Last modified by Bei Jinggeng on 2024/05/31 09:53

From version 65.12
edited by Xiaoling
on 2022/07/08 15:49
Change comment: There is no comment for this version
To version 39.1
edited by Xiaoling
on 2022/06/25 16:34
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
Content
... ... @@ -20,640 +20,773 @@
20 20  
21 21  
22 22  
23 += 1. Introduction =
23 23  
24 -= 1.  Introduction =
25 +== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
25 25  
26 -== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
27 -
28 28  (((
29 29  
30 30  
31 -(((
32 -Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
30 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
33 33  )))
34 34  
35 35  (((
36 -It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
34 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
37 37  )))
38 38  
39 39  (((
40 -The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
38 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
41 41  )))
42 42  
43 43  (((
44 -NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
42 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
45 45  )))
46 46  
47 -
45 +(((
46 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
48 48  )))
49 49  
49 +
50 50  [[image:1654503236291-817.png]]
51 51  
52 52  
53 -[[image:1657245163077-232.png]]
53 +[[image:1654503265560-120.png]]
54 54  
55 55  
56 56  
57 -== 1.2 ​ Features ==
57 +== 1.2 ​Features ==
58 58  
59 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
59 +* LoRaWAN 1.0.3 Class A
60 +* Ultra low power consumption
60 60  * Monitor Soil Moisture
61 61  * Monitor Soil Temperature
62 62  * Monitor Soil Conductivity
64 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
63 63  * AT Commands to change parameters
64 64  * Uplink on periodically
65 65  * Downlink to change configure
66 66  * IP66 Waterproof Enclosure
67 -* Ultra-Low Power consumption
68 -* AT Commands to change parameters
69 -* Micro SIM card slot for NB-IoT SIM
70 -* 8500mAh Battery for long term use
69 +* 4000mAh or 8500mAh Battery for long term use
71 71  
72 72  
73 -== 1.3  Specification ==
72 +== 1.3 Specification ==
74 74  
74 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
75 75  
76 -(% style="color:#037691" %)**Common DC Characteristics:**
76 +[[image:image-20220606162220-5.png]]
77 77  
78 -* Supply Voltage: 2.1v ~~ 3.6v
79 -* Operating Temperature: -40 ~~ 85°C
80 80  
81 -(% style="color:#037691" %)**NB-IoT Spec:**
82 82  
83 -* - B1 @H-FDD: 2100MHz
84 -* - B3 @H-FDD: 1800MHz
85 -* - B8 @H-FDD: 900MHz
86 -* - B5 @H-FDD: 850MHz
87 -* - B20 @H-FDD: 800MHz
88 -* - B28 @H-FDD: 700MHz
80 +== ​1.4 Applications ==
89 89  
90 -Probe(% style="color:#037691" %)** Specification:**
82 +* Smart Agriculture
91 91  
92 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
84 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
85 +​
93 93  
94 -[[image:image-20220708101224-1.png]]
87 +== 1.5 Firmware Change log ==
95 95  
96 96  
90 +**LSE01 v1.0 :**  Release
97 97  
98 -== ​1.4  Applications ==
99 99  
100 -* Smart Agriculture
101 101  
102 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
103 -​
94 += 2. Configure LSE01 to connect to LoRaWAN network =
104 104  
105 -== 1. Pin Definitions ==
96 +== 2.1 How it works ==
106 106  
98 +(((
99 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
100 +)))
107 107  
108 -[[image:1657246476176-652.png]]
102 +(((
103 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
104 +)))
109 109  
110 110  
111 111  
112 -= 2.  Use NSE01 to communicate with IoT Server =
108 +== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
113 113  
114 -== 2. How it works ==
110 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
115 115  
116 116  
113 +[[image:1654503992078-669.png]]
114 +
115 +
116 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
117 +
118 +
119 +(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
120 +
121 +Each LSE01 is shipped with a sticker with the default device EUI as below:
122 +
123 +[[image:image-20220606163732-6.jpeg]]
124 +
125 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
126 +
127 +**Add APP EUI in the application**
128 +
129 +
130 +[[image:1654504596150-405.png]]
131 +
132 +
133 +
134 +**Add APP KEY and DEV EUI**
135 +
136 +[[image:1654504683289-357.png]]
137 +
138 +
139 +
140 +(% style="color:blue" %)**Step 2**(%%): Power on LSE01
141 +
142 +
143 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
144 +
145 +[[image:image-20220606163915-7.png]]
146 +
147 +
148 +(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
149 +
150 +[[image:1654504778294-788.png]]
151 +
152 +
153 +
154 +== 2.3 Uplink Payload ==
155 +
156 +
157 +=== 2.3.1 MOD~=0(Default Mode) ===
158 +
159 +LSE01 will uplink payload via LoRaWAN with below payload format: 
160 +
117 117  (((
118 -The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
162 +Uplink payload includes in total 11 bytes.
