Changes for page NDDS75 -- NB-IoT Distance Detect Sensor User Manual
Last modified by Bei Jinggeng on 2024/05/31 09:53
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 23 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - NSE01NB-IoTSoil Moisture & EC Sensor User Manual1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -20,81 +20,65 @@ 20 20 21 21 22 22 23 += 1. Introduction = 23 23 24 -= 1. Introduction =25 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 25 25 26 -== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 27 - 28 28 ((( 29 29 30 30 31 -((( 32 -Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 30 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 33 33 ))) 34 34 35 35 ((( 36 -It candetect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and uploaditsvalueto the serverwirelessly.34 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 37 37 ))) 38 38 39 39 ((( 40 -The wireless technology used in NSE01 allowsthedevice to send data at a low data rate and reachultra-longdistances,providingultra-long-distance spread spectrumCommunication.38 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 41 41 ))) 42 42 43 43 ((( 44 - NSE01arepowered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%)batteries,whichcanbe usedforup to5years.42 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 45 45 ))) 46 46 47 - 45 +((( 46 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 48 48 ))) 49 49 49 + 50 50 [[image:1654503236291-817.png]] 51 51 52 52 53 -[[image:165 7245163077-232.png]]53 +[[image:1654503265560-120.png]] 54 54 55 55 56 56 57 -== 1.2 57 +== 1.2 Features == 58 58 59 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 59 +* LoRaWAN 1.0.3 Class A 60 +* Ultra low power consumption 60 60 * Monitor Soil Moisture 61 61 * Monitor Soil Temperature 62 62 * Monitor Soil Conductivity 64 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 63 63 * AT Commands to change parameters 64 64 * Uplink on periodically 65 65 * Downlink to change configure 66 66 * IP66 Waterproof Enclosure 67 -* Ultra-Low Power consumption 68 -* AT Commands to change parameters 69 -* Micro SIM card slot for NB-IoT SIM 70 -* 8500mAh Battery for long term use 69 +* 4000mAh or 8500mAh Battery for long term use 71 71 72 -== 1.3 Specification == 73 73 74 74 75 - (% style="color:#037691"%)**Common DC Characteristics:**73 +== 1.3 Specification == 76 76 77 -* Supply Voltage: 2.1v ~~ 3.6v 78 -* Operating Temperature: -40 ~~ 85°C 79 - 80 -(% style="color:#037691" %)**NB-IoT Spec:** 81 - 82 -* - B1 @H-FDD: 2100MHz 83 -* - B3 @H-FDD: 1800MHz 84 -* - B8 @H-FDD: 900MHz 85 -* - B5 @H-FDD: 850MHz 86 -* - B20 @H-FDD: 800MHz 87 -* - B28 @H-FDD: 700MHz 88 - 89 -Probe(% style="color:#037691" %)** Specification:** 90 - 91 91 Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 92 92 93 -[[image:image-20220 708101224-1.png]]77 +[[image:image-20220606162220-5.png]] 94 94 95 95 96 96 97 -== 1.4 81 +== 1.4 Applications == 98 98 99 99 * Smart Agriculture 100 100 ... ... @@ -101,760 +101,1011 @@ 101 101 (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 102 102 103 103 104 -== 1.5 Pin Definitions==88 +== 1.5 Firmware Change log == 105 105 106 106 107 - [[image:1657246476176-652.png]]91 +**LSE01 v1.0 :** Release 108 108 109 109 110 110 111 -= 2. UseNSE01 to communicatewithIoTServer=95 += 2. Configure LSE01 to connect to LoRaWAN network = 112 112 113 -== 2.1 97 +== 2.1 How it works == 114 114 115 - 116 116 ((( 117 -The NSE01 isequippedwithaNB-IoT module,thepre-loadedfirmwareinNSE01willgetenvironmentdatafrom sensorsandsend thevaluetolocalNB-IoTnetworkviatheNB-IoTmodule.The NB-IoTnetworkwillforwardthisvaluetoIoTserver viatheprotocoldefinedbyNSE01.100 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 118 118 ))) 119 119 120 - 121 121 ((( 122 - Thediagrambelowshows theworkingflowindefaultfirmware ofNSE01:104 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 123 123 ))) 124 124 125 -[[image:image-20220708101605-2.png]] 126 126 127 -((( 128 - 129 -))) 130 130 109 +== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 131 131 111 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 132 132 133 -== 2.2 Configure the NSE01 == 134 134 114 +[[image:1654503992078-669.png]] 135 135 136 -=== 2.2.1 Test Requirement === 137 137 117 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 138 138 139 -((( 140 -To use NSE01 in your city, make sure meet below requirements: 141 -))) 142 142 143 -* Your local operator has already distributed a NB-IoT Network there. 144 -* The local NB-IoT network used the band that NSE01 supports. 145 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 120 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSE01. 146 146 147 -((( 148 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 149 -))) 122 +Each LSE01 is shipped with a sticker with the default device EUI as below: 150 150 124 +[[image:image-20220606163732-6.jpeg]] 151 151 152 - [[image:1657249419225-449.png]]126 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 153 153 128 +**Add APP EUI in the application** 154 154 155 155 156 - === 2.2.2 Insert SIM card ===131 +[[image:1654504596150-405.png]] 157 157 158 -((( 159 -Insert the NB-IoT Card get from your provider. 