Changes for page NDDS75 -- NB-IoT Distance Detect Sensor User Manual
Last modified by Bei Jinggeng on 2024/05/31 09:53
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 24 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - NSE01NB-IoTSoil Moisture & EC Sensor User Manual1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -3,16 +3,8 @@ 3 3 4 4 5 5 6 +**Contents:** 6 6 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 -**Table of Contents:** 15 - 16 16 {{toc/}} 17 17 18 18 ... ... @@ -20,81 +20,61 @@ 20 20 21 21 22 22 15 += 1. Introduction = 23 23 24 -= 1. Introduction =17 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 25 25 26 -== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 27 - 28 28 ((( 29 - 20 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 21 +))) 30 30 31 31 ((( 32 - DraginoNSE01 isan(% style="color:blue" %)**NB-IOT soilmoisture& EC sensor**(%%)foragriculturalIoT. Used tomeasure the soilmoisture ofsaline-alkali soiland loam.Thesoil sensor uses the FDRmethod to calculate soil moisture andcompensates it with soiltemperature andelectricalconductivity.It hasalsobeencalibratedfor mineralsoiltypesatthe factory.24 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 33 33 ))) 34 34 35 35 ((( 36 - Itcandetect (%style="color:blue"%)**SoilMoisture,Soil Temperature andSoilConductivity**(%%),anduploaditsvalue totheserver wirelessly.28 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 37 37 ))) 38 38 39 39 ((( 40 - Thewirelesstechnology usedin NSE01allowsthedeviceto senddataata lowdata rateand reachultra-longdistances, providingultra-long-distancespreadspectrum Communication.32 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 41 41 ))) 42 42 43 43 ((( 44 - NSE01arepoweredby(%style="color:blue"%)**8500mAhLi-SOCI2**(%%)batteries,which canbeusedforupto5 years.36 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 45 45 ))) 46 46 47 - 48 -))) 49 49 50 50 [[image:1654503236291-817.png]] 51 51 52 52 53 -[[image:165 7245163077-232.png]]43 +[[image:1654503265560-120.png]] 54 54 55 55 56 56 57 -== 1.2 47 +== 1.2 Features == 58 58 59 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 49 +* LoRaWAN 1.0.3 Class A 50 +* Ultra low power consumption 60 60 * Monitor Soil Moisture 61 61 * Monitor Soil Temperature 62 62 * Monitor Soil Conductivity 54 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 63 63 * AT Commands to change parameters 64 64 * Uplink on periodically 65 65 * Downlink to change configure 66 66 * IP66 Waterproof Enclosure 67 -* Ultra-Low Power consumption 68 -* AT Commands to change parameters 69 -* Micro SIM card slot for NB-IoT SIM 70 -* 8500mAh Battery for long term use 59 +* 4000mAh or 8500mAh Battery for long term use 71 71 72 -== 1.3 61 +== 1.3 Specification == 73 73 74 - 75 -(% style="color:#037691" %)**Common DC Characteristics:** 76 - 77 -* Supply Voltage: 2.1v ~~ 3.6v 78 -* Operating Temperature: -40 ~~ 85°C 79 - 80 -(% style="color:#037691" %)**NB-IoT Spec:** 81 - 82 -* - B1 @H-FDD: 2100MHz 83 -* - B3 @H-FDD: 1800MHz 84 -* - B8 @H-FDD: 900MHz 85 -* - B5 @H-FDD: 850MHz 86 -* - B20 @H-FDD: 800MHz 87 -* - B28 @H-FDD: 700MHz 88 - 89 -Probe(% style="color:#037691" %)** Specification:** 90 - 91 91 Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 92 92 93 -[[image:image-20220 708101224-1.png]]65 +[[image:image-20220606162220-5.png]] 94 94 95 95 96 96 97 -== 1.4 69 +== 1.4 Applications == 98 98 99 99 * Smart Agriculture 100 100 ... ... @@ -101,782 +101,957 @@ 101 101 (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 102 102 103 103 104 -== 1.5 Pin Definitions==76 +== 1.5 Firmware Change log == 105 105 106 106 107 - [[image:1657246476176-652.png]]79 +**LSE01 v1.0 :** Release 108 108 109 109 110 110 111 -= 2. UseNSE01 to communicatewithIoTServer=83 += 2. Configure LSE01 to connect to LoRaWAN network = 112 112 113 -== 2.1 85 +== 2.1 How it works == 114 114 115 - 116 116 ((( 117 -The NSE01 isequippedwithaNB-IoT module,thepre-loadedfirmwareinNSE01willgetenvironmentdatafrom sensorsandsend thevaluetolocalNB-IoTnetworkviatheNB-IoTmodule.The NB-IoTnetworkwillforwardthisvaluetoIoTserver viatheprotocoldefinedbyNSE01.88 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 118 118 ))) 119 119 120 - 121 121 ((( 122 - Thediagrambelowshows theworkingflowindefaultfirmware ofNSE01:92 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 123 123 ))) 124 124 125 -[[image:image-20220708101605-2.png]] 126 126 127 -((( 128 - 129 -))) 130 130 97 +== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 131 131 99 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 132 132 133 -== 2.2 Configure the NSE01 == 134 134 102 +[[image:1654503992078-669.png]] 135 135 136 -=== 2.2.1 Test Requirement === 137 137 105 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 138 138 139 -((( 140 -To use NSE01 in your city, make sure meet below requirements: 141 -))) 142 142 143 -* Your local operator has already distributed a NB-IoT Network there. 144 -* The local NB-IoT network used the band that NSE01 supports. 145 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 108 +**Step 1**: Create a device in TTN with the OTAA keys from LSE01. 