119 119  )))
120 120  
165 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
166 +|(((
167 +**Size**
121 121  
169 +**(bytes)**
170 +)))|**2**|**2**|**2**|**2**|**2**|**1**
171 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
172 +Temperature
173 +
174 +(Reserve, Ignore now)
175 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
176 +MOD & Digital Interrupt
177 +
178 +(Optional)
179 +)))
180 +
181 +
182 +=== 2.3.2 MOD~=1(Original value) ===
183 +
184 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
185 +
186 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
187 +|(((
188 +**Size**
189 +
190 +**(bytes)**
191 +)))|**2**|**2**|**2**|**2**|**2**|**1**
192 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
193 +Temperature
194 +
195 +(Reserve, Ignore now)
196 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
197 +MOD & Digital Interrupt
198 +
199 +(Optional)
200 +)))
201 +
202 +
203 +=== 2.3.3 Battery Info ===
204 +
122 122  (((
123 -The diagram below shows the working flow in default firmware of NSE01:
206 +Check the battery voltage for LSE01.
124 124  )))
125 125  
126 -[[image:image-20220708101605-2.png]]
209 +(((
210 +Ex1: 0x0B45 = 2885mV
211 +)))
127 127  
128 128  (((
214 +Ex2: 0x0B49 = 2889mV
215 +)))
216 +
217 +
218 +
219 +=== 2.3.4 Soil Moisture ===
220 +
221 +(((
222 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
223 +)))
224 +
225 +(((
226 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
227 +)))
228 +
229 +(((
129 129  
130 130  )))
131 131  
233 +(((
234 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
235 +)))
132 132  
133 133  
134 -== 2.2 ​ Configure the NSE01 ==
135 135  
239 +=== 2.3.5 Soil Temperature ===
136 136  
137 -=== 2.2.1 Test Requirement ===
241 +(((
242 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
243 +)))
138 138  
245 +(((
246 +**Example**:
247 +)))
139 139  
140 140  (((
141 -To use NSE01 in your city, make sure meet below requirements:
250 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
142 142  )))
143 143  
144 -* Your local operator has already distributed a NB-IoT Network there.
145 -* The local NB-IoT network used the band that NSE01 supports.
146 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
253 +(((
254 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
255 +)))
147 147  
257 +
258 +
259 +=== 2.3.6 Soil Conductivity (EC) ===
260 +
148 148  (((
149 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
262 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
150 150  )))
151 151  
265 +(((
266 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
267 +)))
152 152  
153 -[[image:1657249419225-449.png]]
269 +(((
270 +Generally, the EC value of irrigation water is less than 800uS / cm.
271 +)))
154 154  
273 +(((
274 +
275 +)))
155 155  
277 +(((
278 +
279 +)))
156 156  
157 -=== 2.2.2 Insert SIM card ===
281 +=== 2.3.7 MOD ===
158 158  
283 +Firmware version at least v2.1 supports changing mode.
284 +
285 +For example, bytes[10]=90
286 +
287 +mod=(bytes[10]>>7)&0x01=1.
288 +
289 +
290 +**Downlink Command:**
291 +
292 +If payload = 0x0A00, workmode=0
293 +
294 +If** **payload =** **0x0A01, workmode=1
295 +
296 +
297 +
298 +=== 2.3.8 ​Decode payload in The Things Network ===
299 +
300 +While using TTN network, you can add the payload format to decode the payload.
301 +
302 +
303 +[[image:1654505570700-128.png]]
304 +
159 159  (((
160 -Insert the NB-IoT Card get from your provider.
306 +The payload decoder function for TTN is here:
161 161  )))
162 162  
163 163  (((
164 -User need to take out the NB-IoT module and insert the SIM card like below:
310 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
165 165  )))
166 166  
167 167  
168 -[[image:1657249468462-536.png]]
314 +== 2.4 Uplink Interval ==
169 169  
316 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
170 170  
171 171  
172 -=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
173 173  
320 +== 2.5 Downlink Payload ==
321 +
322 +By default, LSE50 prints the downlink payload to console port.
