Last modified by Bei Jinggeng on 2024/05/31 09:53

From version 65.15
edited by Xiaoling
on 2022/07/08 15:52
Change comment: There is no comment for this version
To version 37.1
edited by Xiaoling
on 2022/06/25 16:29
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
Content
... ... @@ -20,81 +20,66 @@
20 20  
21 21  
22 22  
23 += 1. Introduction =
23 23  
24 -= 1.  Introduction =
25 +== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
25 25  
26 -== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
27 -
28 28  (((
29 29  
30 30  
31 -(((
32 -Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
30 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
33 33  )))
34 34  
35 35  (((
36 -It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
34 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
37 37  )))
38 38  
39 39  (((
40 -The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
38 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
41 41  )))
42 42  
43 43  (((
44 -NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
42 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
45 45  )))
46 46  
47 -
45 +(((
46 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
48 48  )))
49 49  
49 +
50 50  [[image:1654503236291-817.png]]
51 51  
52 52  
53 -[[image:1657245163077-232.png]]
53 +[[image:1654503265560-120.png]]
54 54  
55 55  
56 56  
57 -== 1.2 ​ Features ==
57 +== 1.2 ​Features ==
58 58  
59 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
59 +* LoRaWAN 1.0.3 Class A
60 +* Ultra low power consumption
60 60  * Monitor Soil Moisture
61 61  * Monitor Soil Temperature
62 62  * Monitor Soil Conductivity
64 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
63 63  * AT Commands to change parameters
64 64  * Uplink on periodically
65 65  * Downlink to change configure
66 66  * IP66 Waterproof Enclosure
67 -* Ultra-Low Power consumption
68 -* AT Commands to change parameters
69 -* Micro SIM card slot for NB-IoT SIM
70 -* 8500mAh Battery for long term use
69 +* 4000mAh or 8500mAh Battery for long term use
71 71  
72 -== 1.3  Specification ==
73 73  
74 74  
75 -(% style="color:#037691" %)**Common DC Characteristics:**
76 76  
77 -* Supply Voltage: 2.1v ~~ 3.6v
78 -* Operating Temperature: -40 ~~ 85°C
74 +== 1.3 Specification ==
79 79  
80 -(% style="color:#037691" %)**NB-IoT Spec:**
81 -
82 -* - B1 @H-FDD: 2100MHz
83 -* - B3 @H-FDD: 1800MHz
84 -* - B8 @H-FDD: 900MHz
85 -* - B5 @H-FDD: 850MHz
86 -* - B20 @H-FDD: 800MHz
87 -* - B28 @H-FDD: 700MHz
88 -
89 -Probe(% style="color:#037691" %)** Specification:**
90 -
91 91  Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
92 92  
93 -[[image:image-20220708101224-1.png]]
78 +[[image:image-20220606162220-5.png]]
94 94  
95 95  
96 96  
97 -== ​1.4  Applications ==
82 +== ​1.4 Applications ==
98 98  
99 99  * Smart Agriculture
100 100  
... ... @@ -101,774 +101,1007 @@
101 101  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
102 102  ​
103 103  
104 -== 1.5  Pin Definitions ==
89 +== 1.5 Firmware Change log ==
105 105  
106 106  
107 -[[image:1657246476176-652.png]]
92 +**LSE01 v1.0 :**  Release
108 108  
109 109  
110 110  
111 -= 2.  Use NSE01 to communicate with IoT Server =
96 += 2. Configure LSE01 to connect to LoRaWAN network =
112 112  
113 -== 2.1  How it works ==
98 +== 2.1 How it works ==
114 114  
115 -
116 116  (((
117 -The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
101 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
118 118  )))
119 119  
120 -
121 121  (((
122 -The diagram below shows the working flow in default firmware of NSE01:
105 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
123 123  )))
124 124  
125 -[[image:image-20220708101605-2.png]]
126 126  
127 -(((
128 -
129 -)))
130 130  
110 +== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
131 131  
112 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
132 132  
133 -== 2.2 ​ Configure the NSE01 ==
134 134  
115 +[[image:1654503992078-669.png]]
135 135  
136 -=== 2.2.1 Test Requirement ===
137 137  
118 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
138 138  
139 -(((
140 -To use NSE01 in your city, make sure meet below requirements:
141 -)))
142 142  
143 -* Your local operator has already distributed a NB-IoT Network there.
144 -* The local NB-IoT network used the band that NSE01 supports.
145 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
121 +(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
146 146  
147 -(((
148 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
149 -)))
123 +Each LSE01 is shipped with a sticker with the default device EUI as below:
150 150  
125 +[[image:image-20220606163732-6.jpeg]]
151 151  
152 -[[image:1657249419225-449.png]]
127 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
153 153  
129 +**Add APP EUI in the application**
154 154  
155 155  
156 -=== 2.2.2 Insert SIM card ===
132 +[[image:1654504596150-405.png]]
157 157  
158 -(((
159 -Insert the NB-IoT Card get from your provider.