146 146 147 -((( 148 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 149 -))) 110 +Each LSE01 is shipped with a sticker with the default device EUI as below: 150 150 112 +[[image:image-20220606163732-6.jpeg]] 151 151 152 - [[image:1657249419225-449.png]]114 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 153 153 116 +**Add APP EUI in the application** 154 154 155 155 156 - === 2.2.2 Insert SIM card ===119 +[[image:1654504596150-405.png]] 157 157 121 + 122 + 123 +**Add APP KEY and DEV EUI** 124 + 125 +[[image:1654504683289-357.png]] 126 + 127 + 128 + 129 +**Step 2**: Power on LSE01 130 + 131 + 132 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 133 + 134 +[[image:image-20220606163915-7.png]] 135 + 136 + 137 +**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 138 + 139 +[[image:1654504778294-788.png]] 140 + 141 + 142 + 143 +== 2.3 Uplink Payload == 144 + 145 +(% class="wikigeneratedid" %) 146 +=== === 147 + 148 +=== 2.3.1 MOD~=0(Default Mode) === 149 + 150 +LSE01 will uplink payload via LoRaWAN with below payload format: 151 + 158 158 ((( 159 - Insertthe NB-IoT Cardgetfromyourprovider.153 +Uplink payload includes in total 11 bytes. 160 160 ))) 161 161 162 -((( 163 -User need to take out the NB-IoT module and insert the SIM card like below: 156 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 157 +|((( 158 +**Size** 159 + 160 +**(bytes)** 161 +)))|**2**|**2**|**2**|**2**|**2**|**1** 162 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 163 +Temperature 164 + 165 +(Reserve, Ignore now) 166 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 167 +MOD & Digital Interrupt 168 + 169 +(Optional) 164 164 ))) 165 165 166 166 167 -[[image:1657249468462-536.png]] 168 168 174 +=== 2.3.2 MOD~=1(Original value) === 169 169 176 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 170 170 171 -=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 178 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 179 +|((( 180 +**Size** 172 172 173 -((( 174 -((( 175 -User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 182 +**(bytes)** 183 +)))|**2**|**2**|**2**|**2**|**2**|**1** 184 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 185 +Temperature 186 + 187 +(Reserve, Ignore now) 188 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 189 +MOD & Digital Interrupt 190 + 191 +(Optional) 176 176 ))) 177 -))) 178 178 179 179 180 -**Connection:** 181 181 182 - (%style="background-color:yellow"%)USB TTL GND <~-~-~-~-> GND196 +=== 2.3.3 Battery Info === 183 183 184 - (% style="background-color:yellow"%)USB TTLTXD <~-~-~-~-> UART_RXD198 +Check the battery voltage for LSE01. 185 185 186 - (% style="background-color:yellow"%)USBTTLRXD <~-~-~-~-> UART_TXD200 +Ex1: 0x0B45 = 2885mV 187 187 202 +Ex2: 0x0B49 = 2889mV 188 188 189 -In the PC, use below serial tool settings: 190 190 191 -* Baud: (% style="color:green" %)**9600** 192 -* Data bits:** (% style="color:green" %)8(%%)** 193 -* Stop bits: (% style="color:green" %)**1** 194 -* Parity: (% style="color:green" %)**None** 195 -* Flow Control: (% style="color:green" %)**None** 196 196 206 +=== 2.3.4 Soil Moisture === 207 + 208 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 209 + 210 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 211 + 212 + 213 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 214 + 215 + 216 + 217 +=== 2.3.5 Soil Temperature === 218 + 219 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 220 + 221 +**Example**: 222 + 223 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 224 + 225 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 226 + 227 + 228 + 229 +=== 2.3.6 Soil Conductivity (EC) === 230 + 197 197 ((( 198 - Make surethe switch is inFLASHposition, then power on devicebyconnectingthe jumperNSE01.NSE01 willoutputsysteminfo oncepowerasbelow,wecan enterthe(% style="color:green" %)**password:12345678**(%%)toaccessATCommandinput.232 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 199 199 ))) 200 200 201 -[[image:image-20220708110657-3.png]] 235 +((( 236 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 237 +))) 202 202 203 203 ((( 204 - (% style="color:red"%)Note: the validAT Commandscan be foundat: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]240 +Generally, the EC value of irrigation water is less than 800uS / cm. 205 205 ))) 206 206 243 +((( 244 + 245 +))) 207 207 247 +((( 248 + 249 +))) 208 208 209 -=== 2. 2.4Use CoAP protocol to uplink data===251 +=== 2.3.7 MOD === 210 210 211 - (% style="color:red"%)Note:if you don'thaveCoAP server, you can refer thislinktosetupne:(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]253 +Firmware version at least v2.1 supports changing mode. 212 212 255 +For example, bytes[10]=90 213 213 214 - **Use below commands:**257 +mod=(bytes[10]>>7)&0x01=1. 