323 +
324 +[[image:image-20220606165544-8.png]]
325 +
326 +
174 174  (((
328 +**Examples:**
329 +)))
330 +
175 175  (((
176 -User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
332 +
177 177  )))
334 +
335 +* (((
336 +**Set TDC**
178 178  )))
179 179  
339 +(((
340 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
341 +)))
180 180  
181 -**Connection:**
343 +(((
344 +Payload:    01 00 00 1E    TDC=30S
345 +)))
182 182  
183 - (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
347 +(((
348 +Payload:    01 00 00 3C    TDC=60S
349 +)))
184 184  
185 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
351 +(((
352 +
353 +)))
186 186  
187 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
355 +* (((
356 +**Reset**
357 +)))
188 188  
359 +(((
360 +If payload = 0x04FF, it will reset the LSE01
361 +)))
189 189  
190 -In the PC, use below serial tool settings:
191 191  
192 -* Baud:  (% style="color:green" %)**9600**
193 -* Data bits:** (% style="color:green" %)8(%%)**
194 -* Stop bits: (% style="color:green" %)**1**
195 -* Parity:  (% style="color:green" %)**None**
196 -* Flow Control: (% style="color:green" %)**None**
364 +* **CFM**
197 197  
366 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
367 +
368 +
369 +
370 +== 2.6 ​Show Data in DataCake IoT Server ==
371 +
198 198  (((
199 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
373 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
200 200  )))
201 201  
202 -[[image:image-20220708110657-3.png]]
376 +(((
377 +
378 +)))
203 203  
204 204  (((
205 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
381 +(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
206 206  )))
207 207  
384 +(((
385 +(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
386 +)))
208 208  
209 209  
210 -=== 2.2.4 Use CoAP protocol to uplink data ===
389 +[[image:1654505857935-743.png]]
211 211  
212 -(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
213 213  
392 +[[image:1654505874829-548.png]]
214 214  
215 -**Use below commands:**
216 216  
217 -* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
218 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
219 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
395 +(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
220 220  
221 -For parameter description, please refer to AT command set
397 +(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
222 222  
223 -[[image:1657249793983-486.png]]
224 224  
400 +[[image:1654505905236-553.png]]
225 225  
226 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
227 227  
228 -[[image:1657249831934-534.png]]
403 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
229 229  
405 +[[image:1654505925508-181.png]]
230 230  
231 231  
232 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
233 233  
234 -This feature is supported since firmware version v1.0.1
409 +== 2.7 Frequency Plans ==
235 235  
411 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
236 236  
237 -* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
238 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
239 -* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
240 240  
241 -[[image:1657249864775-321.png]]
414 +=== 2.7.1 EU863-870 (EU868) ===
242 242  
416 +(% style="color:#037691" %)** Uplink:**
243 243  
244 -[[image:1657249930215-289.png]]
418 +868.1 - SF7BW125 to SF12BW125
245 245  
420 +868.3 - SF7BW125 to SF12BW125 and SF7BW250
246 246  
422 +868.5 - SF7BW125 to SF12BW125
247 247  
248 -=== 2.2.6 Use MQTT protocol to uplink data ===
424 +867.1 - SF7BW125 to SF12BW125
249 249  
250 -This feature is supported since firmware version v110
426 +867.3 - SF7BW125 to SF12BW125
251 251  
428 +867.5 - SF7BW125 to SF12BW125
252 252  
253 -* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
254 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
255 -* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
256 -* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
257 -* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
258 -* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
259 -* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
430 +867.7 - SF7BW125 to SF12BW125
260 260  
261 -[[image:1657249978444-674.png]]
432 +867.9 - SF7BW125 to SF12BW125
262 262  
434 +868.8 - FSK
263 263  
264 -[[image:1657249990869-686.png]]
265 265  
437 +(% style="color:#037691" %)** Downlink:**
266 266  
267 -(((
268 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
269 -)))
439 +Uplink channels 1-9 (RX1)
270 270  
441 +869.525 - SF9BW125 (RX2 downlink only)
271 271  
272 272  
273 -=== 2.2.7 Use TCP protocol to uplink data ===
274 274  
275 -This feature is supported since firmware version v110
445 +=== 2.7.2 US902-928(US915) ===
276 276  
447 +Used in USA, Canada and South America. Default use CHE=2
277 277  
278 -* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
279 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
449 +(% style="color:#037691" %)**Uplink:**
280 280  
281 -[[image:1657250217799-140.png]]
451 +903.9 - SF7BW125 to SF10BW125
282 282  
453 +904.1 - SF7BW125 to SF10BW125
283 283  
284 -[[image:1657250255956-604.png]]
455 +904.3 - SF7BW125 to SF10BW125
285 285  
457 +904.5 - SF7BW125 to SF10BW125
286 286  
459 +904.7 - SF7BW125 to SF10BW125
287 287  
288 -=== 2.2.8 Change Update Interval ===
461 +904.9 - SF7BW125 to SF10BW125
289 289  
290 -User can use below command to change the (% style="color:green" %)**uplink interval**.