160 -)))
161 161  
162 -(((
163 -User need to take out the NB-IoT module and insert the SIM card like below:
164 -)))
165 165  
136 +**Add APP KEY and DEV EUI**
166 166  
167 -[[image:1657249468462-536.png]]
138 +[[image:1654504683289-357.png]]
168 168  
169 169  
170 170  
171 -=== 2.2.3 Connect USB TTL to NSE01 to configure it ===
142 +(% style="color:blue" %)**Step 2**(%%): Power on LSE01
172 172  
173 -(((
174 -(((
175 -User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
176 -)))
177 -)))
178 178  
145 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
179 179  
180 -**Connection:**
147 +[[image:image-20220606163915-7.png]]
181 181  
182 - (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
183 183  
184 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
150 +(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
185 185  
186 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
152 +[[image:1654504778294-788.png]]
187 187  
188 188  
189 -In the PC, use below serial tool settings:
190 190  
191 -* Baud:  (% style="color:green" %)**9600**
192 -* Data bits:** (% style="color:green" %)8(%%)**
193 -* Stop bits: (% style="color:green" %)**1**
194 -* Parity:  (% style="color:green" %)**None**
195 -* Flow Control: (% style="color:green" %)**None**
156 +== 2.3 Uplink Payload ==
196 196  
197 -(((
198 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
199 -)))
200 200  
201 -[[image:image-20220708110657-3.png]]
159 +=== 2.3.1 MOD~=0(Default Mode) ===
202 202  
161 +LSE01 will uplink payload via LoRaWAN with below payload format: 
162 +
203 203  (((
204 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
164 +Uplink payload includes in total 11 bytes.
205 205  )))
206 206  
167 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
168 +|(((
169 +**Size**
207 207  
171 +**(bytes)**
172 +)))|**2**|**2**|**2**|**2**|**2**|**1**
173 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
174 +Temperature
208 208  
209 -=== 2.2.4 Use CoAP protocol to uplink data ===
176 +(Reserve, Ignore now)
177 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
178 +MOD & Digital Interrupt
210 210  
211 -(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
180 +(Optional)
181 +)))
212 212  
213 213  
214 -**Use below commands:**
215 215  
216 -* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
217 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
218 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
219 219  
220 -For parameter description, please refer to AT command set
186 +=== 2.3.2 MOD~=1(Original value) ===
221 221  
222 -[[image:1657249793983-486.png]]
188 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
223 223  
190 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
191 +|(((
192 +**Size**
224 224  
225 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
194 +**(bytes)**
195 +)))|**2**|**2**|**2**|**2**|**2**|**1**
196 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
197 +Temperature
226 226  
227 -[[image:1657249831934-534.png]]
199 +(Reserve, Ignore now)
200 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
201 +MOD & Digital Interrupt
228 228  
203 +(Optional)
204 +)))
229 229  
230 230  
231 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
232 232  
233 -This feature is supported since firmware version v1.0.1
234 234  
209 +=== 2.3.3 Battery Info ===
235 235  
236 -* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
237 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
238 -* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
211 +(((
212 +Check the battery voltage for LSE01.
213 +)))
239 239  
240 -[[image:1657249864775-321.png]]
215 +(((
216 +Ex1: 0x0B45 = 2885mV
217 +)))
241 241  
219 +(((
220 +Ex2: 0x0B49 = 2889mV
221 +)))
242 242  
243 -[[image:1657249930215-289.png]]
244 244  
245 245  
225 +=== 2.3.4 Soil Moisture ===
246 246  
247 -=== 2.2.6 Use MQTT protocol to uplink data ===
227 +(((
228 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
229 +)))
248 248  
249 -This feature is supported since firmware version v110
231 +(((
232 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
233 +)))
250 250  
235 +(((
236 +
237 +)))
251 251  
252 -* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
253 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
254 -* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
255 -* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
256 -* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
257 -* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
258 -* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
239 +(((
240 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
241 +)))
259 259  
260 -[[image:1657249978444-674.png]]
261 261  
262 262  
263 -[[image:1657249990869-686.png]]
245 +=== 2.3.5 Soil Temperature ===
264 264  
247 +(((
248 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
249 +)))
265 265  
266 266  (((
267 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
252 +**Example**:
268 268  )))
269 269  
255 +(((
256 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
257 +)))
270 270  
259 +(((
260 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
261 +)))
271 271  
272 -=== 2.2.7 Use TCP protocol to uplink data ===
273 273  
274 -This feature is supported since firmware version v110
275 275  
265 +=== 2.3.6 Soil Conductivity (EC) ===
276 276  
277 -* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
278 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
267 +(((
268 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
269 +)))
279 279  
280 -[[image:1657250217799-140.png]]
271 +(((
272 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
273 +)))
281 281  
282 -
283 -[[image:1657250255956-604.png]]
284 -
285 -
286 -
287 -=== 2.2.8 Change Update Interval ===
288 -
289 -User can use below command to change the (% style="color:green" %)**uplink interval**.
