9 (RX1) 450 450 451 -((( 452 -Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 453 -))) 458 +869.525 - SF9BW125 (RX2 downlink only) 454 454 455 -((( 456 -**Example**: 457 -))) 458 458 459 -((( 460 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 461 -))) 462 462 463 -((( 464 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 465 -))) 462 +=== 2.7.2 US902-928(US915) === 466 466 464 +Used in USA, Canada and South America. Default use CHE=2 467 467 466 +(% style="color:#037691" %)**Uplink:** 468 468 469 - === 2.4.7SoilConductivity(EC) ===468 +903.9 - SF7BW125 to SF10BW125 470 470 471 -((( 472 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 473 -))) 470 +904.1 - SF7BW125 to SF10BW125 474 474 475 -((( 476 -For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 477 -))) 472 +904.3 - SF7BW125 to SF10BW125 478 478 479 -((( 480 -Generally, the EC value of irrigation water is less than 800uS / cm. 481 -))) 474 +904.5 - SF7BW125 to SF10BW125 482 482 483 -((( 484 - 485 -))) 476 +904.7 - SF7BW125 to SF10BW125 486 486 487 -((( 488 - 489 -))) 478 +904.9 - SF7BW125 to SF10BW125 490 490 491 - ===2.4.8DigitalInterrupt ===480 +905.1 - SF7BW125 to SF10BW125 492 492 493 -((( 494 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 495 -))) 482 +905.3 - SF7BW125 to SF10BW125 496 496 497 -((( 498 -The command is: 499 -))) 500 500 501 -((( 502 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 503 -))) 485 +(% style="color:#037691" %)**Downlink:** 504 504 487 +923.3 - SF7BW500 to SF12BW500 505 505 506 -((( 507 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up. 508 -))) 489 +923.9 - SF7BW500 to SF12BW500 509 509 491 +924.5 - SF7BW500 to SF12BW500 510 510 511 -((( 512 -Example: 513 -))) 493 +925.1 - SF7BW500 to SF12BW500 514 514 515 -((( 516 -0x(00): Normal uplink packet. 517 -))) 495 +925.7 - SF7BW500 to SF12BW500 518 518 519 -((( 520 -0x(01): Interrupt Uplink Packet. 521 -))) 497 +926.3 - SF7BW500 to SF12BW500 522 522 499 +926.9 - SF7BW500 to SF12BW500 523 523 501 +927.5 - SF7BW500 to SF12BW500 524 524 525 - ===2.4.9+5VOutput===503 +923.3 - SF12BW500(RX2 downlink only) 526 526 527 -((( 528 -NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 529 -))) 530 530 531 531 532 -((( 533 -The 5V output time can be controlled by AT Command. 534 -))) 507 +=== 2.7.3 CN470-510 (CN470) === 535 535 536 -((( 537 -(% style="color:blue" %)**AT+5VT=1000** 538 -))) 509 +Used in China, Default use CHE=1 539 539 540 -((( 541 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 542 -))) 511 +(% style="color:#037691" %)**Uplink:** 543 543 513 +486.3 - SF7BW125 to SF12BW125 544 544 515 +486.5 - SF7BW125 to SF12BW125 545 545 546 - ==2.5DownlinkPayload ==517 +486.7 - SF7BW125 to SF12BW125 547 547 548 - Bydefault,NSE01prints the downlinkpayload to console port.519 +486.9 - SF7BW125 to SF12BW125 549 549 550 - [[image:image-20220708133731-5.png]]521 +487.1 - SF7BW125 to SF12BW125 551 551 523 +487.3 - SF7BW125 to SF12BW125 552 552 553 -((( 554 -(% style="color:blue" %)**Examples:** 555 -))) 525 +487.5 - SF7BW125 to SF12BW125 556 556 557 -((( 558 - 559 -))) 527 +487.7 - SF7BW125 to SF12BW125 560 560 561 -* ((( 562 -(% style="color:blue" %)**Set TDC** 563 -))) 564 564 565 -((( 566 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 567 -))) 530 +(% style="color:#037691" %)**Downlink:** 568 568 569 -((( 570 -Payload: 01 00 00 1E TDC=30S 571 -))) 532 +506.7 - SF7BW125 to SF12BW125 572 572 573 -((( 574 -Payload: 01 00 00 3C TDC=60S 575 -))) 534 +506.9 - SF7BW125 to SF12BW125 576 576 577 -((( 578 - 579 -))) 536 +507.1 - SF7BW125 to SF12BW125 580 580 581 -* ((( 582 -(% style="color:blue" %)**Reset** 583 -))) 538 +507.3 - SF7BW125 to SF12BW125 584 584 585 -((( 586 -If payload = 0x04FF, it will reset the NSE01 587 -))) 540 +507.5 - SF7BW125 to SF12BW125 588 588 542 +507.7 - SF7BW125 to SF12BW125 589 589 590 - *(%style="color:blue"%)**INTMOD**544 +507.9 - SF7BW125 to SF12BW125 591 591 592 - Downlink Payload:06000003,SetAT+INTMOD=3546 +508.1 - SF7BW125 to SF12BW125 593 593 548 +505.3 - SF12BW125 (RX2 downlink only) 594 594 595 595 596 -== 2.6 LED Indicator == 597 597 598 -((( 599 -The NSE01 has an internal LED which is to show the status of different state. 