160 -))) 161 161 162 -((( 163 -User need to take out the NB-IoT module and insert the SIM card like below: 164 -))) 165 165 135 +**Add APP KEY and DEV EUI** 166 166 167 -[[image:165 7249468462-536.png]]137 +[[image:1654504683289-357.png]] 168 168 169 169 170 170 171 - ===2.2.3 ConnectUSB–TTLtoNSE01to configure it ===141 +(% style="color:blue" %)**Step 2**(%%): Power on LSE01 172 172 173 -((( 174 -((( 175 -User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 176 -))) 177 -))) 178 178 144 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 179 179 180 - **Connection:**146 +[[image:image-20220606163915-7.png]] 181 181 182 - (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 183 183 184 - background-color:yellow" %)USBTTL TXD<~-~-~-~->UART_RXD149 +(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 185 185 186 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD151 +[[image:1654504778294-788.png]] 187 187 188 188 189 -In the PC, use below serial tool settings: 190 190 191 -* Baud: (% style="color:green" %)**9600** 192 -* Data bits:** (% style="color:green" %)8(%%)** 193 -* Stop bits: (% style="color:green" %)**1** 194 -* Parity: (% style="color:green" %)**None** 195 -* Flow Control: (% style="color:green" %)**None** 155 +== 2.3 Uplink Payload == 196 196 197 -((( 198 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 199 -))) 200 200 201 - [[image:image-20220708110657-3.png]]158 +=== 2.3.1 MOD~=0(Default Mode) === 202 202 160 +LSE01 will uplink payload via LoRaWAN with below payload format: 161 + 203 203 ((( 204 - (% style="color:red" %)Note: the valid AT Commandscan be foundat: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]163 +Uplink payload includes in total 11 bytes. 205 205 ))) 206 206 166 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 167 +|((( 168 +**Size** 207 207 170 +**(bytes)** 171 +)))|**2**|**2**|**2**|**2**|**2**|**1** 172 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 173 +Temperature 208 208 209 -=== 2.2.4 Use CoAP protocol to uplink data === 175 +(Reserve, Ignore now) 176 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 177 +MOD & Digital Interrupt 210 210 211 -(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 179 +(Optional) 180 +))) 212 212 213 213 214 -**Use below commands:** 215 215 216 -* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 217 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 218 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 184 +=== 2.3.2 MOD~=1(Original value) === 219 219 220 - Forparameterdescription,please refertoATcommandset186 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 221 221 222 -[[image:1657249793983-486.png]] 188 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 189 +|((( 190 +**Size** 223 223 192 +**(bytes)** 193 +)))|**2**|**2**|**2**|**2**|**2**|**1** 194 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 195 +Temperature 224 224 225 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 197 +(Reserve, Ignore now) 198 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 199 +MOD & Digital Interrupt 226 226 227 -[[image:1657249831934-534.png]] 201 +(Optional) 202 +))) 228 228 229 229 230 230 231 -=== 2. 2.5UseUDP protocolto uplink data(Default protocol)===206 +=== 2.3.3 Battery Info === 232 232 233 -This feature is supported since firmware version v1.0.1 208 +((( 209 +Check the battery voltage for LSE01. 210 +))) 234 234 212 +((( 213 +Ex1: 0x0B45 = 2885mV 214 +))) 235 235 236 - *(% style="color:blue" %)**AT+PRO=2 **(%%) ~/~/ Set to use UDP protocol to uplink237 - * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601**(%%) ~/~/ to set UDP server address and port238 - * (% style="color:blue" %)**AT+CFM=1 ** (%%)~/~/If the server does not respond, this command is unnecessary216 +((( 217 +Ex2: 0x0B49 = 2889mV 218 +))) 239 239 240 -[[image:1657249864775-321.png]] 241 241 242 242 243 - [[image:1657249930215-289.png]]222 +=== 2.3.4 Soil Moisture === 244 244 224 +((( 225 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 226 +))) 245 245 228 +((( 229 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 230 +))) 246 246 247 -=== 2.2.6 Use MQTT protocol to uplink data === 232 +((( 233 + 234 +))) 248 248 249 -This feature is supported since firmware version v110 236 +((( 237 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 238 +))) 250 250 251 251 252 -* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 253 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 254 -* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 255 -* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 256 -* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 257 -* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 258 -* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 259 259 260 - [[image:1657249978444-674.png]]242 +=== 2.3.5 Soil Temperature === 261 261 244 +((( 245 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 246 +))) 262 262 263 -[[image:1657249990869-686.png]] 248 +((( 249 +**Example**: 250 +))) 264 264 252 +((( 253 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 254 +))) 265 265 266 266 ((( 267 - MQTTprotocolhasa much higher power consumptioncomparevsUDP/CoAP protocol. Please check the power analyze document and adjust the uplinkperiodtoasuitable interval.257 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 268 268 ))) 269 269 270 270 271 271 272 -=== 2. 