463 +905.1 - SF7BW125 to SF10BW125
291 291  
292 -* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
465 +905.3 - SF7BW125 to SF10BW125
293 293  
294 -(((
295 -(% style="color:red" %)**NOTE:**
296 -)))
297 297  
298 -(((
299 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
300 -)))
468 +(% style="color:#037691" %)**Downlink:**
301 301  
470 +923.3 - SF7BW500 to SF12BW500
302 302  
472 +923.9 - SF7BW500 to SF12BW500
303 303  
304 -== 2. Uplink Payload ==
474 +924.5 - SF7BW500 to SF12BW500
305 305  
306 -In this mode, uplink payload includes in total 18 bytes
476 +925.1 - SF7BW500 to SF12BW500
307 307  
308 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
309 -|=(% style="width: 60px;" %)(((
310 -**Size(bytes)**
311 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1**
312 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
478 +925.7 - SF7BW500 to SF12BW500
313 313  
314 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
480 +926.3 - SF7BW500 to SF12BW500
315 315  
482 +926.9 - SF7BW500 to SF12BW500
316 316  
317 -[[image:image-20220708111918-4.png]]
484 +927.5 - SF7BW500 to SF12BW500
318 318  
486 +923.3 - SF12BW500(RX2 downlink only)
319 319  
320 -The payload is ASCII string, representative same HEX:
321 321  
322 -0x72403155615900640c7817075e0a8c02f900 where:
323 323  
324 -* Device ID: 0x 724031556159 = 724031556159
325 -* Version: 0x0064=100=1.0.0
490 +=== 2.7.3 CN470-510 (CN470) ===
326 326  
327 -* BAT: 0x0c78 = 3192 mV = 3.192V
328 -* Singal: 0x17 = 23
329 -* Soil Moisture: 0x075e= 1886 = 18.86  %
330 -* Soil Temperature:0x0a8c =2700=27 °C
331 -* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
332 -* Interrupt: 0x00 = 0
492 +Used in China, Default use CHE=1
333 333  
494 +(% style="color:#037691" %)**Uplink:**
334 334  
335 -== 2.4  Payload Explanation and Sensor Interface ==
496 +486.3 - SF7BW125 to SF12BW125
336 336  
498 +486.5 - SF7BW125 to SF12BW125
337 337  
338 -=== 2.4.1  Device ID ===
500 +486.7 - SF7BW125 to SF12BW125
339 339  
340 -By default, the Device ID equal to the last 6 bytes of IMEI.
502 +486.9 - SF7BW125 to SF12BW125
341 341  
342 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
504 +487.1 - SF7BW125 to SF12BW125
343 343  
344 -**Example:**
506 +487.3 - SF7BW125 to SF12BW125
345 345  
346 -AT+DEUI=A84041F15612
508 +487.5 - SF7BW125 to SF12BW125
347 347  
348 -The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
510 +487.7 - SF7BW125 to SF12BW125
349 349  
350 350  
513 +(% style="color:#037691" %)**Downlink:**
351 351  
352 -=== 2.4.2  Version Info ===
515 +506.7 - SF7BW125 to SF12BW125
353 353  
354 -Specify the software version: 0x64=100, means firmware version 1.00.
517 +506.9 - SF7BW125 to SF12BW125
355 355  
356 -For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
519 +507.1 - SF7BW125 to SF12BW125
357 357  
521 +507.3 - SF7BW125 to SF12BW125
358 358  
523 +507.5 - SF7BW125 to SF12BW125
359 359  
360 -=== 2.4.3  Battery Info ===
525 +507.7 - SF7BW125 to SF12BW125
361 361  
362 -(((
363 -Check the battery voltage for LSE01.
364 -)))
527 +507.9 - SF7BW125 to SF12BW125
365 365  
366 -(((
367 -Ex1: 0x0B45 = 2885mV
368 -)))
529 +508.1 - SF7BW125 to SF12BW125
369 369  
370 -(((
371 -Ex2: 0x0B49 = 2889mV
372 -)))
531 +505.3 - SF12BW125 (RX2 downlink only)
373 373  
374 374  
375 375  
376 -=== 2.4.4  Signal Strength ===
535 +=== 2.7.4 AU915-928(AU915) ===
377 377  
378 -NB-IoT Network signal Strength.
