Last modified by Bei Jinggeng on 2024/05/31 09:53

From version 65.12
edited by Xiaoling
on 2022/07/08 15:49
Change comment: There is no comment for this version
To version 38.1
edited by Xiaoling
on 2022/06/25 16:31
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
Content
... ... @@ -20,640 +20,777 @@
20 20  
21 21  
22 22  
23 += 1. Introduction =
23 23  
24 -= 1.  Introduction =
25 +== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
25 25  
26 -== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
27 -
28 28  (((
29 29  
30 30  
31 -(((
32 -Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
30 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
33 33  )))
34 34  
35 35  (((
36 -It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
34 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
37 37  )))
38 38  
39 39  (((
40 -The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
38 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
41 41  )))
42 42  
43 43  (((
44 -NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
42 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
45 45  )))
46 46  
47 -
45 +(((
46 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
48 48  )))
49 49  
49 +
50 50  [[image:1654503236291-817.png]]
51 51  
52 52  
53 -[[image:1657245163077-232.png]]
53 +[[image:1654503265560-120.png]]
54 54  
55 55  
56 56  
57 -== 1.2 ​ Features ==
57 +== 1.2 ​Features ==
58 58  
59 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
59 +* LoRaWAN 1.0.3 Class A
60 +* Ultra low power consumption
60 60  * Monitor Soil Moisture
61 61  * Monitor Soil Temperature
62 62  * Monitor Soil Conductivity
64 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
63 63  * AT Commands to change parameters
64 64  * Uplink on periodically
65 65  * Downlink to change configure
66 66  * IP66 Waterproof Enclosure
67 -* Ultra-Low Power consumption
68 -* AT Commands to change parameters
69 -* Micro SIM card slot for NB-IoT SIM
70 -* 8500mAh Battery for long term use
69 +* 4000mAh or 8500mAh Battery for long term use
71 71  
72 72  
73 -== 1.3  Specification ==
74 74  
73 +== 1.3 Specification ==
75 75  
76 -(% style="color:#037691" %)**Common DC Characteristics:**
75 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
77 77  
78 -* Supply Voltage: 2.1v ~~ 3.6v
79 -* Operating Temperature: -40 ~~ 85°C
77 +[[image:image-20220606162220-5.png]]
80 80  
81 -(% style="color:#037691" %)**NB-IoT Spec:**
82 82  
83 -* - B1 @H-FDD: 2100MHz
84 -* - B3 @H-FDD: 1800MHz
85 -* - B8 @H-FDD: 900MHz
86 -* - B5 @H-FDD: 850MHz
87 -* - B20 @H-FDD: 800MHz
88 -* - B28 @H-FDD: 700MHz
89 89  
90 -Probe(% style="color:#037691" %)** Specification:**
81 +== ​1.4 Applications ==
91 91  
92 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
83 +* Smart Agriculture
93 93  
94 -[[image:image-20220708101224-1.png]]
85 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
86 +​
95 95  
88 +== 1.5 Firmware Change log ==
96 96  
97 97  
98 -== 1.4  Applications ==
91 +**LSE01 v1.0 :**  Release
99 99  
100 -* Smart Agriculture
101 101  
102 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
103 -​
104 104  
105 -== 1. Pin Definitions ==
95 += 2. Configure LSE01 to connect to LoRaWAN network =
106 106  
97 +== 2.1 How it works ==
107 107  
108 -[[image:1657246476176-652.png]]
99 +(((
100 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
101 +)))
109 109  
103 +(((
104 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
105 +)))
110 110  
111 111  
112 -= 2.  Use NSE01 to communicate with IoT Server =
113 113  
114 -== 2. How it works ==
109 +== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
115 115  
111 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
116 116  
113 +
114 +[[image:1654503992078-669.png]]
115 +
116 +
117 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
118 +
119 +
120 +(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
121 +
122 +Each LSE01 is shipped with a sticker with the default device EUI as below:
123 +
124 +[[image:image-20220606163732-6.jpeg]]
125 +
126 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
127 +
128 +**Add APP EUI in the application**
129 +
130 +
131 +[[image:1654504596150-405.png]]
132 +
133 +
134 +
135 +**Add APP KEY and DEV EUI**
136 +
137 +[[image:1654504683289-357.png]]
138 +
139 +
140 +
141 +(% style="color:blue" %)**Step 2**(%%): Power on LSE01
142 +
143 +
144 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
145 +
146 +[[image:image-20220606163915-7.png]]
147 +
148 +
149 +(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
150 +
151 +[[image:1654504778294-788.png]]
152 +
153 +
154 +
155 +== 2.3 Uplink Payload ==
156 +
157 +
158 +=== 2.3.1 MOD~=0(Default Mode) ===
159 +
160 +LSE01 will uplink payload via LoRaWAN with below payload format: 
161 +
117 117  (((
118 -The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
163 +Uplink payload includes in total 11 bytes.