2.7Use TCP protocoltouplinkdata===262 +=== 2.3.6 Soil Conductivity (EC) === 273 273 274 -This feature is supported since firmware version v110 264 +((( 265 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 266 +))) 275 275 268 +((( 269 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 270 +))) 276 276 277 -* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 278 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 272 +((( 273 +Generally, the EC value of irrigation water is less than 800uS / cm. 274 +))) 279 279 280 -[[image:1657250217799-140.png]] 276 +((( 277 + 278 +))) 281 281 280 +((( 281 + 282 +))) 282 282 283 - [[image:1657250255956-604.png]]284 +=== 2.3.7 MOD === 284 284 286 +Firmware version at least v2.1 supports changing mode. 285 285 288 +For example, bytes[10]=90 286 286 287 - === 2.2.8 Change UpdateInterval===290 +mod=(bytes[10]>>7)&0x01=1. 288 288 289 -User can use below command to change the (% style="color:green" %)**uplink interval**. 290 290 291 -* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Intervalto600s293 +**Downlink Command:** 292 292 293 -((( 294 -(% style="color:red" %)**NOTE:** 295 -))) 295 +If payload = 0x0A00, workmode=0 296 296 297 -((( 298 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 299 -))) 297 +If** **payload =** **0x0A01, workmode=1 300 300 301 301 302 302 303 -== 2.3 UplinkPayload ==301 +=== 2.3.8 Decode payload in The Things Network === 304 304 305 - In thismode, uplinkpayloadincludesintotal18bytes303 +While using TTN network, you can add the payload format to decode the payload. 306 306 307 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 308 -|=(% style="width: 60px;" %)((( 309 -**Size(bytes)** 310 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1** 311 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 312 312 306 +[[image:1654505570700-128.png]] 307 + 313 313 ((( 314 - If we use theMQTT client tosubscribeto this MQTT topic, wecanseethe followinginformationwhen theNSE01uplinkdata.309 +The payload decoder function for TTN is here: 315 315 ))) 316 316 312 +((( 313 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]] 314 +))) 317 317 318 -[[image:image-20220708111918-4.png]] 319 319 317 +== 2.4 Uplink Interval == 320 320 321 -The payload isASCIIstring,representative sameEX:319 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 322 322 323 -0x72403155615900640c7817075e0a8c02f900 where: 324 324 325 -* Device ID: 0x 724031556159 = 724031556159 326 -* Version: 0x0064=100=1.0.0 327 327 328 -* BAT: 0x0c78 = 3192 mV = 3.192V 329 -* Singal: 0x17 = 23 330 -* Soil Moisture: 0x075e= 1886 = 18.86 % 331 -* Soil Temperature:0x0a8c =2700=27 °C 332 -* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 333 -* Interrupt: 0x00 = 0 323 +== 2.5 Downlink Payload == 334 334 325 +By default, LSE50 prints the downlink payload to console port. 335 335 327 +[[image:image-20220606165544-8.png]] 336 336 337 337 338 -== 2.4 Payload Explanation and Sensor Interface == 339 - 340 - 341 -=== 2.4.1 Device ID === 342 - 343 343 ((( 344 - By default, theDevice ID equal to the last 6 bytes of IMEI.331 +**Examples:** 345 345 ))) 346 346 347 347 ((( 348 - Usercan use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID335 + 349 349 ))) 350 350 351 -((( 352 -** Example:**338 +* ((( 339 +**Set TDC** 353 353 ))) 354 354 355 355 ((( 356 - AT+DEUI=A84041F15612343 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 357 357 ))) 358 358 359 359 ((( 360 - The Device ID is stored inanone-erase area, UpgradethefirmwareorrunAT+FDR won't erase Device ID.347 +Payload: 01 00 00 1E TDC=30S 361 361 ))) 362 362 363 - 364 - 365 -=== 2.4.2 Version Info === 366 - 367 367 ((( 368 - Specifythe software version: 0x64=100,meansfirmwareversion 1.00.351 +Payload: 01 00 00 3C TDC=60S 369 369 ))) 370 370 371 371 ((( 372 - Forexample: 0x00 64 : this device is NSE01 with firmware version 1.0.0.355 + 373 373 ))) 374 374 375 - 376 - 377 -=== 2.4.3 Battery Info === 378 - 379 -((( 380 -Check the battery voltage for LSE01. 358 +* ((( 359 +**Reset** 381 381 ))) 382 382 383 383 ((( 384 - Ex1:0x0B45=2885mV363 +If payload = 0x04FF, it will reset the LSE01 385 385 ))) 386 386 387 -((( 388 -Ex2: 0x0B49 = 2889mV 389 -))) 390 390 367 +* **CFM** 391 391 369 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 392 392 393 -=== 2.4.4 Signal Strength === 394 394 395 -((( 396 -NB-IoT Network signal Strength. 397 -))) 398 398 399 -((( 400 -**Ex1: 0x1d = 29** 401 -))) 373 +== 2.6 Show Data in DataCake IoT Server == 402 402 403 403 ((( 404 - (%style="color:blue"%)**0**(%%)-113dBmorless376 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 405 405 ))) 406 406 407 407 ((( 408 - (%style="color:blue" %)**1**(%%) -111dBm380 + 409 409 ))) 410 410 411 411 ((( 412 -(% style="color:blue" %)** 2...30**(%%)-109dBm...