Last modified by Bei Jinggeng on 2024/05/31 09:53

From version 65.16
edited by Xiaoling
on 2022/07/08 15:52
Change comment: There is no comment for this version
To version 40.3
edited by Xiaoling
on 2022/06/30 10:41
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
Content
... ... @@ -20,81 +20,65 @@
20 20  
21 21  
22 22  
23 += 1. Introduction =
23 23  
24 -= 1.  Introduction =
25 +== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
25 25  
26 -== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
27 -
28 28  (((
29 29  
30 30  
31 -(((
32 -Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
30 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
33 33  )))
34 34  
35 35  (((
36 -It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
34 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
37 37  )))
38 38  
39 39  (((
40 -The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
38 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
41 41  )))
42 42  
43 43  (((
44 -NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
42 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
45 45  )))
46 46  
47 -
45 +(((
46 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
48 48  )))
49 49  
49 +
50 50  [[image:1654503236291-817.png]]
51 51  
52 52  
53 -[[image:1657245163077-232.png]]
53 +[[image:1654503265560-120.png]]
54 54  
55 55  
56 56  
57 -== 1.2 ​ Features ==
57 +== 1.2 ​Features ==
58 58  
59 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
59 +* LoRaWAN 1.0.3 Class A
60 +* Ultra low power consumption
60 60  * Monitor Soil Moisture
61 61  * Monitor Soil Temperature
62 62  * Monitor Soil Conductivity
64 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
63 63  * AT Commands to change parameters
64 64  * Uplink on periodically
65 65  * Downlink to change configure
66 66  * IP66 Waterproof Enclosure
67 -* Ultra-Low Power consumption
68 -* AT Commands to change parameters
69 -* Micro SIM card slot for NB-IoT SIM
70 -* 8500mAh Battery for long term use
69 +* 4000mAh or 8500mAh Battery for long term use
71 71  
72 -== 1.3  Specification ==
73 73  
74 74  
75 -(% style="color:#037691" %)**Common DC Characteristics:**
73 +== 1.3 Specification ==
76 76  
77 -* Supply Voltage: 2.1v ~~ 3.6v
78 -* Operating Temperature: -40 ~~ 85°C
79 -
80 -(% style="color:#037691" %)**NB-IoT Spec:**
81 -
82 -* - B1 @H-FDD: 2100MHz
83 -* - B3 @H-FDD: 1800MHz
84 -* - B8 @H-FDD: 900MHz
85 -* - B5 @H-FDD: 850MHz
86 -* - B20 @H-FDD: 800MHz
87 -* - B28 @H-FDD: 700MHz
88 -
89 -Probe(% style="color:#037691" %)** Specification:**
90 -
91 91  Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
92 92  
93 -[[image:image-20220708101224-1.png]]
77 +[[image:image-20220606162220-5.png]]
94 94  
95 95  
96 96  
97 -== ​1.4  Applications ==
81 +== ​1.4 Applications ==
98 98  
99 99  * Smart Agriculture
100 100  
... ... @@ -101,782 +101,1011 @@
101 101  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
102 102  ​
103 103  
104 -== 1.5  Pin Definitions ==
88 +== 1.5 Firmware Change log ==
105 105  
106 106  
107 -[[image:1657246476176-652.png]]
91 +**LSE01 v1.0 :**  Release
108 108  
109 109  
110 110  
111 -= 2.  Use NSE01 to communicate with IoT Server =
95 += 2. Configure LSE01 to connect to LoRaWAN network =
112 112  
113 -== 2.1  How it works ==
97 +== 2.1 How it works ==
114 114  
115 -
116 116  (((
117 -The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
100 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
118 118  )))
119 119  
120 -
121 121  (((
122 -The diagram below shows the working flow in default firmware of NSE01:
104 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
123 123  )))
124 124  
125 -[[image:image-20220708101605-2.png]]
126 126  
127 -(((
128 -
129 -)))
130 130  
109 +== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
131 131  
111 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
132 132  
133 -== 2.2 ​ Configure the NSE01 ==
134 134  
114 +[[image:1654503992078-669.png]]
135 135  
136 -=== 2.2.1 Test Requirement ===
137 137  
117 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
138 138  
139 -(((
140 -To use NSE01 in your city, make sure meet below requirements:
141 -)))
142 142  
143 -* Your local operator has already distributed a NB-IoT Network there.
144 -* The local NB-IoT network used the band that NSE01 supports.
145 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
120 +(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
146 146  
147 -(((
148 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
149 -)))
122 +Each LSE01 is shipped with a sticker with the default device EUI as below:
150 150  
124 +[[image:image-20220606163732-6.jpeg]]
151 151  
152 -[[image:1657249419225-449.png]]
126 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
153 153  
128 +**Add APP EUI in the application**
154 154  
155 155  
156 -=== 2.2.2 Insert SIM card ===
131 +[[image:1654504596150-405.png]]
157 157  
158 -(((
159 -Insert the NB-IoT Card get from your provider.