552 +=== 2.7.4 AU915-928(AU915) === 600 600 554 +Default use CHE=2 601 601 602 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 603 -* Then the LED will be on for 1 second means device is boot normally. 604 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 605 -* For each uplink probe, LED will be on for 500ms. 606 -))) 556 +(% style="color:#037691" %)**Uplink:** 607 607 558 +916.8 - SF7BW125 to SF12BW125 608 608 560 +917.0 - SF7BW125 to SF12BW125 609 609 562 +917.2 - SF7BW125 to SF12BW125 610 610 611 - == 2.7InstallationinSoil ==564 +917.4 - SF7BW125 to SF12BW125 612 612 613 - __**Measurementthesoilsurface**__566 +917.6 - SF7BW125 to SF12BW125 614 614 615 - Choose the proper measuring position.Avoidthe probe to touch rocks or hard things.Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]568 +917.8 - SF7BW125 to SF12BW125 616 616 617 - [[image:1657259653666-883.png]]570 +918.0 - SF7BW125 to SF12BW125 618 618 572 +918.2 - SF7BW125 to SF12BW125 619 619 620 -((( 621 - 622 622 623 -((( 624 -Dig a hole with diameter > 20CM. 625 -))) 575 +(% style="color:#037691" %)**Downlink:** 626 626 627 -((( 628 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 629 -))) 630 -))) 577 +923.3 - SF7BW500 to SF12BW500 631 631 632 - [[image:1654506665940-119.png]]579 +923.9 - SF7BW500 to SF12BW500 633 633 634 -((( 635 - 636 -))) 581 +924.5 - SF7BW500 to SF12BW500 637 637 583 +925.1 - SF7BW500 to SF12BW500 638 638 639 - ==2.8FirmwareChange Log==585 +925.7 - SF7BW500 to SF12BW500 640 640 587 +926.3 - SF7BW500 to SF12BW500 641 641 642 - DownloadURL&FirmwareChange log589 +926.9 - SF7BW500 to SF12BW500 643 643 644 - [[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]591 +927.5 - SF7BW500 to SF12BW500 645 645 593 +923.3 - SF12BW500(RX2 downlink only) 646 646 647 -Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]] 648 648 649 649 597 +=== 2.7.5 AS920-923 & AS923-925 (AS923) === 650 650 651 - ==2.9 BatteryAnalysis==599 +(% style="color:#037691" %)**Default Uplink channel:** 652 652 653 - ===2.9.1BatteryType ===601 +923.2 - SF7BW125 to SF10BW125 654 654 603 +923.4 - SF7BW125 to SF10BW125 655 655 656 -The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 657 657 606 +(% style="color:#037691" %)**Additional Uplink Channel**: 658 658 659 -T hebattery isdesignedto last for severalyearsdependson the actuallyuse environment and updateinterval.608 +(OTAA mode, channel added by JoinAccept message) 660 660 610 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 661 661 662 - Thebatteryrelateddocuments as below:612 +922.2 - SF7BW125 to SF10BW125 663 663 664 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 665 -* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 666 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 614 +922.4 - SF7BW125 to SF10BW125 667 667 616 +922.6 - SF7BW125 to SF10BW125 617 + 618 +922.8 - SF7BW125 to SF10BW125 619 + 620 +923.0 - SF7BW125 to SF10BW125 621 + 622 +922.0 - SF7BW125 to SF10BW125 623 + 624 + 625 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 626 + 627 +923.6 - SF7BW125 to SF10BW125 628 + 629 +923.8 - SF7BW125 to SF10BW125 630 + 631 +924.0 - SF7BW125 to SF10BW125 632 + 633 +924.2 - SF7BW125 to SF10BW125 634 + 635 +924.4 - SF7BW125 to SF10BW125 636 + 637 +924.6 - SF7BW125 to SF10BW125 638 + 639 + 640 +(% style="color:#037691" %)** Downlink:** 641 + 642 +Uplink channels 1-8 (RX1) 643 + 644 +923.2 - SF10BW125 (RX2) 645 + 646 + 647 + 648 +=== 2.7.6 KR920-923 (KR920) === 649 + 650 +Default channel: 651 + 652 +922.1 - SF7BW125 to SF12BW125 653 + 654 +922.3 - SF7BW125 to SF12BW125 655 + 656 +922.5 - SF7BW125 to SF12BW125 657 + 658 + 659 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 