-53dBm384 +(% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time. 413 413 ))) 414 414 415 415 ((( 416 -(% style="color:blue" %)** 31**-51dBmor greater388 +(% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 417 417 ))) 418 418 419 -((( 420 -(% style="color:blue" %)**99** (%%) Not known or not detectable 421 -))) 422 422 392 +[[image:1654505857935-743.png]] 423 423 424 424 425 - ===2.4.5 Soil Moisture ===395 +[[image:1654505874829-548.png]] 426 426 427 -((( 428 -((( 429 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 430 -))) 431 -))) 432 432 433 -((( 434 -((( 435 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 436 -))) 437 -))) 398 +(% style="color:blue" %)**Step 3**(%%)**:** Create an account or log in Datacake. 438 438 439 -((( 440 - 441 -))) 400 +(% style="color:blue" %)**Step 4**(%%)**:** Search the LSE01 and add DevEUI. 442 442 443 -((( 444 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 445 -))) 446 446 403 +[[image:1654505905236-553.png]] 447 447 448 448 449 - ===2.4.6SoilTemperature===406 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 450 450 451 -((( 452 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 453 -))) 408 +[[image:1654505925508-181.png]] 454 454 455 -((( 456 -**Example**: 457 -))) 458 458 459 -((( 460 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 461 -))) 462 462 463 -((( 464 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 465 -))) 412 +== 2.7 Frequency Plans == 466 466 414 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 467 467 468 468 469 -=== 2. 4.7Soil Conductivity(EC) ===417 +=== 2.7.1 EU863-870 (EU868) === 470 470 471 -((( 472 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 473 -))) 419 +(% style="color:#037691" %)** Uplink:** 474 474 475 -((( 476 -For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 477 -))) 421 +868.1 - SF7BW125 to SF12BW125 478 478 479 -((( 480 -Generally, the EC value of irrigation water is less than 800uS / cm. 481 -))) 423 +868.3 - SF7BW125 to SF12BW125 and SF7BW250 482 482 483 -((( 484 - 485 -))) 425 +868.5 - SF7BW125 to SF12BW125 486 486 487 -((( 488 - 489 -))) 427 +867.1 - SF7BW125 to SF12BW125 490 490 491 - ===2.4.8DigitalInterrupt ===429 +867.3 - SF7BW125 to SF12BW125 492 492 493 - Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods.Whenthere is a trigger, the NSE01will send a packettothe server.431 +867.5 - SF7BW125 to SF12BW125 494 494 495 - Thecommandis:433 +867.7 - SF7BW125 to SF12BW125 496 496 497 - (%style="color:blue"%)**AT+INTMOD=3**(%%) ~/~/(more info aboutINMOD please refer [[**AT CommandManual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**435 +867.9 - SF7BW125 to SF12BW125 498 498 437 +868.8 - FSK 499 499 500 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up. 501 501 440 +(% style="color:#037691" %)** Downlink:** 502 502 503 - Example:442 +Uplink channels 1-9 (RX1) 504 504 505 - 0x(00):Normaluplinkpacket.444 +869.525 - SF9BW125 (RX2 downlink only) 506 506 507 -0x(01): Interrupt Uplink Packet. 508 508 509 509 448 +=== 2.7.2 US902-928(US915) === 510 510 511 - ===2.4.9+5VOutput ===450 +Used in USA, Canada and South America. Default use CHE=2 512 512 513 - NSE01willenable +5Voutput beforeall sampling and disable the +5v after all sampling.452 +(% style="color:#037691" %)**Uplink:** 514 514 454 +903.9 - SF7BW125 to SF10BW125 515 515 516 - The5Voutput time can be controlledby AT Command.456 +904.1 - SF7BW125 to SF10BW125 517 517 518 - (%style="color:blue"%)**AT+5VT=1000**458 +904.3 - SF7BW125 to SF10BW125 519 519 520 - Means set 5V valid time to have 1000ms.So the real5Voutputwill actually have1000ms+ samplingtime forother sensors.460 +904.5 - SF7BW125 to SF10BW125 521 521 462 +904.7 - SF7BW125 to SF10BW125 522 522 464 +904.9 - SF7BW125 to SF10BW125 523 523 524 - ==2.5DownlinkPayload ==466 +905.1 - SF7BW125 to SF10BW125 525 525 526 - Bydefault,NSE01prints the downlinkpayload to console port.468 +905.3 - SF7BW125 to SF10BW125 527 527 528 -[[image:image-20220708133731-5.png]] 529 529 471 +(% style="color:#037691" %)**Downlink:** 530 530 531 -((( 532 -(% style="color:blue" %)**Examples:** 533 -))) 473 +923.3 - SF7BW500 to SF12BW500 534 534 535 -((( 536 - 537 -))) 475 +923.9 - SF7BW500 to SF12BW500 538 538 539 -* ((( 540 -(% style="color:blue" %)**Set TDC** 541 -))) 477 +924.5 - SF7BW500 to SF12BW500 542 542 543 -((( 544 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 545 -))) 479 +925.1 - SF7BW500 to SF12BW500 546 546 547 -((( 548 -Payload: 01 00 00 1E TDC=30S 549 -))) 481 +925.7 - SF7BW500 to SF12BW500 550 550 551 -((( 552 -Payload: 01 00 00 3C TDC=60S 553 -))) 483 +926.3 - SF7BW500 to SF12BW500 554 554 555 -((( 556 - 557 -))) 485 +926.9 - SF7BW500 to SF12BW500 558 558 559 -* ((( 560 -(% style="color:blue" %)**Reset** 561 -))) 487 +927.5 - SF7BW500 to SF12BW500 562 562 563 -((( 564 -If payload = 0x04FF, it will reset the NSE01 565 -))) 489 +923.3 - SF12BW500(RX2 downlink only) 566 566 567 567 568 -* (% style="color:blue" %)**INTMOD** 569 569 570 - DownlinkPayload:06000003,Set AT+INTMOD=3493 +=== 2.7.3 CN470-510 (CN470) === 571 571 495 +Used in China, Default use CHE=1 572 572 497 +(% style="color:#037691" %)**Uplink:** 573 573 574 - == 2.6LEDIndicator==499 +486.3 - SF7BW125 to SF12BW125 575 575 576 -((( 577 -The NSE01 has an internal LED which is to show the status of different state. 