160 -)))
161 161  
162 -(((
163 -User need to take out the NB-IoT module and insert the SIM card like below:
164 -)))
165 165  
135 +**Add APP KEY and DEV EUI**
166 166  
167 -[[image:1657249468462-536.png]]
137 +[[image:1654504683289-357.png]]
168 168  
169 169  
170 170  
171 -=== 2.2.3 Connect USB TTL to NSE01 to configure it ===
141 +(% style="color:blue" %)**Step 2**(%%): Power on LSE01
172 172  
173 -(((
174 -(((
175 -User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
176 -)))
177 -)))
178 178  
144 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
179 179  
180 -**Connection:**
146 +[[image:image-20220606163915-7.png]]
181 181  
182 - (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
183 183  
184 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
149 +(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
185 185  
186 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
151 +[[image:1654504778294-788.png]]
187 187  
188 188  
189 -In the PC, use below serial tool settings:
190 190  
191 -* Baud:  (% style="color:green" %)**9600**
192 -* Data bits:** (% style="color:green" %)8(%%)**
193 -* Stop bits: (% style="color:green" %)**1**
194 -* Parity:  (% style="color:green" %)**None**
195 -* Flow Control: (% style="color:green" %)**None**
155 +== 2.3 Uplink Payload ==
196 196  
197 -(((
198 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
199 -)))
200 200  
201 -[[image:image-20220708110657-3.png]]
158 +=== 2.3.1 MOD~=0(Default Mode) ===
202 202  
160 +LSE01 will uplink payload via LoRaWAN with below payload format: 
161 +
203 203  (((
204 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
163 +Uplink payload includes in total 11 bytes.
205 205  )))
206 206  
166 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
167 +|(((
168 +**Size**
207 207  
170 +**(bytes)**
171 +)))|**2**|**2**|**2**|**2**|**2**|**1**
172 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
173 +Temperature
208 208  
209 -=== 2.2.4 Use CoAP protocol to uplink data ===
175 +(Reserve, Ignore now)
176 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
177 +MOD & Digital Interrupt
210 210  
211 -(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
179 +(Optional)
180 +)))
212 212  
213 213  
214 -**Use below commands:**
215 215  
216 -* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
217 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
218 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
184 +=== 2.3.2 MOD~=1(Original value) ===
219 219  
220 -For parameter description, please refer to AT command set
186 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
221 221  
222 -[[image:1657249793983-486.png]]
188 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
189 +|(((
190 +**Size**
223 223  
192 +**(bytes)**
193 +)))|**2**|**2**|**2**|**2**|**2**|**1**
194 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
195 +Temperature
224 224  
225 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
197 +(Reserve, Ignore now)
198 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
199 +MOD & Digital Interrupt
226 226  
227 -[[image:1657249831934-534.png]]
201 +(Optional)
202 +)))
228 228  
229 229  
230 230  
231 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
206 +=== 2.3.3 Battery Info ===
232 232  
233 -This feature is supported since firmware version v1.0.1
208 +(((
209 +Check the battery voltage for LSE01.
210 +)))
234 234  
212 +(((
213 +Ex1: 0x0B45 = 2885mV
214 +)))
235 235  
236 -* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
237 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
238 -* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
216 +(((
217 +Ex2: 0x0B49 = 2889mV
218 +)))
239 239  
240 -[[image:1657249864775-321.png]]
241 241  
242 242  
243 -[[image:1657249930215-289.png]]
222 +=== 2.3.4 Soil Moisture ===
244 244  
224 +(((
225 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
226 +)))
245 245  
228 +(((
229 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
230 +)))
246 246  
247 -=== 2.2.6 Use MQTT protocol to uplink data ===
232 +(((
233 +
234 +)))
248 248  
249 -This feature is supported since firmware version v110
236 +(((
237 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
238 +)))
250 250  
251 251  
252 -* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
253 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
254 -* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
255 -* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
256 -* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
257 -* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
258 -* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
259 259  
260 -[[image:1657249978444-674.png]]
242 +=== 2.3.5 Soil Temperature ===
261 261  
244 +(((
245 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
246 +)))
262 262  
263 -[[image:1657249990869-686.png]]
248 +(((
249 +**Example**:
250 +)))
264 264  
252 +(((
253 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
254 +)))
265 265  
266 266  (((
267 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
257 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
268 268  )))
269 269  
270 270  
271 271  
272 -=== 2.2.7 Use TCP protocol to uplink data ===
262 +=== 2.3.6 Soil Conductivity (EC) ===
273 273  
274 -This feature is supported since firmware version v110
264 +(((
265 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
266 +)))
275 275  
268 +(((
269 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
270 +)))
276 276  
277 -* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
278 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
272 +(((
273 +Generally, the EC value of irrigation water is less than 800uS / cm.