660 + 661 +922.1 - SF7BW125 to SF12BW125 662 + 663 +922.3 - SF7BW125 to SF12BW125 664 + 665 +922.5 - SF7BW125 to SF12BW125 666 + 667 +922.7 - SF7BW125 to SF12BW125 668 + 669 +922.9 - SF7BW125 to SF12BW125 670 + 671 +923.1 - SF7BW125 to SF12BW125 672 + 673 +923.3 - SF7BW125 to SF12BW125 674 + 675 + 676 +(% style="color:#037691" %)**Downlink:** 677 + 678 +Uplink channels 1-7(RX1) 679 + 680 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 681 + 682 + 683 + 684 +=== 2.7.7 IN865-867 (IN865) === 685 + 686 +(% style="color:#037691" %)** Uplink:** 687 + 688 +865.0625 - SF7BW125 to SF12BW125 689 + 690 +865.4025 - SF7BW125 to SF12BW125 691 + 692 +865.9850 - SF7BW125 to SF12BW125 693 + 694 + 695 +(% style="color:#037691" %) **Downlink:** 696 + 697 +Uplink channels 1-3 (RX1) 698 + 699 +866.550 - SF10BW125 (RX2) 700 + 701 + 702 + 703 + 704 +== 2.8 LED Indicator == 705 + 706 +The LSE01 has an internal LED which is to show the status of different state. 707 + 708 +* Blink once when device power on. 709 +* Solid ON for 5 seconds once device successful Join the network. 710 +* Blink once when device transmit a packet. 711 + 712 +== 2.9 Installation in Soil == 713 + 714 +**Measurement the soil surface** 715 + 716 + 717 +[[image:1654506634463-199.png]] 718 + 668 668 ((( 669 -[[image:image-20220708140453-6.png]] 720 +((( 721 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 670 670 ))) 723 +))) 671 671 672 672 673 673 674 - === 2.9.2 Power consumptionAnalyze ===727 +[[image:1654506665940-119.png]] 675 675 676 676 ((( 677 -D raginobatterypowered product are all runs in Low Powermode. We have an update battery calculatorwhich base onthemeasurement of the realdevice. User can usehis calculator to check the batterylifeand calculate the battery life if want to use different transmit interval.730 +Dig a hole with diameter > 20CM. 678 678 ))) 679 679 733 +((( 734 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 735 +))) 680 680 737 + 738 +== 2.10 Firmware Change Log == 739 + 681 681 ((( 682 - Instructiontouseasbelow:741 +**Firmware download link:** 683 683 ))) 684 684 685 685 ((( 686 - (% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:[[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]745 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 687 687 ))) 688 688 748 +((( 749 + 750 +))) 689 689 690 690 ((( 691 - (% style="color:blue" %)**Step2: **(%%)Openithoose753 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 692 692 ))) 693 693 694 - *(((695 - ProductModel756 +((( 757 + 696 696 ))) 697 -* ((( 698 -Uplink Interval 759 + 760 +((( 761 +**V1.0.** 699 699 ))) 700 -* ((( 701 -Working Mode 702 -))) 703 703 704 704 ((( 705 - And theLifeexpectation in difference casewill be shown on the right.765 +Release 706 706 ))) 707 707 708 -[[image:image-20220708141352-7.jpeg]] 709 709 769 +== 2.11 Battery Analysis == 710 710 771 +=== 2.11.1 Battery Type === 711 711 712 -=== 2.9.3 Battery Note === 773 +((( 774 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 775 +))) 713 713 714 714 ((( 715 -The Li-SICObattery is designedfor small current/ longperiod application. It isnotgood to use a high current,short period transmit method. Therecommendedminimum period for use ofthis batteryis5minutes. Ifyou useshorterperiod time to transmitLoRa,thenthe battery life may be decreased.778 +The battery is designed to last for more than 5 years for the LSN50. 