537 +Default use CHE=2
379 379  
380 -**Ex1: 0x1d = 29**
539 +(% style="color:#037691" %)**Uplink:**
381 381  
382 -(% style="color:blue" %)**0**(%%)  -113dBm or less
541 +916.8 - SF7BW125 to SF12BW125
383 383  
384 -(% style="color:blue" %)**1**(%%)  -111dBm
543 +917.0 - SF7BW125 to SF12BW125
385 385  
386 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
545 +917.2 - SF7BW125 to SF12BW125
387 387  
388 -(% style="color:blue" %)**31**  (%%) -51dBm or greater
547 +917.4 - SF7BW125 to SF12BW125
389 389  
390 -(% style="color:blue" %)**99**   (%%) Not known or not detectable
549 +917.6 - SF7BW125 to SF12BW125
391 391  
551 +917.8 - SF7BW125 to SF12BW125
392 392  
553 +918.0 - SF7BW125 to SF12BW125
393 393  
394 -=== 2.4.5  Soil Moisture ===
555 +918.2 - SF7BW125 to SF12BW125
395 395  
396 -(((
397 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
398 -)))
399 399  
400 -(((
401 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
402 -)))
558 +(% style="color:#037691" %)**Downlink:**
403 403  
404 -(((
405 -
406 -)))
560 +923.3 - SF7BW500 to SF12BW500
407 407  
408 -(((
409 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
410 -)))
562 +923.9 - SF7BW500 to SF12BW500
411 411  
564 +924.5 - SF7BW500 to SF12BW500
412 412  
566 +925.1 - SF7BW500 to SF12BW500
413 413  
414 -=== 2.4.6  Soil Temperature ===
568 +925.7 - SF7BW500 to SF12BW500
415 415  
416 -(((
417 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
418 -)))
570 +926.3 - SF7BW500 to SF12BW500
419 419  
420 -(((
421 -**Example**:
422 -)))
572 +926.9 - SF7BW500 to SF12BW500
423 423  
424 -(((
425 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
426 -)))
574 +927.5 - SF7BW500 to SF12BW500
427 427  
428 -(((
429 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
430 -)))
576 +923.3 - SF12BW500(RX2 downlink only)
431 431  
432 432  
433 433  
434 -=== 2.4.7  Soil Conductivity (EC) ===
580 +=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
435 435  
436 -(((
437 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
438 -)))
582 +(% style="color:#037691" %)**Default Uplink channel:**
439 439  
440 -(((
441 -For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
442 -)))
584 +923.2 - SF7BW125 to SF10BW125
443 443  
444 -(((
445 -Generally, the EC value of irrigation water is less than 800uS / cm.
446 -)))
586 +923.4 - SF7BW125 to SF10BW125
447 447  
448 -(((
449 -
450 -)))
451 451  
452 -(((
453 -
454 -)))
589 +(% style="color:#037691" %)**Additional Uplink Channel**:
455 455  
456 -=== 2.4.8  Digital Interrupt ===
591 +(OTAA mode, channel added by JoinAccept message)
457 457  
458 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
593 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
459 459  
460 -The command is:
595 +922.2 - SF7BW125 to SF10BW125
461 461  
462 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
597 +922.4 - SF7BW125 to SF10BW125
463 463  
599 +922.6 - SF7BW125 to SF10BW125
464 464  
465 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
601 +922.8 - SF7BW125 to SF10BW125
466 466  
603 +923.0 - SF7BW125 to SF10BW125
467 467  
468 -Example:
605 +922.0 - SF7BW125 to SF10BW125
469 469  
470 -0x(00): Normal uplink packet.
471 471  
472 -0x(01): Interrupt Uplink Packet.
608 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
473 473  
610 +923.6 - SF7BW125 to SF10BW125
474 474  
612 +923.8 - SF7BW125 to SF10BW125
475 475  
476 -=== 2.4. ​+5V Output ===
614 +924.0 - SF7BW125 to SF10BW125
477 477  
478 -NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
616 +924.2 - SF7BW125 to SF10BW125
479 479  
618 +924.4 - SF7BW125 to SF10BW125
480 480  
481 -The 5V output time can be controlled by AT Command.
620 +924.6 - SF7BW125 to SF10BW125
482 482  
483 -(% style="color:blue" %)**AT+5VT=1000**
484 484  
485 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
623 +(% style="color:#037691" %)** Downlink:**
486 486  
625 +Uplink channels 1-8 (RX1)
487 487  
627 +923.2 - SF10BW125 (RX2)
488 488  
489 -== 2.5  Downlink Payload ==
490 490  
491 -By default, NSE01 prints the downlink payload to console port.
492 492  
493 -[[image:image-20220708133731-5.png]]
631 +=== 2.7.6 KR920-923 (KR920) ===
494 494  
633 +Default channel:
495 495  
496 -(((
497 -(% style="color:blue" %)**Examples:**
498 -)))
635 +922.1 - SF7BW125 to SF12BW125
499 499  
500 -(((
501 -
502 -)))
637 +922.3 - SF7BW125 to SF12BW125
503 503  
504 -* (((
505 -(% style="color:blue" %)**Set TDC**
506 -)))
639 +922.5 - SF7BW125 to SF12BW125
507 507  
508 -(((
509 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
510 -)))
511 511  
512 -(((
513 -Payload:    01 00 00 1E    TDC=30S
514 -)))
642 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
515 515  
516 -(((
517 -Payload:    01 00 00 3C    TDC=60S
518 -)))
644 +922.1 - SF7BW125 to SF12BW125
519 519  
520 -(((
521 -
522 -)))
646 +922.3 - SF7BW125 to SF12BW125
523 523  
524 -* (((
525 -(% style="color:blue" %)**Reset**
526 -)))
648 +922.5 - SF7BW125 to SF12BW125
527 527  
528 -(((
529 -If payload = 0x04FF, it will reset the NSE01
530 -)))
650 +922.7 - SF7BW125 to SF12BW125
531 531  
652 +922.9 - SF7BW125 to SF12BW125
532 532  
533 -* (% style="color:blue" %)**INTMOD**
654 +923.1 - SF7BW125 to SF12BW125
534 534  
535 -Downlink Payload: 06000003, Set AT+INTMOD=3
656 +923.3 - SF7BW125 to SF12BW125
536 536  
537 537  
659 +(% style="color:#037691" %)**Downlink:**
538 538  
539 -== 2.6  ​LED Indicator ==
661 +Uplink channels 1-7(RX1)
540 540  
541 -(((
542 -The NSE01 has an internal LED which is to show the status of different state.