215 215 216 -* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 217 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 218 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 219 219 220 - For parameter description,please refer toAT commandset260 +**Downlink Command:** 221 221 222 - [[image:1657249793983-486.png]]262 +If payload = 0x0A00, workmode=0 223 223 264 +If** **payload =** **0x0A01, workmode=1 224 224 225 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 226 226 227 -[[image:1657249831934-534.png]] 228 228 268 +=== 2.3.8 Decode payload in The Things Network === 229 229 270 +While using TTN network, you can add the payload format to decode the payload. 230 230 231 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 232 232 233 - This feature is supported since firmwareversion v1.0.1273 +[[image:1654505570700-128.png]] 234 234 275 +The payload decoder function for TTN is here: 235 235 236 -* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 237 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 238 -* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 277 +LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 239 239 240 -[[image:1657249864775-321.png]] 241 241 242 242 243 - [[image:1657249930215-289.png]]281 +== 2.4 Uplink Interval == 244 244 283 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 245 245 246 246 247 -=== 2.2.6 Use MQTT protocol to uplink data === 248 248 249 - Thisfeatureis supported sincefirmware versionv110287 +== 2.5 Downlink Payload == 250 250 289 +By default, LSE50 prints the downlink payload to console port. 251 251 252 -* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 253 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 254 -* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 255 -* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 256 -* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 257 -* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 258 -* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 291 +[[image:image-20220606165544-8.png]] 259 259 260 -[[image:1657249978444-674.png]] 261 261 294 +**Examples:** 262 262 263 -[[image:1657249990869-686.png]] 264 264 297 +* **Set TDC** 265 265 266 -((( 267 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 268 -))) 299 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 269 269 301 +Payload: 01 00 00 1E TDC=30S 270 270 303 +Payload: 01 00 00 3C TDC=60S 271 271 272 -=== 2.2.7 Use TCP protocol to uplink data === 273 273 274 - Thisfeature issupported since firmware version v110306 +* **Reset** 275 275 308 +If payload = 0x04FF, it will reset the LSE01 276 276 277 -* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 278 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 279 279 280 - [[image:1657250217799-140.png]]311 +* **CFM** 281 281 313 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 282 282 283 -[[image:1657250255956-604.png]] 284 284 285 285 317 +== 2.6 Show Data in DataCake IoT Server == 286 286 287 - === 2.2.8ChangeUpdateInterval===319 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 288 288 289 -User can use below command to change the (% style="color:green" %)**uplink interval**. 290 290 291 -* (%style="color:blue"%)**AT+TDC=600**(%%)~/~/ SetUpdateIntervalto600s322 +**Step 1**: Be sure that your device is programmed and properly connected to the network at this time. 292 292 293 -((( 294 -(% style="color:red" %)**NOTE:** 295 -))) 324 +**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 296 296 297 -((( 298 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 299 -))) 300 300 327 +[[image:1654505857935-743.png]] 301 301 302 302 303 - ==2.3 Uplink Payload ==330 +[[image:1654505874829-548.png]] 304 304 305 - Inthis mode, uplinkpayloadincludes intal18bytes332 +Step 3: Create an account or log in Datacake. 306 306 307 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 308 -|=(% style="width: 60px;" %)((( 309 -**Size(bytes)** 310 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1** 311 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 334 +Step 4: Search the LSE01 and add DevEUI. 312 312 313 -((( 314 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 315 -))) 316 316 337 +[[image:1654505905236-553.png]] 317 317 318 -[[image:image-20220708111918-4.png]] 319 319 340 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 320 320 321 - The payloadis ASCII string, representative same HEX:342 +[[image:1654505925508-181.png]] 322 322 323 -0x72403155615900640c7817075e0a8c02f900 where: 324 324 325 -* Device ID: 0x 724031556159 = 724031556159 326 -* Version: 0x0064=100=1.0.0 327 327 328 -* BAT: 0x0c78 = 3192 mV = 3.192V 329 -* Singal: 0x17 = 23 330 -* Soil Moisture: 0x075e= 1886 = 18.86 % 331 -* Soil Temperature:0x0a8c =2700=27 °C 332 -* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 333 -* Interrupt: 0x00 = 0 346 +== 2.7 Frequency Plans == 334 334 348 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 335 335 336 336 351 +=== 2.7.1 EU863-870 (EU868) === 337 337 338 - ==2.4 Payload Explanation and SensorInterface==353 +(% style="color:#037691" %)** Uplink:** 339 339 355 +868.1 - SF7BW125 to SF12BW125 340 340 341 - ===2.4.1DeviceID===357 +868.3 - SF7BW125 to SF12BW125 and SF7BW250 342 342 343 -((( 344 -By default, the Device ID equal to the last 6 bytes of IMEI. 345 -))) 359 +868.5 - SF7BW125 to SF12BW125 346 346 347 -((( 348 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 349 -))) 361 +867.1 - SF7BW125 to SF12BW125 350 350 351 -((( 352 -**Example:** 353 -))) 363 +867.3 - SF7BW125 to SF12BW125 354 354 355 -((( 356 -AT+DEUI=A84041F15612 357 -))) 365 +867.5 - SF7BW125 to SF12BW125 358 358 359 -((( 360 -The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 361 -))) 367 +867.7 - SF7BW125 to SF12BW125 362 362 369 +867.9 - SF7BW125 to SF12BW125 363 363 371 +868.8 - FSK 364 364 365 -=== 2.4.2 Version Info === 366 366 367 -((( 368 -Specify the software version: 0x64=100, means firmware version 1.00. 