274 +)))
279 279  
280 -[[image:1657250217799-140.png]]
276 +(((
277 +
278 +)))
281 281  
280 +(((
281 +
282 +)))
282 282  
283 -[[image:1657250255956-604.png]]
284 +=== 2.3.7 MOD ===
284 284  
286 +Firmware version at least v2.1 supports changing mode.
285 285  
288 +For example, bytes[10]=90
286 286  
287 -=== 2.2.8 Change Update Interval ===
290 +mod=(bytes[10]>>7)&0x01=1.
288 288  
289 -User can use below command to change the (% style="color:green" %)**uplink interval**.
290 290  
291 -* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
293 +**Downlink Command:**
292 292  
293 -(((
294 -(% style="color:red" %)**NOTE:**
295 -)))
295 +If payload = 0x0A00, workmode=0
296 296  
297 -(((
298 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
299 -)))
297 +If** **payload =** **0x0A01, workmode=1
300 300  
301 301  
302 302  
303 -== 2.3  Uplink Payload ==
301 +=== 2.3.8 ​Decode payload in The Things Network ===
304 304  
305 -In this mode, uplink payload includes in total 18 bytes
303 +While using TTN network, you can add the payload format to decode the payload.
306 306  
307 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
308 -|=(% style="width: 60px;" %)(((
309 -**Size(bytes)**
310 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1**
311 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
312 312  
306 +[[image:1654505570700-128.png]]
307 +
313 313  (((
314 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
309 +The payload decoder function for TTN is here:
315 315  )))
316 316  
312 +(((
313 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
314 +)))
317 317  
318 -[[image:image-20220708111918-4.png]]
319 319  
317 +== 2.4 Uplink Interval ==
320 320  
321 -The payload is ASCII string, representative same HEX:
319 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
322 322  
323 -0x72403155615900640c7817075e0a8c02f900 where:
324 324  
325 -* Device ID: 0x 724031556159 = 724031556159
326 -* Version: 0x0064=100=1.0.0
327 327  
328 -* BAT: 0x0c78 = 3192 mV = 3.192V
329 -* Singal: 0x17 = 23
330 -* Soil Moisture: 0x075e= 1886 = 18.86  %
331 -* Soil Temperature:0x0a8c =2700=27 °C
332 -* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
333 -* Interrupt: 0x00 = 0
323 +== 2.5 Downlink Payload ==
334 334  
325 +By default, LSE50 prints the downlink payload to console port.
335 335  
327 +[[image:image-20220606165544-8.png]]
336 336  
337 337  
338 -== 2.4  Payload Explanation and Sensor Interface ==
339 -
340 -
341 -=== 2.4.1  Device ID ===
342 -
343 343  (((
344 -By default, the Device ID equal to the last 6 bytes of IMEI.
331 +**Examples:**
345 345  )))
346 346  
347 347  (((
348 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
335 +
349 349  )))
350 350  
351 -(((
352 -**Example:**
338 +* (((
339 +**Set TDC**
353 353  )))
354 354  
355 355  (((
356 -AT+DEUI=A84041F15612
343 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
357 357  )))
358 358  
359 359  (((
360 -The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
347 +Payload:    01 00 00 1E    TDC=30S
361 361  )))
362 362  
363 -
364 -
365 -=== 2.4.2  Version Info ===
366 -
367 367  (((
368 -Specify the software version: 0x64=100, means firmware version 1.00.
351 +Payload:    01 00 00 3C    TDC=60S
369 369  )))
370 370  
371 371  (((
372 -For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
355 +
373 373  )))
374 374  
375 -
376 -
377 -=== 2.4.3  Battery Info ===
378 -
379 -(((
380 -Check the battery voltage for LSE01.
358 +* (((
359 +**Reset**
381 381  )))
382 382  
383 383  (((
384 -Ex1: 0x0B45 = 2885mV
363 +If payload = 0x04FF, it will reset the LSE01
385 385  )))
386 386  
387 -(((
388 -Ex2: 0x0B49 = 2889mV
389 -)))
390 390  
367 +* **CFM**
391 391  
369 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
392 392  
393 -=== 2.4.4  Signal Strength ===
394 394  
395 -(((
396 -NB-IoT Network signal Strength.
397 -)))
398 398  
399 -(((
400 -**Ex1: 0x1d = 29**
401 -)))
373 +== 2.6 ​Show Data in DataCake IoT Server ==
402 402  
403 403  (((
404 -(% style="color:blue" %)**0**(%%)  -113dBm or less
376 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
405 405  )))
406 406  
407 407  (((
408 -(% style="color:blue" %)**1**(%%)  -111dBm
380 +
409 409  )))
410 410  
411 411  (((
412 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
384 +(% style="color:blue" %)**Step 1**(%%) Be sure that your device is programmed and properly connected to the network at this time.