663 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
543 543  
544 544  
545 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
546 -* Then the LED will be on for 1 second means device is boot normally.
547 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
548 -* For each uplink probe, LED will be on for 500ms.
549 -)))
550 550  
667 +=== 2.7.7 IN865-867 (IN865) ===
551 551  
669 +(% style="color:#037691" %)** Uplink:**
552 552  
671 +865.0625 - SF7BW125 to SF12BW125
553 553  
554 -== 2.7  Installation in Soil ==
673 +865.4025 - SF7BW125 to SF12BW125
555 555  
556 -__**Measurement the soil surface**__
675 +865.9850 - SF7BW125 to SF12BW125
557 557  
558 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
559 559  
560 -[[image:1657259653666-883.png]]
678 +(% style="color:#037691" %) **Downlink:**
561 561  
680 +Uplink channels 1-3 (RX1)
562 562  
563 -(((
564 -
682 +866.550 - SF10BW125 (RX2)
565 565  
566 -(((
567 -Dig a hole with diameter > 20CM.
568 -)))
569 569  
570 -(((
571 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
572 -)))
573 -)))
574 574  
575 -[[image:1654506665940-119.png]]
576 576  
577 -(((
578 -
579 -)))
687 +== 2.8 LED Indicator ==
580 580  
689 +The LSE01 has an internal LED which is to show the status of different state.
581 581  
582 -== 2.8  ​Firmware Change Log ==
691 +* Blink once when device power on.
692 +* Solid ON for 5 seconds once device successful Join the network.
693 +* Blink once when device transmit a packet.
583 583  
584 584  
585 -Download URL & Firmware Change log
586 586  
587 -[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
588 588  
589 589  
590 -Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
699 +== 2.9 Installation in Soil ==
591 591  
701 +**Measurement the soil surface**
592 592  
593 593  
594 -== 2.9  ​Battery Analysis ==
704 +[[image:1654506634463-199.png]]
595 595  
596 -=== 2.9.1  ​Battery Type ===
706 +(((
707 +(((
708 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
709 +)))
710 +)))
597 597  
598 598  
599 -The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
600 600  
714 +[[image:1654506665940-119.png]]
601 601  
602 -The battery is designed to last for several years depends on the actually use environment and update interval. 
716 +(((
717 +Dig a hole with diameter > 20CM.
718 +)))
603 603  
720 +(((
721 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
722 +)))
604 604  
605 -The battery related documents as below:
606 606  
607 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
608 -* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
609 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
725 +== 2.10 ​Firmware Change Log ==
610 610  
611 611  (((
612 -[[image:image-20220708140453-6.png]]
728 +**Firmware download link:**
613 613  )))
614 614  
731 +(((
732 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
733 +)))
615 615  
735 +(((
736 +
737 +)))
616 616  
617 -=== 2.9.2  Power consumption Analyze ===
739 +(((
740 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
741 +)))
618 618  
619 619  (((
620 -Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
744 +
621 621  )))
622 622  
747 +(((
748 +**V1.0.**
749 +)))
623 623  
624 624  (((
625 -Instruction to use as below:
752 +Release
626 626  )))
627 627  
755 +
756 +== 2.11 ​Battery Analysis ==
757 +
758 +=== 2.11.1 ​Battery Type ===
759 +
628 628  (((
629 -(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
761 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
630 630  )))
631 631  
764 +(((
765 +The battery is designed to last for more than 5 years for the LSN50.
766 +)))
632 632  
633 633  (((
634 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose
769 +(((
770 +The battery-related documents are as below:
635 635  )))
772 +)))
636 636  
637 637  * (((
638 -Product Model
775 +[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
639 639  )))
640 640  * (((
641 -Uplink Interval
778 +[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
642 642  )))
643 643  * (((
644 -Working Mode
781 +[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
645 645  )))
646 646  
647 -(((
648 -And the Life expectation in difference case will be shown on the right.