369 -))) 374 +(% style="color:#037691" %)** Downlink:** 370 370 371 -((( 372 -For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 373 -))) 376 +Uplink channels 1-9 (RX1) 374 374 378 +869.525 - SF9BW125 (RX2 downlink only) 375 375 376 376 377 -=== 2.4.3 Battery Info === 378 378 379 -((( 380 -Check the battery voltage for LSE01. 381 -))) 382 +=== 2.7.2 US902-928(US915) === 382 382 383 -((( 384 -Ex1: 0x0B45 = 2885mV 385 -))) 384 +Used in USA, Canada and South America. Default use CHE=2 386 386 387 -((( 388 -Ex2: 0x0B49 = 2889mV 389 -))) 386 +(% style="color:#037691" %)**Uplink:** 390 390 388 +903.9 - SF7BW125 to SF10BW125 391 391 390 +904.1 - SF7BW125 to SF10BW125 392 392 393 - === 2.4.4SignalStrength===392 +904.3 - SF7BW125 to SF10BW125 394 394 395 -((( 396 -NB-IoT Network signal Strength. 397 -))) 394 +904.5 - SF7BW125 to SF10BW125 398 398 399 -((( 400 -**Ex1: 0x1d = 29** 401 -))) 396 +904.7 - SF7BW125 to SF10BW125 402 402 403 -((( 404 -(% style="color:blue" %)**0**(%%) -113dBm or less 405 -))) 398 +904.9 - SF7BW125 to SF10BW125 406 406 407 -((( 408 -(% style="color:blue" %)**1**(%%) -111dBm 409 -))) 400 +905.1 - SF7BW125 to SF10BW125 410 410 411 -((( 412 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 413 -))) 402 +905.3 - SF7BW125 to SF10BW125 414 414 415 -((( 416 -(% style="color:blue" %)**31** (%%) -51dBm or greater 417 -))) 418 418 419 -((( 420 -(% style="color:blue" %)**99** (%%) Not known or not detectable 421 -))) 405 +(% style="color:#037691" %)**Downlink:** 422 422 407 +923.3 - SF7BW500 to SF12BW500 423 423 409 +923.9 - SF7BW500 to SF12BW500 424 424 425 - ===2.4.5oilMoisture===411 +924.5 - SF7BW500 to SF12BW500 426 426 427 -((( 428 -((( 429 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 430 -))) 431 -))) 413 +925.1 - SF7BW500 to SF12BW500 432 432 433 -((( 434 -((( 435 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 436 -))) 437 -))) 415 +925.7 - SF7BW500 to SF12BW500 438 438 439 -((( 440 - 441 -))) 417 +926.3 - SF7BW500 to SF12BW500 442 442 443 -((( 444 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 445 -))) 419 +926.9 - SF7BW500 to SF12BW500 446 446 421 +927.5 - SF7BW500 to SF12BW500 447 447 423 +923.3 - SF12BW500(RX2 downlink only) 448 448 449 -=== 2.4.6 Soil Temperature === 450 450 451 -((( 452 -Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 453 -))) 454 454 455 -((( 456 -**Example**: 457 -))) 427 +=== 2.7.3 CN470-510 (CN470) === 458 458 459 -((( 460 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 461 -))) 429 +Used in China, Default use CHE=1 462 462 463 -((( 464 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 465 -))) 431 +(% style="color:#037691" %)**Uplink:** 466 466 433 +486.3 - SF7BW125 to SF12BW125 467 467 435 +486.5 - SF7BW125 to SF12BW125 468 468 469 - === 2.4.7oilConductivity(EC) ===437 +486.7 - SF7BW125 to SF12BW125 470 470 471 -((( 472 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 473 -))) 439 +486.9 - SF7BW125 to SF12BW125 474 474 475 -((( 476 -For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 477 -))) 441 +487.1 - SF7BW125 to SF12BW125 478 478 479 -((( 480 -Generally, the EC value of irrigation water is less than 800uS / cm. 481 -))) 443 +487.3 - SF7BW125 to SF12BW125 482 482 483 -((( 484 - 485 -))) 445 +487.5 - SF7BW125 to SF12BW125 486 486 487 -((( 488 - 489 -))) 447 +487.7 - SF7BW125 to SF12BW125 490 490 491 -=== 2.4.8 Digital Interrupt === 492 492 493 -((( 494 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 495 -))) 450 +(% style="color:#037691" %)**Downlink:** 496 496 497 -((( 498 -The command is: 499 -))) 452 +506.7 - SF7BW125 to SF12BW125 500 500 501 -((( 502 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 503 -))) 454 +506.9 - SF7BW125 to SF12BW125 504 504 456 +507.1 - SF7BW125 to SF12BW125 505 505 506 -((( 507 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up. 508 -))) 458 +507.3 - SF7BW125 to SF12BW125 509 509 460 +507.5 - SF7BW125 to SF12BW125 510 510 511 -((( 512 -Example: 513 -))) 462 +507.7 - SF7BW125 to SF12BW125 514 514 515 -((( 516 -0x(00): Normal uplink packet. 517 -))) 464 +507.9 - SF7BW125 to SF12BW125 518 518 519 -((( 520 -0x(01): Interrupt Uplink Packet. 521 -))) 466 +508.1 - SF7BW125 to SF12BW125 522 522 468 +505.3 - SF12BW125 (RX2 downlink only) 523 523 524 524 525 -=== 2.4.9 +5V Output === 526 526 527 -((( 528 -NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 529 -))) 472 +=== 2.7.4 AU915-928(AU915) === 530 530 474 +Default use CHE=2 531 531 532 -((( 533 -The 5V output time can be controlled by AT Command. 