716 716 ))) 717 717 781 +((( 782 +((( 783 +The battery-related documents are as below: 784 +))) 785 +))) 718 718 787 +* ((( 788 +[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], 789 +))) 790 +* ((( 791 +[[Lithium-Thionyl Chloride Battery datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], 792 +))) 793 +* ((( 794 +[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]] 795 +))) 719 719 720 - ===2.9.4 Replacethe battery ===797 + [[image:image-20220610172436-1.png]] 721 721 799 + 800 + 801 +=== 2.11.2 Battery Note === 802 + 722 722 ((( 723 -The defaultbatterypackofNSE01includesaER26500 plussupercapacitor. Ifusercan'tfind this pack locally,theycanfindER26500 orquivalence withoutthe SPC1520 capacitor, which will alsowork inmostcase. TheSPCcanlarge thebatterylifeforhigh frequency use(update periodbelow5minutes).804 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 724 724 ))) 725 725 726 726 727 727 728 -= 3. AccessNB-IoTModule =809 +=== 2.11.3 Replace the battery === 729 729 730 730 ((( 731 - Userscan directlyaccesstheAT command setoftheNB-IoTmodule.812 +If Battery is lower than 2.7v, user should replace the battery of LSE01. 732 732 ))) 733 733 734 734 ((( 735 - The AT Commandsetcanrefer theBC35-G NB-IoTModuleATCommand: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]]816 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 736 736 ))) 737 737 738 -[[image:1657261278785-153.png]] 819 +((( 820 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 821 +))) 739 739 740 740 741 741 742 -= 4.825 += 3. Using the AT Commands = 743 743 744 -== 4.1827 +== 3.1 Access AT Commands == 745 745 746 -See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 747 747 830 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 748 748 749 - AT+<CMD>? : Helpon<CMD>832 +[[image:1654501986557-872.png||height="391" width="800"]] 750 750 751 -AT+<CMD> : Run <CMD> 752 752 753 - AT+<CMD>=<value>: Setthevalue835 +Or if you have below board, use below connection: 754 754 755 -AT+<CMD>=? : Get the value 756 756 838 +[[image:1654502005655-729.png||height="503" width="801"]] 757 757 840 + 841 + 842 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 843 + 844 + 845 + [[image:1654502050864-459.png||height="564" width="806"]] 846 + 847 + 848 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]] 849 + 850 + 851 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 852 + 853 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 854 + 855 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 856 + 857 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 858 + 859 + 758 758 (% style="color:#037691" %)**General Commands**(%%) 759 759 760 -AT 862 +(% style="background-color:#dcdcdc" %)**AT**(%%) : Attention 761 761 762 -AT? 864 +(% style="background-color:#dcdcdc" %)**AT?**(%%) : Short Help 763 763 764 -ATZ 866 +(% style="background-color:#dcdcdc" %)**ATZ**(%%) : MCU Reset 765 765 766 -AT+TDC 868 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%) : Application Data Transmission Interval 767 767 768 -AT+CFG : Print all configurations 769 769 770 - AT+CFGMOD: Workingmode selection871 +(% style="color:#037691" %)**Keys, IDs and EUIs management** 771 771 772 -AT+I NTMOD:Setthe trigger interruptmode873 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%) : Application EUI 773 773 774 -AT+ 5VTSetextend the timeof5V power875 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%) : Application Key 775 775 776 -AT+P ROChooseagreement877 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%) : Application Session Key 777 777 778 -AT+ WEIGREGet weightorsetweight to 0879 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%) : Device Address 779 779 780 -AT+ WEIGAPGet or SettheGapValue of weight881 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%) : Device EUI 781 781 782 -AT+ RXDL: Extendthe sendingandreceivingtime883 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%) : Network ID (You can enter this command change only after successful network connection) 783 783 784 -AT+ CNTFACGettcountingparameters885 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%) : Network Session Key Joining and sending date on LoRa network 785 785 786 -AT+ SERVADDR:ServerAddress887 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%) : Confirm Mode 787 787 889 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 788 788 789 -(% style="color:# 037691" %)**COAPManagement**891 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%) : Join