649 -)))
784 + [[image:image-20220610172436-1.png]]
650 650  
651 -[[image:image-20220708141352-7.jpeg]]
652 652  
653 653  
788 +=== 2.11.2 ​Battery Note ===
654 654  
655 -=== 2.9.3  ​Battery Note ===
656 -
657 657  (((
658 658  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
659 659  )))
... ... @@ -660,166 +660,298 @@
660 660  
661 661  
662 662  
663 -=== 2.9. Replace the battery ===
796 +=== 2.11.3 Replace the battery ===
664 664  
665 665  (((
666 -The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
799 +If Battery is lower than 2.7v, user should replace the battery of LSE01.
667 667  )))
668 668  
669 -
670 -
671 -= 3. ​ Access NB-IoT Module =
672 -
673 673  (((
674 -Users can directly access the AT command set of the NB-IoT module.
803 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
675 675  )))
676 676  
677 677  (((
678 -The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
807 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
679 679  )))
680 680  
681 -[[image:1657261278785-153.png]]
682 682  
683 683  
812 += 3. ​Using the AT Commands =
684 684  
685 -= 4.  Using the AT Commands =
814 +== 3.1 Access AT Commands ==
686 686  
687 -== 4.1  Access AT Commands ==
688 688  
689 -See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
817 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
690 690  
819 +[[image:1654501986557-872.png||height="391" width="800"]]
691 691  
692 -AT+<CMD>?  : Help on <CMD>
693 693  
694 -AT+<CMD>         : Run <CMD>
822 +Or if you have below board, use below connection:
695 695  
696 -AT+<CMD>=<value> : Set the value
697 697  
698 -AT+<CMD>=?  : Get the value
825 +[[image:1654502005655-729.png||height="503" width="801"]]
699 699  
700 700  
828 +
829 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
830 +
831 +
832 + [[image:1654502050864-459.png||height="564" width="806"]]
833 +
834 +
835 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
836 +
837 +
838 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
839 +
840 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
841 +
842 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
843 +
844 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
845 +
846 +
701 701  (% style="color:#037691" %)**General Commands**(%%)      
702 702  
703 -AT  : Attention       
849 +(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
704 704  
705 -AT?  : Short Help     
851 +(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
706 706  
707 -ATZ  : MCU Reset    
853 +(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
708 708  
709 -AT+TDC  : Application Data Transmission Interval
855 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
710 710  
711 -AT+CFG  : Print all configurations
712 712  
713 -AT+CFGMOD           : Working mode selection
858 +(% style="color:#037691" %)**Keys, IDs and EUIs management**
714 714  
715 -AT+INTMOD            : Set the trigger interrupt mode
860 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
716 716  
717 -AT+5VT  : Set extend the time of 5V power  
862 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
718 718  
719 -AT+PRO  : Choose agreement
864 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
720 720  
721 -AT+WEIGRE  : Get weight or set weight to 0
866 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
722 722  
723 -AT+WEIGAP  : Get or Set the GapValue of weight
868 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
724 724  
725 -AT+RXDL  : Extend the sending and receiving time
870 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
726 726  
727 -AT+CNTFAC  : Get or set counting parameters
872 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
728 728  
729 -AT+SERVADDR  : Server Address
874 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
730 730  
876 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
731 731  
732 -(% style="color:#037691" %)**COAP Management**      
878 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
733 733  
734 -AT+URI            : Resource parameters
880 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
735 735  
882 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
736 736  
737 -(% style="color:#037691" %)**UDP Management**
884 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
738 738  
739 -AT+CFM          : Upload confirmation mode (only valid for UDP)
886 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
740 740  
888 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
741 741  
742 -(% style="color:#037691" %)**MQTT Management**
890 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
743 743  
744 -AT+CLIENT               : Get or Set MQTT client
745 745  
746 -AT+UNAME  : Get or Set MQTT Username
893 +(% style="color:#037691" %)**LoRa Network Management**
747 747  
748 -AT+PWD                  : Get or Set MQTT password
895 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
749 749  
750 -AT+PUBTOPI : Get or Set MQTT publish topic
897 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
751 751  
752 -AT+SUBTOPIC  : Get or Set MQTT subscription topic
899 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
753 753  
901 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
754 754  
755 -(% style="color:#037691" %)**Information**          
903 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
756 756  
757 -AT+FDR  : Factory Data Reset
905 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
758 758  
759 -AT+PWOR : Serial Access Password
907 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
760 760  
909 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
761 761  
911 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
762 762  
763 -= ​5.  FAQ =
913 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
764 764  
765 -== 5.1 How to Upgrade Firmware ==
915 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
766 766  
917 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
767 767  
919 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
920 +
921 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
922 +
923 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
924 +
925 +
926 +(% style="color:#037691" %)**Information** 
927 +
928 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
929 +
930 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
931 +
932 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
933 +
934 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
935 +
936 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
937 +
938 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
939 +
940 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
941 +
942 +
943 += ​4. FAQ =
944 +
945 +== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
946 +
768 768  (((
769 -User can upgrade the firmware for 1) bug fix, 2) new feature release.