413 413  )))
414 414  
415 415  (((
416 -(% style="color:blue" %)**31**  (%%) -51dBm or greater
388 +(% style="color:blue" %)**Step 2**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
417 417  )))
418 418  
419 -(((
420 -(% style="color:blue" %)**99**   (%%) Not known or not detectable
421 -)))
422 422  
392 +[[image:1654505857935-743.png]]
423 423  
424 424  
425 -=== 2.4.5  Soil Moisture ===
395 +[[image:1654505874829-548.png]]
426 426  
427 -(((
428 -(((
429 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
430 -)))
431 -)))
432 432  
433 -(((
434 -(((
435 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
436 -)))
437 -)))
398 +(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
438 438  
439 -(((
440 -
441 -)))
400 +(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
442 442  
443 -(((
444 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
445 -)))
446 446  
403 +[[image:1654505905236-553.png]]
447 447  
448 448  
449 -=== 2.4.6  Soil Temperature ===
406 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
450 450  
451 -(((
452 -Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
453 -)))
408 +[[image:1654505925508-181.png]]
454 454  
455 -(((
456 -**Example**:
457 -)))
458 458  
459 -(((
460 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
461 -)))
462 462  
463 -(((
464 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
465 -)))
412 +== 2.7 Frequency Plans ==
466 466  
414 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
467 467  
468 468  
469 -=== 2.4.7  Soil Conductivity (EC) ===
417 +=== 2.7.1 EU863-870 (EU868) ===
470 470  
471 -(((
472 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
473 -)))
419 +(% style="color:#037691" %)** Uplink:**
474 474  
475 -(((
476 -For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
477 -)))
421 +868.1 - SF7BW125 to SF12BW125
478 478  
479 -(((
480 -Generally, the EC value of irrigation water is less than 800uS / cm.
481 -)))
423 +868.3 - SF7BW125 to SF12BW125 and SF7BW250
482 482  
483 -(((
484 -
485 -)))
425 +868.5 - SF7BW125 to SF12BW125
486 486  
487 -(((
488 -
489 -)))
427 +867.1 - SF7BW125 to SF12BW125
490 490  
491 -=== 2.4.8  Digital Interrupt ===
429 +867.3 - SF7BW125 to SF12BW125
492 492  
493 -(((
494 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
495 -)))
431 +867.5 - SF7BW125 to SF12BW125
496 496  
497 -(((
498 -The command is:
499 -)))
433 +867.7 - SF7BW125 to SF12BW125
500 500  
501 -(((
502 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
503 -)))
435 +867.9 - SF7BW125 to SF12BW125
504 504  
437 +868.8 - FSK
505 505  
506 -(((
507 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
508 -)))
509 509  
440 +(% style="color:#037691" %)** Downlink:**
510 510  
511 -(((
512 -Example:
513 -)))
442 +Uplink channels 1-9 (RX1)
514 514  
515 -(((
516 -0x(00): Normal uplink packet.
517 -)))
444 +869.525 - SF9BW125 (RX2 downlink only)
518 518  
519 -(((
520 -0x(01): Interrupt Uplink Packet.
521 -)))
522 522  
523 523  
448 +=== 2.7.2 US902-928(US915) ===
524 524  
525 -=== 2.4.9  ​+5V Output ===
450 +Used in USA, Canada and South America. Default use CHE=2
526 526  
527 -(((
528 -NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
529 -)))
452 +(% style="color:#037691" %)**Uplink:**
530 530  
454 +903.9 - SF7BW125 to SF10BW125
531 531  
532 -(((
533 -The 5V output time can be controlled by AT Command.
534 -)))
456 +904.1 - SF7BW125 to SF10BW125
535 535  
536 -(((
537 -(% style="color:blue" %)**AT+5VT=1000**
538 -)))
458 +904.3 - SF7BW125 to SF10BW125
539 539  
540 -(((
541 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
542 -)))
460 +904.5 - SF7BW125 to SF10BW125
543 543  
462 +904.7 - SF7BW125 to SF10BW125
544 544  
464 +904.9 - SF7BW125 to SF10BW125
545 545  
546 -== 2.5  Downlink Payload ==
466 +905.1 - SF7BW125 to SF10BW125
547 547  
548 -By default, NSE01 prints the downlink payload to console port.