501 +486.5 - SF7BW125 to SF12BW125 578 578 503 +486.7 - SF7BW125 to SF12BW125 579 579 580 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 581 -* Then the LED will be on for 1 second means device is boot normally. 582 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 583 -* For each uplink probe, LED will be on for 500ms. 584 -))) 505 +486.9 - SF7BW125 to SF12BW125 585 585 507 +487.1 - SF7BW125 to SF12BW125 586 586 509 +487.3 - SF7BW125 to SF12BW125 587 587 511 +487.5 - SF7BW125 to SF12BW125 588 588 589 - == 2.7InstallationinSoil==513 +487.7 - SF7BW125 to SF12BW125 590 590 591 -__**Measurement the soil surface**__ 592 592 593 - Choosethe proper measuring position. Avoid the probe to touch rocks or hard things. Split thesurface soilaccording to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]516 +(% style="color:#037691" %)**Downlink:** 594 594 595 - [[image:1657259653666-883.png]]518 +506.7 - SF7BW125 to SF12BW125 596 596 520 +506.9 - SF7BW125 to SF12BW125 597 597 598 -((( 599 - 522 +507.1 - SF7BW125 to SF12BW125 600 600 601 -((( 602 -Dig a hole with diameter > 20CM. 603 -))) 524 +507.3 - SF7BW125 to SF12BW125 604 604 605 -((( 606 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 607 -))) 608 -))) 526 +507.5 - SF7BW125 to SF12BW125 609 609 610 - [[image:1654506665940-119.png]]528 +507.7 - SF7BW125 to SF12BW125 611 611 612 -((( 613 - 614 -))) 530 +507.9 - SF7BW125 to SF12BW125 615 615 532 +508.1 - SF7BW125 to SF12BW125 616 616 617 - == 2.8FirmwareChangeLog==534 +505.3 - SF12BW125 (RX2 downlink only) 618 618 619 619 620 -Download URL & Firmware Change log 621 621 622 - [[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]538 +=== 2.7.4 AU915-928(AU915) === 623 623 540 +Default use CHE=2 624 624 625 - UpgradeInstruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]542 +(% style="color:#037691" %)**Uplink:** 626 626 544 +916.8 - SF7BW125 to SF12BW125 627 627 546 +917.0 - SF7BW125 to SF12BW125 628 628 629 - == 2.9BatteryAnalysis ==548 +917.2 - SF7BW125 to SF12BW125 630 630 631 - === 2.9.1BatteryType ===550 +917.4 - SF7BW125 to SF12BW125 632 632 552 +917.6 - SF7BW125 to SF12BW125 633 633 634 - TheNSE01battery is a combinationof an 8500mAh Li/SOCI2attery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.554 +917.8 - SF7BW125 to SF12BW125 635 635 556 +918.0 - SF7BW125 to SF12BW125 636 636 637 - Thebatteryisdesignedtolast for several years depends on the actually use environment and update interval.558 +918.2 - SF7BW125 to SF12BW125 638 638 639 639 640 - Thebatteryrelated documents as below:561 +(% style="color:#037691" %)**Downlink:** 641 641 642 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 643 -* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 644 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 563 +923.3 - SF7BW500 to SF12BW500 645 645 565 +923.9 - SF7BW500 to SF12BW500 566 + 567 +924.5 - SF7BW500 to SF12BW500 568 + 569 +925.1 - SF7BW500 to SF12BW500 570 + 571 +925.7 - SF7BW500 to SF12BW500 572 + 573 +926.3 - SF7BW500 to SF12BW500 574 + 575 +926.9 - SF7BW500 to SF12BW500 576 + 577 +927.5 - SF7BW500 to SF12BW500 578 + 579 +923.3 - SF12BW500(RX2 downlink only) 580 + 581 + 582 + 583 +=== 2.7.5 AS920-923 & AS923-925 (AS923) === 584 + 585 +(% style="color:#037691" %)**Default Uplink channel:** 586 + 587 +923.2 - SF7BW125 to SF10BW125 588 + 589 +923.4 - SF7BW125 to SF10BW125 590 + 591 + 592 +(% style="color:#037691" %)**Additional Uplink Channel**: 593 + 594 +(OTAA mode, channel added by JoinAccept message) 595 + 596 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 597 + 598 +922.2 - SF7BW125 to SF10BW125 599 + 600 +922.4 - SF7BW125 to SF10BW125 601 + 602 +922.6 - SF7BW125 to SF10BW125 603 + 604 +922.8 - SF7BW125 to SF10BW125 605 + 606 +923.0 - SF7BW125 to SF10BW125 607 + 608 +922.0 - SF7BW125 to SF10BW125 609 + 610 + 611 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 612 + 613 +923.6 - SF7BW125 to SF10BW125 614 + 615 +923.8 - SF7BW125 to SF10BW125 616 + 617 +924.0 - SF7BW125 to SF10BW125 618 + 619 +924.2 - SF7BW125 to SF10BW125 620 + 621 +924.4 - SF7BW125 to SF10BW125 622 + 623 +924.6 - SF7BW125 to SF10BW125 624 + 625 + 626 +(% style="color:#037691" %)** Downlink:** 627 + 628 +Uplink channels 1-8 (RX1) 629 + 630 +923.2 - SF10BW125 (RX2) 631 + 632 + 633 + 634 +=== 2.7.6 KR920-923 (KR920) === 635 + 636 +Default channel: 637 + 638 +922.1 - SF7BW125 to SF12BW125 639 + 640 +922.3 - SF7BW125 to SF12BW125 641 + 642 +922.5 - SF7BW125 to SF12BW125 643 + 644 + 645 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 646 + 647 +922.1 - SF7BW125 to SF12BW125 648 + 649 +922.3 - SF7BW125 to SF12BW125 650 + 651 +922.5 - SF7BW125 to SF12BW125 652 + 653 +922.7 - SF7BW125 to SF12BW125 654 + 655 +922.9 - SF7BW125 to SF12BW125 656 + 657 +923.1 - SF7BW125 to SF12BW125 658 + 659 +923.3 - SF7BW125 to SF12BW125 660 + 661 + 662 +(% style="color:#037691" %)**Downlink:** 663 + 664 +Uplink channels 1-7(RX1) 665 + 666 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 667 + 668 + 669 + 670 +=== 2.7.7 IN865-867 (IN865) === 671 + 672 +(% style="color:#037691" %)** Uplink:** 673 + 674 +865.0625 - SF7BW125 to SF12BW125 675 + 676 +865.4025 - SF7BW125 to SF12BW125 677 + 678 +865.9850 - SF7BW125 to SF12BW125 679 + 680 + 681 +(% style="color:#037691" %) **Downlink:** 682 + 683 +Uplink channels 1-3 (RX1) 684 + 685 +866.550 - SF10BW125 (RX2) 686 + 687 + 688 + 689 + 690 +== 2.8 LED Indicator == 691 + 692 +The LSE01 has an internal LED which is to show the status of different state. 