290 -
291 -* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
292 -
293 293  (((
294 -(% style="color:red" %)**NOTE:**
276 +Generally, the EC value of irrigation water is less than 800uS / cm.
295 295  )))
296 296  
297 297  (((
298 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
280 +
299 299  )))
300 300  
301 -
302 -
303 -== 2.3  Uplink Payload ==
304 -
305 -In this mode, uplink payload includes in total 18 bytes
306 -
307 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
308 -|=(% style="width: 60px;" %)(((
309 -**Size(bytes)**
310 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1**
311 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
312 -
313 313  (((
314 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
284 +
315 315  )))
316 316  
287 +=== 2.3.7 MOD ===
317 317  
318 -[[image:image-20220708111918-4.png]]
289 +Firmware version at least v2.1 supports changing mode.
319 319  
291 +For example, bytes[10]=90
320 320  
321 -The payload is ASCII string, representative same HEX:
293 +mod=(bytes[10]>>7)&0x01=1.
322 322  
323 -0x72403155615900640c7817075e0a8c02f900 where:
324 324  
325 -* Device ID: 0x 724031556159 = 724031556159
326 -* Version: 0x0064=100=1.0.0
296 +**Downlink Command:**
327 327  
328 -* BAT: 0x0c78 = 3192 mV = 3.192V
329 -* Singal: 0x17 = 23
330 -* Soil Moisture: 0x075e= 1886 = 18.86  %
331 -* Soil Temperature:0x0a8c =2700=27 °C
332 -* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
333 -* Interrupt: 0x00 = 0
298 +If payload = 0x0A00, workmode=0
334 334  
300 +If** **payload =** **0x0A01, workmode=1
335 335  
336 336  
337 337  
338 -== 2. Payload Explanation and Sensor Interface ==
304 +=== 2.3.8 ​Decode payload in The Things Network ===
339 339  
306 +While using TTN network, you can add the payload format to decode the payload.
340 340  
341 -=== 2.4.1  Device ID ===
342 342  
343 -(((
344 -By default, the Device ID equal to the last 6 bytes of IMEI.
345 -)))
309 +[[image:1654505570700-128.png]]
346 346  
347 347  (((
348 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
312 +The payload decoder function for TTN is here:
349 349  )))
350 350  
351 351  (((
352 -**Example:**
316 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
353 353  )))
354 354  
355 -(((
356 -AT+DEUI=A84041F15612
357 -)))
358 358  
359 -(((
360 -The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
361 -)))
320 +== 2.4 Uplink Interval ==
362 362  
322 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
363 363  
364 364  
365 -=== 2.4.2  Version Info ===
366 366  
367 -(((
368 -Specify the software version: 0x64=100, means firmware version 1.00.
369 -)))
326 +== 2.5 Downlink Payload ==
370 370  
371 -(((
372 -For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
373 -)))
328 +By default, LSE50 prints the downlink payload to console port.
374 374  
330 +[[image:image-20220606165544-8.png]]
375 375  
376 376  
377 -=== 2.4.3  Battery Info ===
378 -
379 379  (((
380 -Check the battery voltage for LSE01.
334 +**Examples:**
381 381  )))
382 382  
383 383  (((
384 -Ex1: 0x0B45 = 2885mV
338 +
385 385  )))
386 386  
387 -(((
388 -Ex2: 0x0B49 = 2889mV
341 +* (((
342 +**Set TDC**
389 389  )))
390 390  
391 -
392 -
393 -=== 2.4.4  Signal Strength ===
394 -
395 395  (((
396 -NB-IoT Network signal Strength.