468 +905.3 - SF7BW125 to SF10BW125
549 549  
550 -[[image:image-20220708133731-5.png]]
551 551  
471 +(% style="color:#037691" %)**Downlink:**
552 552  
553 -(((
554 -(% style="color:blue" %)**Examples:**
555 -)))
473 +923.3 - SF7BW500 to SF12BW500
556 556  
557 -(((
558 -
559 -)))
475 +923.9 - SF7BW500 to SF12BW500
560 560  
561 -* (((
562 -(% style="color:blue" %)**Set TDC**
563 -)))
477 +924.5 - SF7BW500 to SF12BW500
564 564  
565 -(((
566 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
567 -)))
479 +925.1 - SF7BW500 to SF12BW500
568 568  
569 -(((
570 -Payload:    01 00 00 1E    TDC=30S
571 -)))
481 +925.7 - SF7BW500 to SF12BW500
572 572  
573 -(((
574 -Payload:    01 00 00 3C    TDC=60S
575 -)))
483 +926.3 - SF7BW500 to SF12BW500
576 576  
577 -(((
578 -
579 -)))
485 +926.9 - SF7BW500 to SF12BW500
580 580  
581 -* (((
582 -(% style="color:blue" %)**Reset**
583 -)))
487 +927.5 - SF7BW500 to SF12BW500
584 584  
585 -(((
586 -If payload = 0x04FF, it will reset the NSE01
587 -)))
489 +923.3 - SF12BW500(RX2 downlink only)
588 588  
589 589  
590 -* (% style="color:blue" %)**INTMOD**
591 591  
592 -Downlink Payload: 06000003, Set AT+INTMOD=3
493 +=== 2.7.3 CN470-510 (CN470) ===
593 593  
495 +Used in China, Default use CHE=1
594 594  
497 +(% style="color:#037691" %)**Uplink:**
595 595  
596 -== 2.6  ​LED Indicator ==
499 +486.3 - SF7BW125 to SF12BW125
597 597  
598 -(((
599 -The NSE01 has an internal LED which is to show the status of different state.
501 +486.5 - SF7BW125 to SF12BW125
600 600  
503 +486.7 - SF7BW125 to SF12BW125
601 601  
602 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
603 -* Then the LED will be on for 1 second means device is boot normally.
604 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
605 -* For each uplink probe, LED will be on for 500ms.
606 -)))
505 +486.9 - SF7BW125 to SF12BW125
607 607  
507 +487.1 - SF7BW125 to SF12BW125
608 608  
509 +487.3 - SF7BW125 to SF12BW125
609 609  
511 +487.5 - SF7BW125 to SF12BW125
610 610  
611 -== 2.7  Installation in Soil ==
513 +487.7 - SF7BW125 to SF12BW125
612 612  
613 -__**Measurement the soil surface**__
614 614  
615 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
516 +(% style="color:#037691" %)**Downlink:**
616 616  
617 -[[image:1657259653666-883.png]]
518 +506.7 - SF7BW125 to SF12BW125
618 618  
520 +506.9 - SF7BW125 to SF12BW125
619 619  
620 -(((
621 -
522 +507.1 - SF7BW125 to SF12BW125
622 622  
623 -(((
624 -Dig a hole with diameter > 20CM.
625 -)))
524 +507.3 - SF7BW125 to SF12BW125
626 626  
627 -(((
628 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
629 -)))
630 -)))
526 +507.5 - SF7BW125 to SF12BW125
631 631  
632 -[[image:1654506665940-119.png]]
528 +507.7 - SF7BW125 to SF12BW125
633 633  
634 -(((
635 -
636 -)))
530 +507.9 - SF7BW125 to SF12BW125
637 637  
532 +508.1 - SF7BW125 to SF12BW125
638 638  
639 -== 2. Firmware Change Log ==
534 +505.3 - SF12BW125 (RX2 downlink only)
640 640  
641 641  
642 -Download URL & Firmware Change log
643 643  
644 -[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
538 +=== 2.7.4 AU915-928(AU915) ===
645 645  
540 +Default use CHE=2
646 646  
647 -Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
542 +(% style="color:#037691" %)**Uplink:**
648 648  
544 +916.8 - SF7BW125 to SF12BW125
649 649  
546 +917.0 - SF7BW125 to SF12BW125
650 650  
651 -== 2.9  Battery Analysis ==
548 +917.2 - SF7BW125 to SF12BW125
652 652  
653 -=== 2.9.1  Battery Type ===
550 +917.4 - SF7BW125 to SF12BW125
654 654  
552 +917.6 - SF7BW125 to SF12BW125
655 655  
656 -The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
554 +917.8 - SF7BW125 to SF12BW125
657 657  
556 +918.0 - SF7BW125 to SF12BW125
658 658  
659 -The battery is designed to last for several years depends on the actually use environment and update interval. 