693 + 694 +* Blink once when device power on. 695 +* Solid ON for 5 seconds once device successful Join the network. 696 +* Blink once when device transmit a packet. 697 + 698 + 699 + 700 +== 2.9 Installation in Soil == 701 + 702 +**Measurement the soil surface** 703 + 704 + 705 +[[image:1654506634463-199.png]] 706 + 646 646 ((( 647 -[[image:image-20220708140453-6.png]] 708 +((( 709 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 648 648 ))) 711 +))) 649 649 650 650 651 651 652 - === 2.9.2 Power consumptionAnalyze ===715 +[[image:1654506665940-119.png]] 653 653 654 654 ((( 655 -D raginobatterypowered product are all runs in Low Powermode. We have an update battery calculatorwhich base onthemeasurement of the realdevice. User can usehis calculator to check the batterylifeand calculate the battery life if want to use different transmit interval.718 +Dig a hole with diameter > 20CM. 656 656 ))) 657 657 721 +((( 722 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 723 +))) 658 658 725 + 726 +== 2.10 Firmware Change Log == 727 + 659 659 ((( 660 - Instructiontouseasbelow:729 +**Firmware download link:** 661 661 ))) 662 662 663 663 ((( 664 - (% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:[[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]733 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 665 665 ))) 666 666 736 +((( 737 + 738 +))) 667 667 668 668 ((( 669 - (% style="color:blue" %)**Step2: **(%%)Openithoose741 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 670 670 ))) 671 671 672 - *(((673 - ProductModel744 +((( 745 + 674 674 ))) 675 -* ((( 676 -Uplink Interval 747 + 748 +((( 749 +**V1.0.** 677 677 ))) 678 -* ((( 679 -Working Mode 680 -))) 681 681 682 682 ((( 683 - And theLifeexpectation in difference casewill be shown on the right.753 +Release 684 684 ))) 685 685 686 -[[image:image-20220708141352-7.jpeg]] 687 687 757 +== 2.11 Battery Analysis == 688 688 759 +=== 2.11.1 Battery Type === 689 689 690 -=== 2.9.3 Battery Note === 761 +((( 762 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 763 +))) 691 691 692 692 ((( 693 -The Li-SICObattery is designedfor small current/ longperiod application. It isnotgood to use a high current,short period transmit method. Therecommendedminimum period for use ofthis batteryis5minutes. Ifyou useshorterperiod time to transmitLoRa,thenthe battery life may be decreased.766 +The battery is designed to last for more than 5 years for the LSN50. 694 694 ))) 695 695 769 +((( 770 +((( 771 +The battery-related documents are as below: 772 +))) 773 +))) 696 696 775 +* ((( 776 +[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], 777 +))) 778 +* ((( 779 +[[Lithium-Thionyl Chloride Battery datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], 780 +))) 781 +* ((( 782 +[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]] 783 +))) 697 697 698 - ===2.9.4 Replacethe battery ===785 + [[image:image-20220610172436-1.png]] 699 699 787 + 788 + 789 +=== 2.11.2 Battery Note === 790 + 700 700 ((( 701 -The defaultbatterypackofNSE01includesaER26500 plussupercapacitor. Ifusercan'tfind this pack locally,theycanfindER26500 orquivalence withoutthe SPC1520 capacitor, which will alsowork inmostcase. TheSPCcanlarge thebatterylifeforhigh frequency use(update periodbelow5minutes).792 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 702 702 ))) 703 703 704 704 705 705 706 -= 3. AccessNB-IoTModule =797 +=== 2.11.3 Replace the battery === 707 707 708 708 ((( 709 - Userscan directlyaccesstheAT command setoftheNB-IoTmodule.800 +If Battery is lower than 2.7v, user should replace the battery of LSE01. 710 710 ))) 711 711 712 712 ((( 713 - The AT Commandsetcanrefer theBC35-G NB-IoTModuleATCommand: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]]804 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 714 714 ))) 715 715 716 -[[image:1657261278785-153.png]] 807 +((( 808 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 809 +))) 717 717 718 718 719 719 720 -= 4.813 += 3. Using the AT Commands = 721 721 722 -== 4.1815 +== 3.1 Access AT Commands == 723 723 724 -See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 725 725 818 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 726 726 727 - AT+<CMD>? : Helpon<CMD>820 +[[image:1654501986557-872.png||height="391" width="800"]] 728 728 729 -AT+<CMD> : Run <CMD> 730 730 731 - AT+<CMD>=<value>: Setthevalue823 +Or if you have below board, use below connection: 732 732 733 -AT+<CMD>=? : Get the value 734 734 826 +[[image:1654502005655-729.png||height="503" width="801"]] 735 735 828 + 829 + 830 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 831 + 832 + 833 + [[image:1654502050864-459.png||height="564" width="806"]] 834 + 835 + 836 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]] 837 + 838 + 839 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 840 + 841 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 842 + 843 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 844 + 845 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 846 + 847 + 736 736 (% style="color:#037691" %)**General Commands**(%%) 737 737 738 -AT 850 +(% style="background-color:#dcdcdc" %)**AT**(%%) : Attention 739 739 740 -AT? 852 +(% style="background-color:#dcdcdc" %)**AT?