346 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
397 397  )))
398 398  
399 399  (((
400 -**Ex1: 0x1d = 29**
350 +Payload:    01 00 00 1E    TDC=30S
401 401  )))
402 402  
403 403  (((
404 -(% style="color:blue" %)**0**(%%)  -113dBm or less
354 +Payload:    01 00 00 3C    TDC=60S
405 405  )))
406 406  
407 407  (((
408 -(% style="color:blue" %)**1**(%%)  -111dBm
358 +
409 409  )))
410 410  
411 -(((
412 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
361 +* (((
362 +**Reset**
413 413  )))
414 414  
415 415  (((
416 -(% style="color:blue" %)**31**  (%%) -51dBm or greater
366 +If payload = 0x04FF, it will reset the LSE01
417 417  )))
418 418  
419 -(((
420 -(% style="color:blue" %)**99**   (%%) Not known or not detectable
421 -)))
422 422  
370 +* **CFM**
423 423  
372 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
424 424  
425 -=== 2.4.5  Soil Moisture ===
426 426  
375 +
376 +== 2.6 ​Show Data in DataCake IoT Server ==
377 +
427 427  (((
428 -(((
429 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
379 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
430 430  )))
431 -)))
432 432  
433 433  (((
434 -(((
435 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
383 +
436 436  )))
437 -)))
438 438  
439 439  (((
440 -
387 +(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
441 441  )))
442 442  
443 443  (((
444 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
391 +(% style="color:blue" %)**Step 2**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
445 445  )))
446 446  
447 447  
395 +[[image:1654505857935-743.png]]
448 448  
449 -=== 2.4.6  Soil Temperature ===
450 450  
451 -(((
452 -Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
453 -)))
398 +[[image:1654505874829-548.png]]
454 454  
455 -(((
456 -**Example**:
457 -)))
458 458  
459 -(((
460 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
461 -)))
401 +(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
462 462  
463 -(((
464 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
465 -)))
403 +(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
466 466  
467 467  
406 +[[image:1654505905236-553.png]]
468 468  
469 -=== 2.4.7  Soil Conductivity (EC) ===
470 470  
471 -(((
472 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
473 -)))
409 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
474 474  
475 -(((
476 -For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
477 -)))
411 +[[image:1654505925508-181.png]]
478 478  
479 -(((
480 -Generally, the EC value of irrigation water is less than 800uS / cm.
481 -)))
482 482  
483 -(((
484 -
485 -)))
486 486  
487 -(((
488 -
489 -)))
415 +== 2.7 Frequency Plans ==
490 490  
491 -=== 2.4.8  Digital Interrupt ===
417 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
492 492  
493 -(((
494 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
495 -)))
496 496  
497 -(((
498 -The command is:
499 -)))
420 +=== 2.7.1 EU863-870 (EU868) ===
500 500  
501 -(((
502 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
503 -)))
422 +(% style="color:#037691" %)** Uplink:**
504 504  
424 +868.1 - SF7BW125 to SF12BW125
505 505  
506 -(((
507 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
508 -)))
426 +868.3 - SF7BW125 to SF12BW125 and SF7BW250
509 509  
428 +868.5 - SF7BW125 to SF12BW125
510 510  
511 -(((
512 -Example:
513 -)))
430 +867.1 - SF7BW125 to SF12BW125
514 514  
515 -(((
516 -0x(00): Normal uplink packet.
517 -)))
432 +867.3 - SF7BW125 to SF12BW125
518 518  
519 -(((
520 -0x(01): Interrupt Uplink Packet.
521 -)))
434 +867.5 - SF7BW125 to SF12BW125
522 522  
436 +867.7 - SF7BW125 to SF12BW125
523 523  
438 +867.9 - SF7BW125 to SF12BW125
524 524  
525 -=== 2.4.9  ​+5V Output ===
440 +868.8 - FSK
526 526  
527 -NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
528 528  
443 +(% style="color:#037691" %)** Downlink:**
529 529  
530 -The 5V output time can be controlled by AT Command.
445 +Uplink channels 1-9 (RX1)
531 531  
532 -(% style="color:blue" %)**AT+5VT=1000**
447 +869.525 - SF9BW125 (RX2 downlink only)
533 533  
534 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
535 535  
536 536  
451 +=== 2.7.2 US902-928(US915) ===
537 537  
538 -== 2.5  Downlink Payload ==
453 +Used in USA, Canada and South America. Default use CHE=2
539 539  
540 -By default, NSE01 prints the downlink payload to console port.
455 +(% style="color:#037691" %)**Uplink:**
541 541  
542 -[[image:image-20220708133731-5.png]]
457 +903.9 - SF7BW125 to SF10BW125
543 543  
459 +904.1 - SF7BW125 to SF10BW125
544 544  
545 -(((
546 -(% style="color:blue" %)**Examples:**
547 -)))
461 +904.3 - SF7BW125 to SF10BW125
548 548  
549 -(((
550 -
551 -)))
463 +904.5 - SF7BW125 to SF10BW125
552 552  
553 -* (((
554 -(% style="color:blue" %)**Set TDC**
555 -)))
465 +904.7 - SF7BW125 to SF10BW125
556 556  
557 -(((
558 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
559 -)))
467 +904.9 - SF7BW125 to SF10BW125
560 560  
561 -(((
562 -Payload:    01 00 00 1E    TDC=30S
563 -)))
469 +905.1 - SF7BW125 to SF10BW125
564 564  
565 -(((
566 -Payload:    01 00 00 3C    TDC=60S
567 -)))
471 +905.3 - SF7BW125 to SF10BW125
568 568  
569 -(((
570 -
571 -)))
572 572  
573 -* (((
574 -(% style="color:blue" %)**Reset**
575 -)))
474 +(% style="color:#037691" %)**Downlink:**
576 576  
577 -(((
578 -If payload = 0x04FF, it will reset the NSE01
579 -)))
476 +923.3 - SF7BW500 to SF12BW500
580 580  
478 +923.9 - SF7BW500 to SF12BW500
581 581  
582 -* (% style="color:blue" %)**INTMOD**
480 +924.5 - SF7BW500 to SF12BW500
583 583  
584 -Downlink Payload: 06000003, Set AT+INTMOD=3
482 +925.1 - SF7BW500 to SF12BW500
585 585  
484 +925.7 - SF7BW500 to SF12BW500
586 586  
486 +926.3 - SF7BW500 to SF12BW500
587 587  
588 -== 2.6  ​LED Indicator ==
488 +926.9 - SF7BW500 to SF12BW500
589 589  
590 -(((
591 -The NSE01 has an internal LED which is to show the status of different state.