LoRa? Network 790 790 791 -AT+ URIsourceparameters893 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%) : LoRa? Network Join Mode 792 792 895 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 793 793 794 -(% style="color:# 037691" %)**UDPManagement**897 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%) : Print Last Received Data in Raw Format 795 795 796 -AT+C FM:Uploadconfirmationmode (onlyvalid forUDP)899 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%) : Print Last Received Data in Binary Format 797 797 901 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 798 798 799 -(% style="color:# 037691" %)**MQTTManagement**903 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%) : Send Hexadecimal Data 800 800 801 -AT+CLIENT : Get or Set MQTT client 802 802 803 - AT+UNAMEGetSetMQTT Username906 +(% style="color:#037691" %)**LoRa Network Management** 804 804 805 -AT+ PWDGetor SetMQTT password908 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%) : Adaptive Rate 806 806 807 -AT+ PUBTOPICGetorSetMQTTpublishtopic910 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%) : LoRa Class(Currently only support class A 808 808 809 -AT+ SUBTOPIC :GetorSetMQTT subscriptiontopic912 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%) : Duty Cycle Setting 810 810 914 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 811 811 812 -(% style="color:# 037691" %)**Information**916 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink 813 813 814 -AT+F DRctoryDataReset918 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%) : Frame Counter Uplink 815 815 816 -AT+ PWORDSerialAccessPassword920 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%) : Join Accept Delay1 817 817 922 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 818 818 924 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 819 819 820 -= 5.FAQ=926 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%) : Receive Delay1 821 821 822 -= =5.1HowtoUpgradeFirmware==928 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%) : Receive Delay2 823 823 930 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 824 824 932 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 933 + 934 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 935 + 936 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 937 + 938 + 939 +(% style="color:#037691" %)**Information** 940 + 941 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 942 + 943 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 944 + 945 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 946 + 947 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 948 + 949 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 950 + 951 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 952 + 953 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 954 + 955 + 956 += 4. FAQ = 957 + 958 +== 4.1 How to change the LoRa Frequency Bands/Region? == 959 + 825 825 ((( 826 -User can upgrade the firmware for 1) bug fix, 2) new feature release. 961 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 962 +When downloading the images, choose the required image file for download. 827 827 ))) 828 828 829 829 ((( 830 - Pleasesee this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]966 + 831 831 ))) 832 832 833 833 ((( 834 - (%style="color:red"%)Notice,NSE01andLSE01share thememotherboard.Theyuse thesameconnection andmethodto update.970 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 835 835 ))) 836 836 973 +((( 974 + 975 +))) 837 837 977 +((( 978 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 979 +))) 838 838 839 -= 6. Trouble Shooting = 981 +((( 982 + 983 +))) 840 840 841 -== 6.1 Connection problem when uploading firmware == 985 +((( 986 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 987 +))) 842 842 989 +[[image:image-20220606154726-3.png]] 843 843 844 -(% class="wikigeneratedid" %) 991 + 992 +When you use the TTN