**(%%) : Short Help 741 741 742 -ATZ 854 +(% style="background-color:#dcdcdc" %)**ATZ**(%%) : MCU Reset 743 743 744 -AT+TDC 856 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%) : Application Data Transmission Interval 745 745 746 -AT+CFG : Print all configurations 747 747 748 - AT+CFGMOD: Workingmode selection859 +(% style="color:#037691" %)**Keys, IDs and EUIs management** 749 749 750 -AT+I NTMOD:Setthe trigger interruptmode861 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%) : Application EUI 751 751 752 -AT+ 5VTSetextend the timeof5V power863 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%) : Application Key 753 753 754 -AT+P ROChooseagreement865 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%) : Application Session Key 755 755 756 -AT+ WEIGREGet weightorsetweight to 0867 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%) : Device Address 757 757 758 -AT+ WEIGAPGet or SettheGapValue of weight869 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%) : Device EUI 759 759 760 -AT+ RXDL: Extendthe sendingandreceivingtime871 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%) : Network ID (You can enter this command change only after successful network connection) 761 761 762 -AT+ CNTFACGettcountingparameters873 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%) : Network Session Key Joining and sending date on LoRa network 763 763 764 -AT+ SERVADDR:ServerAddress875 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%) : Confirm Mode 765 765 877 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 766 766 767 -(% style="color:# 037691" %)**COAPManagement**879 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%) : Join LoRa? Network 768 768 769 -AT+ URIsourceparameters881 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%) : LoRa? Network Join Mode 770 770 883 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 771 771 772 -(% style="color:# 037691" %)**UDPManagement**885 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%) : Print Last Received Data in Raw Format 773 773 774 -AT+C FM:Uploadconfirmationmode (onlyvalid forUDP)887 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%) : Print Last Received Data in Binary Format 775 775 889 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 776 776 777 -(% style="color:# 037691" %)**MQTTManagement**891 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%) : Send Hexadecimal Data 778 778 779 -AT+CLIENT : Get or Set MQTT client 780 780 781 - AT+UNAMEGetSetMQTT Username894 +(% style="color:#037691" %)**LoRa Network Management** 782 782 783 -AT+ PWDGetor SetMQTT password896 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%) : Adaptive Rate 784 784 785 -AT+ PUBTOPICGetorSetMQTTpublishtopic898 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%) : LoRa Class(Currently only support class A 786 786 787 -AT+ SUBTOPIC :GetorSetMQTT subscriptiontopic900 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%) : Duty Cycle Setting 788 788 902 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 789 789 790 -(% style="color:# 037691" %)**Information**904 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink 791 791 792 -AT+F DRctoryDataReset906 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%) : Frame Counter Uplink 793 793 794 -AT+ PWORDSerialAccessPassword908 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%) : Join Accept Delay1 795 795 910 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 796 796 912 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 797 797 798 -= 5.FAQ=914 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%) : Receive Delay1 799 799 800 -= =5.1HowtoUpgradeFirmware==916 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%) : Receive Delay2 801 801 918 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 802 802 920 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 921 + 922 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 923 + 924 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 925 + 926 + 927 +(% style="color:#037691" %)**Information** 928 + 929 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 930 + 931 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 932 + 933 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 934 + 935 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 936 + 937 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 938 + 939 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 940 + 941 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 942 + 943 + 944 += 4. FAQ = 945 + 946 +== 4.1 How to change the LoRa Frequency Bands/Region? == 947 + 803 803 ((( 804 -User can upgrade the firmware for 1) bug fix, 2) new feature release. 