490 +927.5 - SF7BW500 to SF12BW500
592 592  
492 +923.3 - SF12BW500(RX2 downlink only)
593 593  
594 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
595 -* Then the LED will be on for 1 second means device is boot normally.
596 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
597 -* For each uplink probe, LED will be on for 500ms.
598 -)))
599 599  
600 600  
496 +=== 2.7.3 CN470-510 (CN470) ===
601 601  
498 +Used in China, Default use CHE=1
602 602  
603 -== 2.7  Installation in Soil ==
500 +(% style="color:#037691" %)**Uplink:**
604 604  
605 -__**Measurement the soil surface**__
502 +486.3 - SF7BW125 to SF12BW125
606 606  
607 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
504 +486.5 - SF7BW125 to SF12BW125
608 608  
609 -[[image:1657259653666-883.png]]
506 +486.7 - SF7BW125 to SF12BW125
610 610  
508 +486.9 - SF7BW125 to SF12BW125
611 611  
612 -(((
613 -
510 +487.1 - SF7BW125 to SF12BW125
614 614  
615 -(((
616 -Dig a hole with diameter > 20CM.
617 -)))
512 +487.3 - SF7BW125 to SF12BW125
618 618  
619 -(((
620 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
621 -)))
622 -)))
514 +487.5 - SF7BW125 to SF12BW125
623 623  
624 -[[image:1654506665940-119.png]]
516 +487.7 - SF7BW125 to SF12BW125
625 625  
626 -(((
627 -
628 -)))
629 629  
519 +(% style="color:#037691" %)**Downlink:**
630 630  
631 -== 2. Firmware Change Log ==
521 +506.7 - SF7BW125 to SF12BW125
632 632  
523 +506.9 - SF7BW125 to SF12BW125
633 633  
634 -Download URL & Firmware Change log
525 +507.1 - SF7BW125 to SF12BW125
635 635  
636 -[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
527 +507.3 - SF7BW125 to SF12BW125
637 637  
529 +507.5 - SF7BW125 to SF12BW125
638 638  
639 -Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
531 +507.7 - SF7BW125 to SF12BW125
640 640  
533 +507.9 - SF7BW125 to SF12BW125
641 641  
535 +508.1 - SF7BW125 to SF12BW125
642 642  
643 -== 2. Battery Analysis ==
537 +505.3 - SF12BW125 (RX2 downlink only)
644 644  
645 -=== 2.9.1  ​Battery Type ===
646 646  
647 647  
648 -The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
541 +=== 2.7.4 AU915-928(AU915) ===
649 649  
543 +Default use CHE=2
650 650  
651 -The battery is designed to last for several years depends on the actually use environment and update interval. 
545 +(% style="color:#037691" %)**Uplink:**
652 652  
547 +916.8 - SF7BW125 to SF12BW125
653 653  
654 -The battery related documents as below:
549 +917.0 - SF7BW125 to SF12BW125
655 655  
656 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
657 -* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
658 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
551 +917.2 - SF7BW125 to SF12BW125
659 659  
553 +917.4 - SF7BW125 to SF12BW125
554 +
555 +917.6 - SF7BW125 to SF12BW125
556 +
557 +917.8 - SF7BW125 to SF12BW125
558 +
559 +918.0 - SF7BW125 to SF12BW125
560 +
561 +918.2 - SF7BW125 to SF12BW125
562 +
563 +
564 +(% style="color:#037691" %)**Downlink:**
565 +
566 +923.3 - SF7BW500 to SF12BW500
567 +
568 +923.9 - SF7BW500 to SF12BW500
569 +
570 +924.5 - SF7BW500 to SF12BW500
571 +
572 +925.1 - SF7BW500 to SF12BW500
573 +
574 +925.7 - SF7BW500 to SF12BW500
575 +
576 +926.3 - SF7BW500 to SF12BW500
577 +
578 +926.9 - SF7BW500 to SF12BW500
579 +
580 +927.5 - SF7BW500 to SF12BW500
581 +
582 +923.3 - SF12BW500(RX2 downlink only)
583 +
584 +
585 +
586 +=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
587 +
588 +(% style="color:#037691" %)**Default Uplink channel:**
589 +
590 +923.2 - SF7BW125 to SF10BW125
591 +
592 +923.4 - SF7BW125 to SF10BW125
593 +
594 +
595 +(% style="color:#037691" %)**Additional Uplink Channel**:
596 +
597 +(OTAA mode, channel added by JoinAccept message)
598 +
599 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
600 +
601 +922.2 - SF7BW125 to SF10BW125
602 +
603 +922.4 - SF7BW125 to SF10BW125
604 +