534 -))) 476 +(% style="color:#037691" %)**Uplink:** 535 535 536 -((( 537 -(% style="color:blue" %)**AT+5VT=1000** 538 -))) 478 +916.8 - SF7BW125 to SF12BW125 539 539 540 -((( 541 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 542 -))) 480 +917.0 - SF7BW125 to SF12BW125 543 543 482 +917.2 - SF7BW125 to SF12BW125 544 544 484 +917.4 - SF7BW125 to SF12BW125 545 545 546 - ==2.5DownlinkPayload ==486 +917.6 - SF7BW125 to SF12BW125 547 547 548 - Bydefault,NSE01prints the downlinkpayload to console port.488 +917.8 - SF7BW125 to SF12BW125 549 549 550 - [[image:image-20220708133731-5.png]]490 +918.0 - SF7BW125 to SF12BW125 551 551 492 +918.2 - SF7BW125 to SF12BW125 552 552 553 -((( 554 -(% style="color:blue" %)**Examples:** 555 -))) 556 556 557 -((( 558 - 559 -))) 495 +(% style="color:#037691" %)**Downlink:** 560 560 561 -* ((( 562 -(% style="color:blue" %)**Set TDC** 563 -))) 497 +923.3 - SF7BW500 to SF12BW500 564 564 565 -((( 566 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 567 -))) 499 +923.9 - SF7BW500 to SF12BW500 568 568 569 -((( 570 -Payload: 01 00 00 1E TDC=30S 571 -))) 501 +924.5 - SF7BW500 to SF12BW500 572 572 573 -((( 574 -Payload: 01 00 00 3C TDC=60S 575 -))) 503 +925.1 - SF7BW500 to SF12BW500 576 576 577 -((( 578 - 579 -))) 505 +925.7 - SF7BW500 to SF12BW500 580 580 581 -* ((( 582 -(% style="color:blue" %)**Reset** 583 -))) 507 +926.3 - SF7BW500 to SF12BW500 584 584 585 -((( 586 -If payload = 0x04FF, it will reset the NSE01 587 -))) 509 +926.9 - SF7BW500 to SF12BW500 588 588 511 +927.5 - SF7BW500 to SF12BW500 589 589 590 - *(%style="color:blue" %)**INTMOD**513 +923.3 - SF12BW500(RX2 downlink only) 591 591 592 -Downlink Payload: 06000003, Set AT+INTMOD=3 593 593 594 594 517 +=== 2.7.5 AS920-923 & AS923-925 (AS923) === 595 595 596 - ==2.6LEDIndicator ==519 +(% style="color:#037691" %)**Default Uplink channel:** 597 597 598 -((( 599 -The NSE01 has an internal LED which is to show the status of different state. 521 +923.2 - SF7BW125 to SF10BW125 600 600 523 +923.4 - SF7BW125 to SF10BW125 601 601 602 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 603 -* Then the LED will be on for 1 second means device is boot normally. 604 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 605 -* For each uplink probe, LED will be on for 500ms. 606 -))) 607 607 526 +(% style="color:#037691" %)**Additional Uplink Channel**: 608 608 528 +(OTAA mode, channel added by JoinAccept message) 609 609 530 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 610 610 611 - ==2.7InstallationinSoil ==532 +922.2 - SF7BW125 to SF10BW125 612 612 613 - __**Measurementthesoilsurface**__534 +922.4 - SF7BW125 to SF10BW125 614 614 615 - Choose the proper measuring position.Avoidthe probe to touch rocks or hard things.Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]536 +922.6 - SF7BW125 to SF10BW125 616 616 617 - [[image:1657259653666-883.png]]538 +922.8 - SF7BW125 to SF10BW125 618 618 540 +923.0 - SF7BW125 to SF10BW125 619 619 620 -((( 621 - 542 +922.0 - SF7BW125 to SF10BW125 622 622 623 -((( 624 -Dig a hole with diameter > 20CM. 625 -))) 626 626 627 -((( 628 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 629 -))) 630 -))) 545 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 631 631 632 - [[image:1654506665940-119.png]]547 +923.6 - SF7BW125 to SF10BW125 633 633 634 -((( 635 - 636 -))) 549 +923.8 - SF7BW125 to SF10BW125 637 637 551 +924.0 - SF7BW125 to SF10BW125 638 638 639 - ==2.8FirmwareChange Log==553 +924.2 - SF7BW125 to SF10BW125 640 640 555 +924.4 - SF7BW125 to SF10BW125 641 641 642 - DownloadURL&FirmwareChange log557 +924.6 - SF7BW125 to SF10BW125 643 643 644 -[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 645 645 560 +(% style="color:#037691" %)** Downlink:** 646 646 647 -Up grade Instruction:[[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]562 +Uplink channels 1-8 (RX1) 648 648 564 +923.2 - SF10BW125 (RX2) 649 649 650 650 651 -== 2.9 Battery Analysis == 652 652 653 -=== 2. 9.1BatteryType===568 +=== 2.7.6 KR920-923 (KR920) === 654 654 570 +Default channel: 655 655 656 - TheNSE01battery is a combinationof an 8500mAh Li/SOCI2attery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.572 +922.1 - SF7BW125 to SF12BW125 657 657 574 +922.3 - SF7BW125 to SF12BW125 658 658 659 - Thebatteryisdesignedtolast for several years depends on the actually use environment and update interval.576 +922.5 - SF7BW125 to SF12BW125 660 660 661 661 662 - Thebatteryrelateddocumentsasbelow:579 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 663 663 664 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 665 -* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 666 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 581 +922.1 - SF7BW125 to SF12BW125 667 667 583 +922.3 - SF7BW125 to SF12BW125 584 + 585 +922.5 - SF7BW125 to SF12BW125 586 + 587 +922.7 - SF7BW125 to SF12BW125 588 + 589 +922.9 - SF7BW125 to SF12BW125 590 + 591 +923.1 - SF7BW125 to SF12BW125 592 + 593 +923.3 - SF7BW125 to SF12BW125 594 + 595 + 596 +(% style="color:#037691" %)**Downlink:** 597 + 598 +Uplink channels 1-7(RX1) 599 + 600 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 601 + 602 + 603 + 604 +=== 2.7.7 IN865-867 (IN865) === 605 + 606 +(% style="color:#037691" %)** Uplink:** 607 + 608 +865.0625 - SF7BW125 to SF12BW125 609 + 610 +865.4025 - SF7BW125 to SF12BW125 611 + 612 +865.9850 - SF7BW125 to SF12BW125 613 + 614 + 615 +(% style="color:#037691" %) **Downlink:** 616 + 617 +Uplink channels 1-3 (RX1) 618 + 619 +866.550 - SF10BW125 (RX2) 620 + 621 + 622 + 623 + 624 +== 2.8 LED Indicator == 625 + 626 +The LSE01 has an internal LED which is to show the status of different state. 