949 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 950 +When downloading the images, choose the required image file for download. 805 805 ))) 806 806 807 807 ((( 808 - Pleasesee this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]954 + 809 809 ))) 810 810 811 811 ((( 812 - (%style="color:red"%)Notice,NSE01andLSE01share thememotherboard.Theyuse thesameconnection andmethodto update.958 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 813 813 ))) 814 814 961 +((( 962 + 963 +))) 815 815 965 +((( 966 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 967 +))) 816 816 817 -= 6. Trouble Shooting = 969 +((( 970 + 971 +))) 818 818 819 -== 6.1 Connection problem when uploading firmware == 973 +((( 974 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 975 +))) 820 820 977 +[[image:image-20220606154726-3.png]] 821 821 822 -(% class="wikigeneratedid" %) 979 + 980 +When you use the TTN network, the US915 frequency bands use are: 981 + 982 +* 903.9 - SF7BW125 to SF10BW125 983 +* 904.1 - SF7BW125 to SF10BW125 984 +* 904.3 - SF7BW125 to SF10BW125 985 +* 904.5 - SF7BW125 to SF10BW125 986 +* 904.7 - SF7BW125 to SF10BW125 987 +* 904.9 - SF7BW125 to SF10BW125 988 +* 905.1 - SF7BW125 to SF10BW125 989 +* 905.3 - SF7BW125 to SF10BW125 990 +* 904.6 - SF8BW500 991 + 823 823 ((( 824 -(% style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]] 993 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 994 + 995 +* (% style="color:#037691" %)**AT+CHE=2** 996 +* (% style="color:#037691" %)**ATZ** 825 825 ))) 826 826 999 +((( 1000 + 827 827 1002 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 1003 +))) 828 828 829 -== 6.2 AT Command input doesn't work == 1005 +((( 1006 + 1007 +))) 830 830 831 831 ((( 832 - In thecaseif user can seethe console output but can't typeinput to the device. Pleasecheck if youalreadyincludethe(%style="color:green" %)**ENTER**(%%) while sendingout the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.1010 +The **AU915** band is similar. Below are the AU915 Uplink Channels. 833 833 ))) 834 834 1013 +[[image:image-20220606154825-4.png]] 835 835 836 836 837 -= 7.OrderInfo =1016 +== 4.2 Can I calibrate LSE01 to different soil types? == 838 838 1018 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]]. 839 839 840 -Part Number**:** (% style="color:#4f81bd" %)**NSE01** 841 841 1021 += 5. Trouble Shooting = 842 842 1023 +== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 1024 + 1025 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 1026 + 1027 + 1028 +== 5.2 AT Command input doesn’t work == 1029 + 1030 +((( 1031 +In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1032 +))) 1033 + 1034 + 1035 +== 5.3 Device rejoin in at the second uplink packet == 1036 + 1037 +(% style="color:#4f81bd" %)**Issue describe as below:** 1038 + 1039 +[[image:1654500909990-784.png]] 1040 + 1041 + 1042 +(% style="color:#4f81bd" %)**Cause for this issue:** 1043 + 1044 +((( 1045 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 1046 +))) 1047 + 1048 + 1049 +(% style="color:#4f81bd" %)**Solution: ** 1050 + 1051 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 1052 + 1053 +[[image:1654500929571-736.png||height="458" width="832"]] 1054 + 1055 + 1056 += 6. Order Info = 1057 + 1058 + 1059 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 1060 + 1061 + 1062 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 1063 + 1064 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 1065 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 1066 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 1067 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 1068 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1069 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1070 +* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1071 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1072 + 1073 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1074 + 1075 +* (% style="color:red" %)**4**(%%): 4000mAh battery 1076 +* (% style="color:red" %)**8**(%%): 8500mAh battery 1077 + 843 843 (% class="wikigeneratedid" %) 844 844 ((( 845 845 846 846 ))) 847 847 848 -= 8.1083 += 7. Packing Info = 849 849 850 850 ((( 851 851 852 852 853 853 (% style="color:#037691" %)**Package Includes**: 1089 +))) 854 854 855 - 856 -* NSE01 NB-IoT Soil Moisture & EC Sensor x 1 857 -* External antenna x 1 1091 +* ((( 1092 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 858 858 ))) 859 859 860 860 ((( ... ... @@ -861,20 +861,24 @@ 861 861 862 862 863 863 (% style="color:#037691" %)**Dimension and weight**: 1099 +))) 864 864 865 - 866 -* Size: 195 x 125 x 55 mm 867 -* Weight: 420g 1101 +* ((( 1102 +Device Size: cm 868 868 ))) 1104 +* ((( 1105 +Device Weight: g 1106 +))) 1107 +* ((( 1108 +Package Size / pcs : cm 1109 +))) 1110 +* ((( 1111 +Weight / pcs : g 869 869 870 -((( 871 871 872 - 873 - 874 - 875 875 ))) 876 876 877 -= 9.1116 += 8. Support = 878 878 879 879 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 880 880 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -102.7 KB - Content