605 +922.6 - SF7BW125 to SF10BW125
606 +
607 +922.8 - SF7BW125 to SF10BW125
608 +
609 +923.0 - SF7BW125 to SF10BW125
610 +
611 +922.0 - SF7BW125 to SF10BW125
612 +
613 +
614 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
615 +
616 +923.6 - SF7BW125 to SF10BW125
617 +
618 +923.8 - SF7BW125 to SF10BW125
619 +
620 +924.0 - SF7BW125 to SF10BW125
621 +
622 +924.2 - SF7BW125 to SF10BW125
623 +
624 +924.4 - SF7BW125 to SF10BW125
625 +
626 +924.6 - SF7BW125 to SF10BW125
627 +
628 +
629 +(% style="color:#037691" %)** Downlink:**
630 +
631 +Uplink channels 1-8 (RX1)
632 +
633 +923.2 - SF10BW125 (RX2)
634 +
635 +
636 +
637 +=== 2.7.6 KR920-923 (KR920) ===
638 +
639 +Default channel:
640 +
641 +922.1 - SF7BW125 to SF12BW125
642 +
643 +922.3 - SF7BW125 to SF12BW125
644 +
645 +922.5 - SF7BW125 to SF12BW125
646 +
647 +
648 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
649 +
650 +922.1 - SF7BW125 to SF12BW125
651 +
652 +922.3 - SF7BW125 to SF12BW125
653 +
654 +922.5 - SF7BW125 to SF12BW125
655 +
656 +922.7 - SF7BW125 to SF12BW125
657 +
658 +922.9 - SF7BW125 to SF12BW125
659 +
660 +923.1 - SF7BW125 to SF12BW125
661 +
662 +923.3 - SF7BW125 to SF12BW125
663 +
664 +
665 +(% style="color:#037691" %)**Downlink:**
666 +
667 +Uplink channels 1-7(RX1)
668 +
669 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
670 +
671 +
672 +
673 +=== 2.7.7 IN865-867 (IN865) ===
674 +
675 +(% style="color:#037691" %)** Uplink:**
676 +
677 +865.0625 - SF7BW125 to SF12BW125
678 +
679 +865.4025 - SF7BW125 to SF12BW125
680 +
681 +865.9850 - SF7BW125 to SF12BW125
682 +
683 +
684 +(% style="color:#037691" %) **Downlink:**
685 +
686 +Uplink channels 1-3 (RX1)
687 +
688 +866.550 - SF10BW125 (RX2)
689 +
690 +
691 +
692 +
693 +== 2.8 LED Indicator ==
694 +
695 +The LSE01 has an internal LED which is to show the status of different state.
696 +
697 +* Blink once when device power on.
698 +* Solid ON for 5 seconds once device successful Join the network.
699 +* Blink once when device transmit a packet.
700 +
701 +== 2.9 Installation in Soil ==
702 +
703 +**Measurement the soil surface**
704 +
705 +
706 +[[image:1654506634463-199.png]] ​
707 +
660 660  (((
661 -[[image:image-20220708140453-6.png]]
709 +(((
710 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
662 662  )))
712 +)))
663 663  
664 664  
665 665  
666 -=== 2.9.2  Power consumption Analyze ===
716 +[[image:1654506665940-119.png]]
667 667  
668 668  (((
669 -Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
719 +Dig a hole with diameter > 20CM.
670 670  )))
671 671  
722 +(((
723 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
724 +)))
672 672  
726 +
727 +== 2.10 ​Firmware Change Log ==
728 +
673 673  (((
674 -Instruction to use as below:
730 +**Firmware download link:**
675 675  )))
676 676  
677 677  (((
678 -(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
734 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
679 679  )))
680 680  
737 +(((
738 +
739 +)))
681 681  
682 682  (((
683 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose
742 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
684 684  )))
685 685  
686 -* (((
687 -Product Model
745 +(((
746 +
688 688  )))
689 -* (((
690 -Uplink Interval
748 +
749 +(((
750 +**V1.0.**
691 691  )))
692 -* (((
693 -Working Mode
694 -)))
695 695  
696 696  (((
697 -And the Life expectation in difference case will be shown on the right.
754 +Release
698 698  )))
699 699  
700 -[[image:image-20220708141352-7.jpeg]]
701 701  
758 +== 2.11 ​Battery Analysis ==
702 702  
760 +=== 2.11.1 ​Battery Type ===
703 703  
704 -=== 2.9.3  ​Battery Note ===
762 +(((
763 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
764 +)))
705 705  
706 706  (((
707 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
767 +The battery is designed to last for more than 5 years for the LSN50.