627 + 628 +* Blink once when device power on. 629 +* Solid ON for 5 seconds once device successful Join the network. 630 +* Blink once when device transmit a packet. 631 + 632 + 633 + 634 +== 2.9 Installation in Soil == 635 + 636 +**Measurement the soil surface** 637 + 638 + 639 +[[image:1654506634463-199.png]] 640 + 668 668 ((( 669 -[[image:image-20220708140453-6.png]] 642 +((( 643 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 670 670 ))) 645 +))) 671 671 672 672 648 +[[image:1654506665940-119.png]] 673 673 674 -=== 2.9.2 Power consumption Analyze === 650 +((( 651 +Dig a hole with diameter > 20CM. 652 +))) 675 675 676 676 ((( 677 - Draginobattery powered productare allrunsinLow Powermode. Wehavean update battery calculator whichbase onthemeasurementof the realdevice. User canuse this calculatorto checkthebatterylife andcalculatethe batterylifeif want to use different transmit interval.655 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 678 678 ))) 679 679 680 680 659 +== 2.10 Firmware Change Log == 660 + 681 681 ((( 682 - Instructiontouseasbelow:662 +**Firmware download link:** 683 683 ))) 684 684 685 685 ((( 686 - (% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:[[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]666 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 687 687 ))) 688 688 669 +((( 670 + 671 +))) 689 689 690 690 ((( 691 - (% style="color:blue" %)**Step2: **(%%)Openithoose674 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 692 692 ))) 693 693 694 - *(((695 - ProductModel677 +((( 678 + 696 696 ))) 697 -* ((( 698 -Uplink Interval 680 + 681 +((( 682 +**V1.0.** 699 699 ))) 700 -* ((( 701 -Working Mode 702 -))) 703 703 704 704 ((( 705 - And theLifeexpectation in difference casewill be shown on the right.686 +Release 706 706 ))) 707 707 708 -[[image:image-20220708141352-7.jpeg]] 709 709 690 +== 2.11 Battery Analysis == 710 710 692 +=== 2.11.1 Battery Type === 711 711 712 -=== 2.9.3 Battery Note === 694 +((( 695 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 696 +))) 713 713 714 714 ((( 715 -The Li-SICObattery is designedfor small current/ longperiod application. It isnotgood to use a high current,short period transmit method. Therecommendedminimum period for use ofthis batteryis5minutes. Ifyou useshorterperiod time to transmitLoRa,thenthe battery life may be decreased.699 +The battery is designed to last for more than 5 years for the LSN50. 716 716 ))) 717 717 702 +((( 703 +((( 704 +The battery-related documents are as below: 705 +))) 706 +))) 718 718 708 +* ((( 709 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 710 +))) 711 +* ((( 712 +[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 713 +))) 714 +* ((( 715 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 716 +))) 719 719 720 - ===2.9.4 Replacethe battery ===718 + [[image:image-20220606171726-9.png]] 721 721 720 + 721 + 722 +=== 2.11.2 Battery Note === 723 + 722 722 ((( 723 -The defaultbatterypackofNSE01includesaER26500 plussupercapacitor. Ifusercan'tfind this pack locally,theycanfindER26500 orquivalence withoutthe SPC1520 capacitor, which will alsowork inmostcase. TheSPCcanlarge thebatterylifeforhigh frequency use(update periodbelow5minutes).725 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 724 724 ))) 725 725 726 726 727 727 728 -= 3. AccessNB-IoTModule =730 +=== 2.11.3 Replace the battery === 729 729 730 730 ((( 731 - Userscan directlyaccesstheAT command setoftheNB-IoTmodule.733 +If Battery is lower than 2.7v, user should replace the battery of LSE01. 732 732 ))) 733 733 734 734 ((( 735 - The AT Commandsetcanrefer theBC35-G NB-IoTModuleATCommand: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]]737 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 736 736 ))) 737 737 738 -[[image:1657261278785-153.png]] 740 +((( 741 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 742 +))) 739 739 740 740 741 741 742 -= 4.746 += 3. Using the AT Commands = 743 743 744 -== 4.1748 +== 3.1 Access AT Commands == 745 745 746 -See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 747 747 751 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 748 748 749 - AT+<CMD>? : Helpon<CMD>753 +[[image:1654501986557-872.png||height="391" width="800"]] 750 750 751 -AT+<CMD> : Run <CMD> 752 752 753 - AT+<CMD>=<value>: Setthevalue756 +Or if you have below board, use below connection: 754 754 755 -AT+<CMD>=? : Get the value 756 756 759 +[[image:1654502005655-729.png||height="503" width="801"]] 757 757 761 + 762 + 763 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 764 + 765 + 766 + [[image:1654502050864-459.png||height="564" width="806"]] 767 + 768 + 769 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]] 770 + 771 + 772 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 773 + 774 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 775 + 776 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 777 + 778 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 779 + 780 + 758 758 (% style="color:#037691" %)**General Commands**(%%) 759 759 760 -AT 783 +(% style="background-color:#dcdcdc" %)**AT**(%%) : Attention 761 761 762 -AT? 785 +(% style="background-color:#dcdcdc" %)**AT?