network, the US915 frequency bands use are: 993 + 994 +* 903.9 - SF7BW125 to SF10BW125 995 +* 904.1 - SF7BW125 to SF10BW125 996 +* 904.3 - SF7BW125 to SF10BW125 997 +* 904.5 - SF7BW125 to SF10BW125 998 +* 904.7 - SF7BW125 to SF10BW125 999 +* 904.9 - SF7BW125 to SF10BW125 1000 +* 905.1 - SF7BW125 to SF10BW125 1001 +* 905.3 - SF7BW125 to SF10BW125 1002 +* 904.6 - SF8BW500 1003 + 845 845 ((( 846 -(% style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]] 1005 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 1006 + 1007 +* (% style="color:#037691" %)**AT+CHE=2** 1008 +* (% style="color:#037691" %)**ATZ** 847 847 ))) 848 848 1011 +((( 1012 + 849 849 1014 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 1015 +))) 850 850 851 -== 6.2 AT Command input doesn't work == 1017 +((( 1018 + 1019 +))) 852 852 853 853 ((( 1022 +The **AU915** band is similar. Below are the AU915 Uplink Channels. 1023 +))) 1024 + 1025 +[[image:image-20220606154825-4.png]] 1026 + 1027 + 1028 +== 4.2 Can I calibrate LSE01 to different soil types? == 1029 + 1030 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]]. 1031 + 1032 + 1033 += 5. Trouble Shooting = 1034 + 1035 +== 5.1 Why I can't join TTN in US915 / AU915 bands? == 1036 + 1037 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details. 1038 + 1039 + 1040 +== 5.2 AT Command input doesn't work == 1041 + 1042 +((( 854 854 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 855 855 ))) 856 856 857 857 1047 +== 5.3 Device rejoin in at the second uplink packet == 858 858 859 -= 7. OrderInfo=1049 +(% style="color:#4f81bd" %)**Issue describe as below:** 860 860 1051 +[[image:1654500909990-784.png]] 861 861 862 -Part Number**:** (% style="color:#4f81bd" %)**NSE01** 863 863 1054 +(% style="color:#4f81bd" %)**Cause for this issue:** 864 864 1056 +((( 1057 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 1058 +))) 1059 + 1060 + 1061 +(% style="color:#4f81bd" %)**Solution: ** 1062 + 1063 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 1064 + 1065 +[[image:1654500929571-736.png||height="458" width="832"]] 1066 + 1067 + 1068 += 6. Order Info = 1069 + 1070 + 1071 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 1072 + 1073 + 1074 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 1075 + 1076 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 1077 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 1078 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 1079 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 1080 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1081 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1082 +* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1083 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1084 + 1085 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1086 + 1087 +* (% style="color:red" %)**4**(%%): 4000mAh battery 1088 +* (% style="color:red" %)**8**(%%): 8500mAh battery 1089 + 865 865 (% class="wikigeneratedid" %) 866 866 ((( 867 867 868 868 ))) 869 869 870 -= 8.1095 += 7. Packing Info = 871 871 872 872 ((( 873 873 874 874 875 875 (% style="color:#037691" %)**Package Includes**: 1101 +))) 876 876 877 - 878 -* NSE01 NB-IoT Soil Moisture & EC Sensor x 1 879 -* External antenna x 1 1103 +* ((( 1104 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 880 880 ))) 881 881 882 882 ((( ... ... @@ -883,20 +883,24 @@ 883 883 884 884 885 885 (% style="color:#037691" %)**Dimension and weight**: 1111 +))) 886 886 887 - 888 -* Size: 195 x 125 x 55 mm 889 -* Weight: 420g 1113 +* ((( 1114 +Device Size: cm 890 890 ))) 1116 +* ((( 1117 +Device Weight: g 1118 +))) 1119 +* ((( 1120 +Package Size / pcs : cm 1121 +))) 1122 +* ((( 1123 +Weight / pcs : g 891 891 892 -((( 893 893 894 - 895 - 896 - 897 897 ))) 898 898 899 -= 9.1128 += 8. Support = 900 900 901 901 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 902 902 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -102.7 KB - Content