558 +918.2 - SF7BW125 to SF12BW125
660 660  
661 661  
662 -The battery related documents as below:
561 +(% style="color:#037691" %)**Downlink:**
663 663  
664 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
665 -* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
666 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
563 +923.3 - SF7BW500 to SF12BW500
667 667  
565 +923.9 - SF7BW500 to SF12BW500
566 +
567 +924.5 - SF7BW500 to SF12BW500
568 +
569 +925.1 - SF7BW500 to SF12BW500
570 +
571 +925.7 - SF7BW500 to SF12BW500
572 +
573 +926.3 - SF7BW500 to SF12BW500
574 +
575 +926.9 - SF7BW500 to SF12BW500
576 +
577 +927.5 - SF7BW500 to SF12BW500
578 +
579 +923.3 - SF12BW500(RX2 downlink only)
580 +
581 +
582 +
583 +=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
584 +
585 +(% style="color:#037691" %)**Default Uplink channel:**
586 +
587 +923.2 - SF7BW125 to SF10BW125
588 +
589 +923.4 - SF7BW125 to SF10BW125
590 +
591 +
592 +(% style="color:#037691" %)**Additional Uplink Channel**:
593 +
594 +(OTAA mode, channel added by JoinAccept message)
595 +
596 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
597 +
598 +922.2 - SF7BW125 to SF10BW125
599 +
600 +922.4 - SF7BW125 to SF10BW125
601 +
602 +922.6 - SF7BW125 to SF10BW125
603 +
604 +922.8 - SF7BW125 to SF10BW125
605 +
606 +923.0 - SF7BW125 to SF10BW125
607 +
608 +922.0 - SF7BW125 to SF10BW125
609 +
610 +
611 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
612 +
613 +923.6 - SF7BW125 to SF10BW125
614 +
615 +923.8 - SF7BW125 to SF10BW125
616 +
617 +924.0 - SF7BW125 to SF10BW125
618 +
619 +924.2 - SF7BW125 to SF10BW125
620 +
621 +924.4 - SF7BW125 to SF10BW125
622 +
623 +924.6 - SF7BW125 to SF10BW125
624 +
625 +
626 +(% style="color:#037691" %)** Downlink:**
627 +
628 +Uplink channels 1-8 (RX1)
629 +
630 +923.2 - SF10BW125 (RX2)
631 +
632 +
633 +
634 +=== 2.7.6 KR920-923 (KR920) ===
635 +
636 +Default channel:
637 +
638 +922.1 - SF7BW125 to SF12BW125
639 +
640 +922.3 - SF7BW125 to SF12BW125
641 +
642 +922.5 - SF7BW125 to SF12BW125
643 +
644 +
645 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
646 +
647 +922.1 - SF7BW125 to SF12BW125
648 +
649 +922.3 - SF7BW125 to SF12BW125
650 +
651 +922.5 - SF7BW125 to SF12BW125
652 +
653 +922.7 - SF7BW125 to SF12BW125
654 +
655 +922.9 - SF7BW125 to SF12BW125
656 +
657 +923.1 - SF7BW125 to SF12BW125
658 +
659 +923.3 - SF7BW125 to SF12BW125
660 +
661 +
662 +(% style="color:#037691" %)**Downlink:**
663 +
664 +Uplink channels 1-7(RX1)
665 +
666 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
667 +
668 +
669 +
670 +=== 2.7.7 IN865-867 (IN865) ===
671 +
672 +(% style="color:#037691" %)** Uplink:**
673 +
674 +865.0625 - SF7BW125 to SF12BW125
675 +
676 +865.4025 - SF7BW125 to SF12BW125
677 +
678 +865.9850 - SF7BW125 to SF12BW125
679 +
680 +
681 +(% style="color:#037691" %) **Downlink:**
682 +
683 +Uplink channels 1-3 (RX1)
684 +
685 +866.550 - SF10BW125 (RX2)
686 +
687 +
688 +
689 +
690 +== 2.8 LED Indicator ==
691 +
692 +The LSE01 has an internal LED which is to show the status of different state.
693 +
694 +* Blink once when device power on.
695 +* Solid ON for 5 seconds once device successful Join the network.
696 +* Blink once when device transmit a packet.
697 +
698 +
699 +
700 +== 2.9 Installation in Soil ==
701 +
702 +**Measurement the soil surface**
703 +
704 +
705 +[[image:1654506634463-199.png]] ​
706 +
668 668  (((
669 -[[image:image-20220708140453-6.png]]
708 +(((
709 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
670 670  )))
711 +)))
671 671  
672 672  
673 673  
674 -=== 2.9.2  Power consumption Analyze ===
715 +[[image:1654506665940-119.png]]
675 675  
676 676  (((
677 -Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
718 +Dig a hole with diameter > 20CM.
678 678  )))
679 679  
721 +(((
722 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
723 +)))
680 680  
725 +
726 +== 2.10 ​Firmware Change Log ==
727 +
681 681  (((
682 -Instruction to use as below:
729 +**Firmware download link:**
683 683  )))
684 684  
685 685  (((
686 -(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
733 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
687 687  )))
688 688  
736 +(((
737 +
738 +)))
689 689  
690 690  (((
691 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose
741 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
692 692  )))
693 693  
694 -* (((
695 -Product Model
744 +(((
745 +
696 696  )))
697 -* (((
698 -Uplink Interval
747 +
748 +(((
749 +**V1.0.**
699 699  )))
700 -* (((
701 -Working Mode
702 -)))
703 703  
704 704  (((
705 -And the Life expectation in difference case will be shown on the right.
753 +Release
706 706  )))
707 707  
708 -[[image:image-20220708141352-7.jpeg]]
709 709  
757 +== 2.11 ​Battery Analysis ==
710 710  
759 +=== 2.11.1 ​Battery Type ===
711 711  
712 -=== 2.9.3  ​Battery Note ===
761 +(((
762 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
763 +)))
713 713  
714 714  (((
715 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
766 +The battery is designed to last for more than 5 years for the LSN50.