**(%%) : Short Help 763 763 764 -ATZ 787 +(% style="background-color:#dcdcdc" %)**ATZ**(%%) : MCU Reset 765 765 766 -AT+TDC 789 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%) : Application Data Transmission Interval 767 767 768 -AT+CFG : Print all configurations 769 769 770 - AT+CFGMOD: Workingmode selection792 +(% style="color:#037691" %)**Keys, IDs and EUIs management** 771 771 772 -AT+I NTMOD:Setthe trigger interruptmode794 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%) : Application EUI 773 773 774 -AT+ 5VTSetextend the timeof5V power796 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%) : Application Key 775 775 776 -AT+P ROChooseagreement798 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%) : Application Session Key 777 777 778 -AT+ WEIGREGet weightorsetweight to 0800 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%) : Device Address 779 779 780 -AT+ WEIGAPGet or SettheGapValue of weight802 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%) : Device EUI 781 781 782 -AT+ RXDL: Extendthe sendingandreceivingtime804 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%) : Network ID (You can enter this command change only after successful network connection) 783 783 784 -AT+ CNTFACGettcountingparameters806 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%) : Network Session Key Joining and sending date on LoRa network 785 785 786 -AT+ SERVADDR:ServerAddress808 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%) : Confirm Mode 787 787 810 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 788 788 789 -(% style="color:# 037691" %)**COAPManagement**812 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%) : Join LoRa? Network 790 790 791 -AT+ URIsourceparameters814 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%) : LoRa? Network Join Mode 792 792 816 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 793 793 794 -(% style="color:# 037691" %)**UDPManagement**818 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%) : Print Last Received Data in Raw Format 795 795 796 -AT+C FM:Uploadconfirmationmode (onlyvalid forUDP)820 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%) : Print Last Received Data in Binary Format 797 797 822 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 798 798 799 -(% style="color:# 037691" %)**MQTTManagement**824 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%) : Send Hexadecimal Data 800 800 801 -AT+CLIENT : Get or Set MQTT client 802 802 803 - AT+UNAMEGetSetMQTT Username827 +(% style="color:#037691" %)**LoRa Network Management** 804 804 805 -AT+ PWDGetor SetMQTT password829 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%) : Adaptive Rate 806 806 807 -AT+ PUBTOPICGetorSetMQTTpublishtopic831 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%) : LoRa Class(Currently only support class A 808 808 809 -AT+ SUBTOPIC :GetorSetMQTT subscriptiontopic833 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%) : Duty Cycle Setting 810 810 835 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 811 811 812 -(% style="color:# 037691" %)**Information**837 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink 813 813 814 -AT+F DRctoryDataReset839 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%) : Frame Counter Uplink 815 815 816 -AT+ PWORDSerialAccessPassword841 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%) : Join Accept Delay1 817 817 843 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 818 818 845 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 819 819 820 -= 5.FAQ=847 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%) : Receive Delay1 821 821 822 -= =5.1HowtoUpgradeFirmware==849 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%) : Receive Delay2 823 823 851 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 824 824 853 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 854 + 855 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 856 + 857 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 858 + 859 + 860 +(% style="color:#037691" %)**Information** 861 + 862 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 863 + 864 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 865 + 866 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 867 + 868 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 869 + 870 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 871 + 872 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 873 + 874 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 875 + 876 + 877 += 4. FAQ = 878 + 879 +== 4.1 How to change the LoRa Frequency Bands/Region? == 880 + 825 825 ((( 826 -User can upgrade the firmware for 1) bug fix, 2) new feature release. 