948 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
949 +When downloading the images, choose the required image file for download. ​
770 770  )))
771 771  
772 772  (((
773 -Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
953 +
774 774  )))
775 775  
776 776  (((
777 -(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
957 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
778 778  )))
779 779  
960 +(((
961 +
962 +)))
780 780  
964 +(((
965 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
966 +)))
781 781  
782 -= 6.  Trouble Shooting =
968 +(((
969 +
970 +)))
783 783  
784 -== 6.1  ​Connection problem when uploading firmware ==
972 +(((
973 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
974 +)))
785 785  
976 +[[image:image-20220606154726-3.png]]
786 786  
787 -(% class="wikigeneratedid" %)
978 +
979 +When you use the TTN network, the US915 frequency bands use are:
980 +
981 +* 903.9 - SF7BW125 to SF10BW125
982 +* 904.1 - SF7BW125 to SF10BW125
983 +* 904.3 - SF7BW125 to SF10BW125
984 +* 904.5 - SF7BW125 to SF10BW125
985 +* 904.7 - SF7BW125 to SF10BW125
986 +* 904.9 - SF7BW125 to SF10BW125
987 +* 905.1 - SF7BW125 to SF10BW125
988 +* 905.3 - SF7BW125 to SF10BW125
989 +* 904.6 - SF8BW500
990 +
788 788  (((
789 -(% style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]]
992 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
993 +
994 +* (% style="color:#037691" %)**AT+CHE=2**
995 +* (% style="color:#037691" %)**ATZ**
790 790  )))
791 791  
998 +(((
999 +
792 792  
1001 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
1002 +)))
793 793  
794 -== 6.2  AT Command input doesn't work ==
1004 +(((
1005 +
1006 +)))
795 795  
796 796  (((
797 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1009 +The **AU915** band is similar. Below are the AU915 Uplink Channels.
798 798  )))
799 799  
1012 +[[image:image-20220606154825-4.png]]
800 800  
801 801  
802 -= 7. ​ Order Info =
803 803  
1016 += 5. Trouble Shooting =
804 804  
805 -Part Number**:** (% style="color:#4f81bd" %)**NSE01**
1018 +== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
806 806  
1020 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
807 807  
1022 +
1023 +== 5.2 AT Command input doesn’t work ==
1024 +
1025 +(((
1026 +In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1027 +)))
1028 +
1029 +
1030 +== 5.3 Device rejoin in at the second uplink packet ==
1031 +
1032 +(% style="color:#4f81bd" %)**Issue describe as below:**
1033 +
1034 +[[image:1654500909990-784.png]]
1035 +
1036 +
1037 +(% style="color:#4f81bd" %)**Cause for this issue:**
1038 +
1039 +(((
1040 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
1041 +)))
1042 +
1043 +
1044 +(% style="color:#4f81bd" %)**Solution: **
1045 +
1046 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1047 +
1048 +[[image:1654500929571-736.png||height="458" width="832"]]
1049 +
1050 +
1051 += 6. ​Order Info =
1052 +
1053 +
1054 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1055 +
1056 +
1057 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1058 +
1059 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1060 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1061 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1062 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1063 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1064 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1065 +* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1066 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1067 +
1068 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1069 +
1070 +* (% style="color:red" %)**4**(%%): 4000mAh battery
1071 +* (% style="color:red" %)**8**(%%): 8500mAh battery
1072 +
808 808  (% class="wikigeneratedid" %)
809 809  (((
810 810  
811 811  )))
812 812  
813 -= 8.  Packing Info =
1078 += 7. Packing Info =
814 814  
815 815  (((
816 816  
817 817  
818 818  (% style="color:#037691" %)**Package Includes**:
1084 +)))
819 819  
820 -
821 -* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
822 -* External antenna x 1
1086 +* (((
1087 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
823 823  )))
824 824  
825 825  (((
... ... @@ -826,20 +826,24 @@
826 826  
827 827  
828 828  (% style="color:#037691" %)**Dimension and weight**:
1094 +)))
829 829  
830 -
831 -* Size: 195 x 125 x 55 mm
832 -* Weight:   420g
1096 +* (((
1097 +Device Size: cm
833 833  )))
1099 +* (((
1100 +Device Weight: g
1101 +)))
1102 +* (((
1103 +Package Size / pcs : cm
1104 +)))
1105 +* (((
1106 +Weight / pcs : g
834 834  
835 -(((
836 836  
837 -
838 -
839 -
840 840  )))
841 841  
842 -= 9.  Support =
1111 += 8. Support =
843 843  
844 844  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
845 845  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657245163077-232.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -102.7 KB
Content