716 716  )))
717 717  
769 +(((
770 +(((
771 +The battery-related documents are as below:
772 +)))
773 +)))
718 718  
775 +* (((
776 +[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
777 +)))
778 +* (((
779 +[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
780 +)))
781 +* (((
782 +[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
783 +)))
719 719  
720 -=== 2.9.4  Replace the battery ===
785 + [[image:image-20220610172436-1.png]]
721 721  
787 +
788 +
789 +=== 2.11.2 ​Battery Note ===
790 +
722 722  (((
723 -The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
792 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
724 724  )))
725 725  
726 726  
727 727  
728 -= 3. ​ Access NB-IoT Module =
797 +=== 2.11.3 Replace the battery ===
729 729  
730 730  (((
731 -Users can directly access the AT command set of the NB-IoT module.
800 +If Battery is lower than 2.7v, user should replace the battery of LSE01.
732 732  )))
733 733  
734 734  (((
735 -The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
804 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
736 736  )))
737 737  
738 -[[image:1657261278785-153.png]]
807 +(((
808 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
809 +)))
739 739  
740 740  
741 741  
742 -= 4.  Using the AT Commands =
813 += 3. Using the AT Commands =
743 743  
744 -== 4.1  Access AT Commands ==
815 +== 3.1 Access AT Commands ==
745 745  
746 -See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
747 747  
818 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
748 748  
749 -AT+<CMD>?  : Help on <CMD>
820 +[[image:1654501986557-872.png||height="391" width="800"]]
750 750  
751 -AT+<CMD>         : Run <CMD>
752 752  
753 -AT+<CMD>=<value> : Set the value
823 +Or if you have below board, use below connection:
754 754  
755 -AT+<CMD>=?  : Get the value
756 756  
826 +[[image:1654502005655-729.png||height="503" width="801"]]
757 757  
828 +
829 +
830 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
831 +
832 +
833 + [[image:1654502050864-459.png||height="564" width="806"]]
834 +
835 +
836 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
837 +
838 +
839 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
840 +
841 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
842 +
843 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
844 +
845 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
846 +
847 +
758 758  (% style="color:#037691" %)**General Commands**(%%)      
759 759  
760 -AT  : Attention       
850 +(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
761 761  
762 -AT?  : Short Help     
852 +(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
763 763  
764 -ATZ  : MCU Reset    
854 +(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
765 765  
766 -AT+TDC  : Application Data Transmission Interval
856 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
767 767  
768 -AT+CFG  : Print all configurations
769 769  
770 -AT+CFGMOD           : Working mode selection
859 +(% style="color:#037691" %)**Keys, IDs and EUIs management**
771 771  
772 -AT+INTMOD            : Set the trigger interrupt mode
861 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
773 773  
774 -AT+5VT  : Set extend the time of 5V power  
863 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
775 775  
776 -AT+PRO  : Choose agreement
865 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
777 777  
778 -AT+WEIGRE  : Get weight or set weight to 0
867 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
779 779  
780 -AT+WEIGAP  : Get or Set the GapValue of weight
869 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
781 781  
782 -AT+RXDL  : Extend the sending and receiving time
871 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
783 783  
784 -AT+CNTFAC  : Get or set counting parameters
873 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
785 785  
786 -AT+SERVADDR  : Server Address
875 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
787 787  
877 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
788 788  
789 -(% style="color:#037691" %)**COAP Management**      
879 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
790 790  
791 -AT+URI            : Resource parameters
881 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
792 792  
883 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
793 793  
794 -(% style="color:#037691" %)**UDP Management**
885 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
795 795  
796 -AT+CFM          : Upload confirmation mode (only valid for UDP)
887 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
797 797  
889 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
798 798  
799 -(% style="color:#037691" %)**MQTT Management**
891 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
800 800  
801 -AT+CLIENT               : Get or Set MQTT client
802 802  
803 -AT+UNAME  : Get or Set MQTT Username
894 +(% style="color:#037691" %)**LoRa Network Management**
804 804  
805 -AT+PWD                  : Get or Set MQTT password
896 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
806 806  
807 -AT+PUBTOPI : Get or Set MQTT publish topic
898 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
808 808  
809 -AT+SUBTOPIC  : Get or Set MQTT subscription topic
900 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
810 810  
902 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
811 811  
812 -(% style="color:#037691" %)**Information**          
904 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
813 813  
814 -AT+FDR  : Factory Data Reset
906 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
815 815  
816 -AT+PWOR : Serial Access Password
908 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
817 817  
910 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
818 818  
912 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
819 819  
820 -= ​5.  FAQ =
914 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
821 821  
822 -== 5.1 How to Upgrade Firmware ==
916 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
823 823  
918 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
824 824  
920 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
921 +
922 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
923 +
924 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
925 +
926 +
927 +(% style="color:#037691" %)**Information** 
928 +
929 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
930 +
931 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
932 +
933 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
934 +
935 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
936 +
937 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
938 +
939 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
940 +
941 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
942 +
943 +
944 += ​4. FAQ =
945 +
946 +== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
947 +
825 825  (((
826 -User can upgrade the firmware for 1) bug fix, 2) new feature release.