882 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 883 +When downloading the images, choose the required image file for download. 827 827 ))) 828 828 829 829 ((( 830 - Pleasesee this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]887 + 831 831 ))) 832 832 833 833 ((( 834 - (%style="color:red"%)Notice,NSE01andLSE01share thememotherboard.Theyuse thesameconnection andmethodto update.891 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 835 835 ))) 836 836 894 +((( 895 + 896 +))) 837 837 898 +((( 899 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 900 +))) 838 838 839 -= 6. Trouble Shooting = 902 +((( 903 + 904 +))) 840 840 841 -== 6.1 Connection problem when uploading firmware == 906 +((( 907 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 908 +))) 842 842 910 +[[image:image-20220606154726-3.png]] 843 843 844 -(% class="wikigeneratedid" %) 912 + 913 +When you use the TTN network, the US915 frequency bands use are: 914 + 915 +* 903.9 - SF7BW125 to SF10BW125 916 +* 904.1 - SF7BW125 to SF10BW125 917 +* 904.3 - SF7BW125 to SF10BW125 918 +* 904.5 - SF7BW125 to SF10BW125 919 +* 904.7 - SF7BW125 to SF10BW125 920 +* 904.9 - SF7BW125 to SF10BW125 921 +* 905.1 - SF7BW125 to SF10BW125 922 +* 905.3 - SF7BW125 to SF10BW125 923 +* 904.6 - SF8BW500 924 + 845 845 ((( 846 - (%style="font-size:14px"%)**Pleasesee:**(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color:rgb(255,255,255);font-size:14px;"]]926 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 847 847 ))) 848 848 929 +(% class="box infomessage" %) 930 +((( 931 +**AT+CHE=2** 932 +))) 849 849 934 +(% class="box infomessage" %) 935 +((( 936 +**ATZ** 937 +))) 850 850 851 -== 6.2 AT Command input doesn't work == 939 +((( 940 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 941 +))) 852 852 853 853 ((( 854 - Inthe case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.944 + 855 855 ))) 856 856 947 +((( 948 +The **AU915** band is similar. Below are the AU915 Uplink Channels. 949 +))) 857 857 951 +[[image:image-20220606154825-4.png]] 858 858 859 -= 7. Order Info = 860 860 861 861 862 - PartNumber**:** (% style="color:#4f81bd"%)**NSE01**955 += 5. Trouble Shooting = 863 863 957 +== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 864 864 959 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 960 + 961 + 962 +== 5.2 AT Command input doesn’t work == 963 + 964 +((( 965 +In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 966 +))) 967 + 968 + 969 +== 5.3 Device rejoin in at the second uplink packet == 970 + 971 +(% style="color:#4f81bd" %)**Issue describe as below:** 972 + 973 +[[image:1654500909990-784.png]] 974 + 975 + 976 +(% style="color:#4f81bd" %)**Cause for this issue:** 977 + 978 +((( 979 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 980 +))) 981 + 982 + 983 +(% style="color:#4f81bd" %)**Solution: ** 984 + 985 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 986 + 987 +[[image:1654500929571-736.png||height="458" width="832"]] 988 + 989 + 990 += 6. Order Info = 991 + 992 + 993 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 994 + 995 + 996 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 997 + 998 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 999 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 1000 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 1001 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 1002 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1003 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1004 +* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1005 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1006 + 1007 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1008 + 1009 +* (% style="color:red" %)**4**(%%): 4000mAh battery 1010 +* (% style="color:red" %)**8**(%%): 8500mAh battery 1011 + 865 865 (% class="wikigeneratedid" %) 866 866 ((( 867 867 868 868 ))) 869 869 870 -= 8.1017 += 7. Packing Info = 871 871 872 872 ((( 873 873 874 874 875 875 (% style="color:#037691" %)**Package Includes**: 1023 +))) 876 876 877 - 878 -* NSE01 NB-IoT Soil Moisture & EC Sensor x 1 879 -* External antenna x 1 1025 +* ((( 1026 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 880 880 ))) 881 881 882 882 ((( ... ... @@ -883,20 +883,30 @@ 883 883 884 884 885 885 (% style="color:#037691" %)**Dimension and weight**: 1033 +))) 886 886 887 - 888 -* Size: 195 x 125 x 55 mm 889 -* Weight: 420g 1035 +* ((( 1036 +Device Size: cm 890 890 ))) 1038 +* ((( 1039 +Device Weight: g 1040 +))) 1041 +* ((( 1042 +Package Size / pcs : cm 1043 +))) 1044 +* ((( 1045 +Weight / pcs : g 891 891 892 -((( 893 - 894 894 895 - 896 896 897 897 ))) 898 898 899 -= 9.1051 += 8. Support = 900 900 901 901 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 902 902 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1055 + 1056 + 1057 +~)~)~) 1058 +~)~)~) 1059 +~)~)~)
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -102.7 KB - Content