708 708  )))
709 709  
770 +(((
771 +(((
772 +The battery-related documents are as below:
773 +)))
774 +)))
710 710  
776 +* (((
777 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
778 +)))
779 +* (((
780 +[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
781 +)))
782 +* (((
783 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
784 +)))
711 711  
712 -=== 2.9.4  Replace the battery ===
786 + [[image:image-20220610172436-1.png]]
713 713  
788 +
789 +
790 +=== 2.11.2 ​Battery Note ===
791 +
714 714  (((
715 -The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
793 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
716 716  )))
717 717  
718 718  
719 719  
720 -= 3. ​ Access NB-IoT Module =
798 +=== 2.11.3 Replace the battery ===
721 721  
722 722  (((
723 -Users can directly access the AT command set of the NB-IoT module.
801 +If Battery is lower than 2.7v, user should replace the battery of LSE01.
724 724  )))
725 725  
726 726  (((
727 -The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
805 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
728 728  )))
729 729  
730 -[[image:1657261278785-153.png]]
808 +(((
809 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
810 +)))
731 731  
732 732  
733 733  
734 -= 4.  Using the AT Commands =
814 += 3. Using the AT Commands =
735 735  
736 -== 4.1  Access AT Commands ==
816 +== 3.1 Access AT Commands ==
737 737  
738 -See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
739 739  
819 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
740 740  
741 -AT+<CMD>?  : Help on <CMD>
821 +[[image:1654501986557-872.png||height="391" width="800"]]
742 742  
743 -AT+<CMD>         : Run <CMD>
744 744  
745 -AT+<CMD>=<value> : Set the value
824 +Or if you have below board, use below connection:
746 746  
747 -AT+<CMD>=?  : Get the value
748 748  
827 +[[image:1654502005655-729.png||height="503" width="801"]]
749 749  
829 +
830 +
831 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
832 +
833 +
834 + [[image:1654502050864-459.png||height="564" width="806"]]
835 +
836 +
837 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
838 +
839 +
840 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
841 +
842 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
843 +
844 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
845 +
846 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
847 +
848 +
750 750  (% style="color:#037691" %)**General Commands**(%%)      
751 751  
752 -AT  : Attention       
851 +(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
753 753  
754 -AT?  : Short Help     
853 +(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
755 755  
756 -ATZ  : MCU Reset    
855 +(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
757 757  
758 -AT+TDC  : Application Data Transmission Interval
857 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
759 759  
760 -AT+CFG  : Print all configurations
761 761  
762 -AT+CFGMOD           : Working mode selection
860 +(% style="color:#037691" %)**Keys, IDs and EUIs management**
763 763  
764 -AT+INTMOD            : Set the trigger interrupt mode
862 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
765 765  
766 -AT+5VT  : Set extend the time of 5V power  
864 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
767 767  
768 -AT+PRO  : Choose agreement
866 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
769 769  
770 -AT+WEIGRE  : Get weight or set weight to 0
868 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
771 771  
772 -AT+WEIGAP  : Get or Set the GapValue of weight
870 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
773 773  
774 -AT+RXDL  : Extend the sending and receiving time
872 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
775 775  
776 -AT+CNTFAC  : Get or set counting parameters
874 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
777 777  
778 -AT+SERVADDR  : Server Address
876 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
779 779  
878 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
780 780  
781 -(% style="color:#037691" %)**COAP Management**      
880 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
782 782  
783 -AT+URI            : Resource parameters
882 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
784 784  
884 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
785 785  
786 -(% style="color:#037691" %)**UDP Management**
886 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
787 787  
788 -AT+CFM          : Upload confirmation mode (only valid for UDP)
888 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
789 789  
890 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
790 790  
791 -(% style="color:#037691" %)**MQTT Management**
892 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
792 792  
793 -AT+CLIENT               : Get or Set MQTT client
794 794  
795 -AT+UNAME  : Get or Set MQTT Username
895 +(% style="color:#037691" %)**LoRa Network Management**
796 796  
797 -AT+PWD                  : Get or Set MQTT password
897 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
798 798  
799 -AT+PUBTOPI : Get or Set MQTT publish topic
899 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
800 800  
801 -AT+SUBTOPIC  : Get or Set MQTT subscription topic
901 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
802 802  
903 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
803 803  
804 -(% style="color:#037691" %)**Information**          
905 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
805 805  
806 -AT+FDR  : Factory Data Reset
907 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
807 807  
808 -AT+PWOR : Serial Access Password
909 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
809 809  
911 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
810 810  
913 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
811 811  
812 -= ​5.  FAQ =
915 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
813 813  
814 -== 5.1 How to Upgrade Firmware ==
917 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
815 815  
919 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
816 816  
921 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
922 +
923 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
924 +
925 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
926 +
927 +
928 +(% style="color:#037691" %)**Information** 
929 +
930 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
931 +
932 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
933 +
934 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
935 +
936 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
937 +
938 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
939 +
940 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
941 +
942 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
943 +
944 +
945 += ​4. FAQ =
946 +
947 +== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
948 +
817 817  (((
818 -User can upgrade the firmware for 1) bug fix, 2) new feature release.