949 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
950 +When downloading the images, choose the required image file for download. ​
827 827  )))
828 828  
829 829  (((
830 -Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
954 +
831 831  )))
832 832  
833 833  (((
834 -(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
958 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
835 835  )))
836 836  
961 +(((
962 +
963 +)))
837 837  
965 +(((
966 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
967 +)))
838 838  
839 -= 6.  Trouble Shooting =
969 +(((
970 +
971 +)))
840 840  
841 -== 6.1  ​Connection problem when uploading firmware ==
973 +(((
974 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
975 +)))
842 842  
977 +[[image:image-20220606154726-3.png]]
843 843  
844 -(% class="wikigeneratedid" %)
979 +
980 +When you use the TTN network, the US915 frequency bands use are:
981 +
982 +* 903.9 - SF7BW125 to SF10BW125
983 +* 904.1 - SF7BW125 to SF10BW125
984 +* 904.3 - SF7BW125 to SF10BW125
985 +* 904.5 - SF7BW125 to SF10BW125
986 +* 904.7 - SF7BW125 to SF10BW125
987 +* 904.9 - SF7BW125 to SF10BW125
988 +* 905.1 - SF7BW125 to SF10BW125
989 +* 905.3 - SF7BW125 to SF10BW125
990 +* 904.6 - SF8BW500
991 +
845 845  (((
846 -(% style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]]
993 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
994 +
995 +* (% style="color:#037691" %)**AT+CHE=2**
996 +* (% style="color:#037691" %)**ATZ**
847 847  )))
848 848  
999 +(((
1000 +
849 849  
1002 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
1003 +)))
850 850  
851 -== 6.2  AT Command input doesn't work ==
1005 +(((
1006 +
1007 +)))
852 852  
853 853  (((
854 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1010 +The **AU915** band is similar. Below are the AU915 Uplink Channels.
855 855  )))
856 856  
1013 +[[image:image-20220606154825-4.png]]
857 857  
858 858  
859 -= 7. Order Info =
1016 +== 4.2 Can I calibrate LSE01 to different soil types? ==
860 860  
1018 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
861 861  
862 -Part Number**:** (% style="color:#4f81bd" %)**NSE01**
863 863  
1021 += 5. Trouble Shooting =
864 864  
1023 +== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
1024 +
1025 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
1026 +
1027 +
1028 +== 5.2 AT Command input doesn’t work ==
1029 +
1030 +(((
1031 +In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1032 +)))
1033 +
1034 +
1035 +== 5.3 Device rejoin in at the second uplink packet ==
1036 +
1037 +(% style="color:#4f81bd" %)**Issue describe as below:**
1038 +
1039 +[[image:1654500909990-784.png]]
1040 +
1041 +
1042 +(% style="color:#4f81bd" %)**Cause for this issue:**
1043 +
1044 +(((
1045 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
1046 +)))
1047 +
1048 +
1049 +(% style="color:#4f81bd" %)**Solution: **
1050 +
1051 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1052 +
1053 +[[image:1654500929571-736.png||height="458" width="832"]]
1054 +
1055 +
1056 += 6. ​Order Info =
1057 +
1058 +
1059 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1060 +
1061 +
1062 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1063 +
1064 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1065 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1066 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1067 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1068 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1069 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1070 +* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1071 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1072 +
1073 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1074 +
1075 +* (% style="color:red" %)**4**(%%): 4000mAh battery
1076 +* (% style="color:red" %)**8**(%%): 8500mAh battery
1077 +
865 865  (% class="wikigeneratedid" %)
866 866  (((
867 867  
868 868  )))
869 869  
870 -= 8.  Packing Info =
1083 += 7. Packing Info =
871 871  
872 872  (((
873 873  
874 874  
875 875  (% style="color:#037691" %)**Package Includes**:
1089 +)))
876 876  
877 -
878 -* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
879 -* External antenna x 1
1091 +* (((
1092 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
880 880  )))
881 881  
882 882  (((
... ... @@ -883,20 +883,24 @@
883 883  
884 884  
885 885  (% style="color:#037691" %)**Dimension and weight**:
1099 +)))
886 886  
887 -
888 -* Size: 195 x 125 x 55 mm
889 -* Weight:   420g
1101 +* (((
1102 +Device Size: cm
890 890  )))
1104 +* (((
1105 +Device Weight: g
1106 +)))
1107 +* (((
1108 +Package Size / pcs : cm
1109 +)))
1110 +* (((
1111 +Weight / pcs : g
891 891  
892 -(((
893 893  
894 -
895 -
896 -
897 897  )))
898 898  
899 -= 9.  Support =
1116 += 8. Support =
900 900  
901 901  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
902 902  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657245163077-232.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -102.7 KB
Content