950 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
951 +When downloading the images, choose the required image file for download. ​
819 819  )))
820 820  
821 821  (((
822 -Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
955 +
823 823  )))
824 824  
825 825  (((
826 -(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
959 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
827 827  )))
828 828  
962 +(((
963 +
964 +)))
829 829  
966 +(((
967 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
968 +)))
830 830  
831 -= 6.  Trouble Shooting =
970 +(((
971 +
972 +)))
832 832  
833 -== 6.1  ​Connection problem when uploading firmware ==
974 +(((
975 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
976 +)))
834 834  
978 +[[image:image-20220606154726-3.png]]
835 835  
836 -(% class="wikigeneratedid" %)
980 +
981 +When you use the TTN network, the US915 frequency bands use are:
982 +
983 +* 903.9 - SF7BW125 to SF10BW125
984 +* 904.1 - SF7BW125 to SF10BW125
985 +* 904.3 - SF7BW125 to SF10BW125
986 +* 904.5 - SF7BW125 to SF10BW125
987 +* 904.7 - SF7BW125 to SF10BW125
988 +* 904.9 - SF7BW125 to SF10BW125
989 +* 905.1 - SF7BW125 to SF10BW125
990 +* 905.3 - SF7BW125 to SF10BW125
991 +* 904.6 - SF8BW500
992 +
837 837  (((
838 -(% style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]]
994 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
995 +
996 +* (% style="color:#037691" %)**AT+CHE=2**
997 +* (% style="color:#037691" %)**ATZ**
839 839  )))
840 840  
1000 +(((
1001 +
841 841  
1003 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
1004 +)))
842 842  
843 -== 6.2  AT Command input doesn't work ==
1006 +(((
1007 +
1008 +)))
844 844  
845 845  (((
846 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1011 +The **AU915** band is similar. Below are the AU915 Uplink Channels.
847 847  )))
848 848  
1014 +[[image:image-20220606154825-4.png]]
849 849  
850 850  
851 -= 7. ​ Order Info =
852 852  
1018 += 5. Trouble Shooting =
853 853  
854 -Part Number**:** (% style="color:#4f81bd" %)**NSE01**
1020 +== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
855 855  
1022 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
856 856  
1024 +
1025 +== 5.2 AT Command input doesn’t work ==
1026 +
1027 +(((
1028 +In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1029 +)))
1030 +
1031 +
1032 +== 5.3 Device rejoin in at the second uplink packet ==
1033 +
1034 +(% style="color:#4f81bd" %)**Issue describe as below:**
1035 +
1036 +[[image:1654500909990-784.png]]
1037 +
1038 +
1039 +(% style="color:#4f81bd" %)**Cause for this issue:**
1040 +
1041 +(((
1042 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
1043 +)))
1044 +
1045 +
1046 +(% style="color:#4f81bd" %)**Solution: **
1047 +
1048 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1049 +
1050 +[[image:1654500929571-736.png||height="458" width="832"]]
1051 +
1052 +
1053 += 6. ​Order Info =
1054 +
1055 +
1056 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1057 +
1058 +
1059 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1060 +
1061 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1062 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1063 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1064 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1065 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1066 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1067 +* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1068 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1069 +
1070 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1071 +
1072 +* (% style="color:red" %)**4**(%%): 4000mAh battery
1073 +* (% style="color:red" %)**8**(%%): 8500mAh battery
1074 +
857 857  (% class="wikigeneratedid" %)
858 858  (((
859 859  
860 860  )))
861 861  
862 -= 8.  Packing Info =
1080 += 7. Packing Info =
863 863  
864 864  (((
865 865  
866 866  
867 867  (% style="color:#037691" %)**Package Includes**:
1086 +)))
868 868  
869 -
870 -* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
871 -* External antenna x 1
1088 +* (((
1089 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
872 872  )))
873 873  
874 874  (((
... ... @@ -875,20 +875,24 @@
875 875  
876 876  
877 877  (% style="color:#037691" %)**Dimension and weight**:
1096 +)))
878 878  
879 -
880 -* Size: 195 x 125 x 55 mm
881 -* Weight:   420g
1098 +* (((
1099 +Device Size: cm
882 882  )))
1101 +* (((
1102 +Device Weight: g
1103 +)))
1104 +* (((
1105 +Package Size / pcs : cm
1106 +)))
1107 +* (((
1108 +Weight / pcs : g
883 883  
884 -(((
885 885  
886 -
887 -
888 -
889 889  )))
890 890  
891 -= 9.  Support =
1113 += 8. Support =
892 892  
893 893  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
894 894  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657245163077-232.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -102.7 KB
Content