119 119  )))
120 120  
166 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
167 +|(((
168 +**Size**
121 121  
170 +**(bytes)**
171 +)))|**2**|**2**|**2**|**2**|**2**|**1**
172 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
173 +Temperature
174 +
175 +(Reserve, Ignore now)
176 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
177 +MOD & Digital Interrupt
178 +
179 +(Optional)
180 +)))
181 +
182 +
183 +
184 +=== 2.3.2 MOD~=1(Original value) ===
185 +
186 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
187 +
188 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
189 +|(((
190 +**Size**
191 +
192 +**(bytes)**
193 +)))|**2**|**2**|**2**|**2**|**2**|**1**
194 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
195 +Temperature
196 +
197 +(Reserve, Ignore now)
198 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
199 +MOD & Digital Interrupt
200 +
201 +(Optional)
202 +)))
203 +
204 +
205 +
206 +=== 2.3.3 Battery Info ===
207 +
122 122  (((
123 -The diagram below shows the working flow in default firmware of NSE01:
209 +Check the battery voltage for LSE01.
124 124  )))
125 125  
126 -[[image:image-20220708101605-2.png]]
212 +(((
213 +Ex1: 0x0B45 = 2885mV
214 +)))
127 127  
128 128  (((
217 +Ex2: 0x0B49 = 2889mV
218 +)))
219 +
220 +
221 +
222 +=== 2.3.4 Soil Moisture ===
223 +
224 +(((
225 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
226 +)))
227 +
228 +(((
229 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
230 +)))
231 +
232 +(((
129 129  
130 130  )))
131 131  
236 +(((
237 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
238 +)))
132 132  
133 133  
134 -== 2.2 ​ Configure the NSE01 ==
135 135  
242 +=== 2.3.5 Soil Temperature ===
136 136  
137 -=== 2.2.1 Test Requirement ===
244 +(((
245 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
246 +)))
138 138  
248 +(((
249 +**Example**:
250 +)))
139 139  
140 140  (((
141 -To use NSE01 in your city, make sure meet below requirements:
253 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
142 142  )))
143 143  
144 -* Your local operator has already distributed a NB-IoT Network there.
145 -* The local NB-IoT network used the band that NSE01 supports.
146 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
256 +(((
257 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
258 +)))
147 147  
260 +
261 +
262 +=== 2.3.6 Soil Conductivity (EC) ===
263 +
148 148  (((
149 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
265 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
150 150  )))
151 151  
268 +(((
269 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
270 +)))
152 152  
153 -[[image:1657249419225-449.png]]
272 +(((
273 +Generally, the EC value of irrigation water is less than 800uS / cm.
274 +)))
154 154  
276 +(((
277 +
278 +)))
155 155  
280 +(((
281 +
282 +)))
156 156  
157 -=== 2.2.2 Insert SIM card ===
284 +=== 2.3.7 MOD ===
158 158  
286 +Firmware version at least v2.1 supports changing mode.
287 +
288 +For example, bytes[10]=90
289 +
290 +mod=(bytes[10]>>7)&0x01=1.
291 +
292 +
293 +**Downlink Command:**
294 +
295 +If payload = 0x0A00, workmode=0
296 +
297 +If** **payload =** **0x0A01, workmode=1
298 +
299 +
300 +
301 +=== 2.3.8 ​Decode payload in The Things Network ===
302 +
303 +While using TTN network, you can add the payload format to decode the payload.
304 +
305 +
306 +[[image:1654505570700-128.png]]
307 +
159 159  (((
160 -Insert the NB-IoT Card get from your provider.
309 +The payload decoder function for TTN is here:
161 161  )))
162 162  
163 163  (((
164 -User need to take out the NB-IoT module and insert the SIM card like below:
313 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
165 165  )))
166 166  
167 167  
168 -[[image:1657249468462-536.png]]
317 +== 2.4 Uplink Interval ==
169 169  
319 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
170 170  
171 171  
172 -=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
173 173  
323 +== 2.5 Downlink Payload ==
324 +
325 +By default, LSE50 prints the downlink payload to console port.
326 +
327 +[[image:image-20220606165544-8.png]]
328 +
329 +
174 174  (((
331 +**Examples:**
332 +)))
333 +
175 175  (((
176 -User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
335 +
177 177  )))
337 +
338 +* (((
339 +**Set TDC**
178 178  )))
179 179  
342 +(((
343 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
344 +)))
180 180  
181 -**Connection:**
346 +(((
347 +Payload:    01 00 00 1E    TDC=30S
348 +)))
182 182  
183 - (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
350 +(((
351 +Payload:    01 00 00 3C    TDC=60S
352 +)))
184 184  
185 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
354 +(((
355 +
356 +)))
186 186  
187 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
358 +* (((
359 +**Reset**
360 +)))
188 188  
362 +(((
363 +If payload = 0x04FF, it will reset the LSE01
364 +)))
189 189  
190 -In the PC, use below serial tool settings:
191 191  
192 -* Baud:  (% style="color:green" %)**9600**
193 -* Data bits:** (% style="color:green" %)8(%%)**
194 -* Stop bits: (% style="color:green" %)**1**
195 -* Parity:  (% style="color:green" %)**None**
196 -* Flow Control: (% style="color:green" %)**None**
367 +* **CFM**
197 197  
369 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
370 +
371 +
372 +
373 +== 2.6 ​Show Data in DataCake IoT Server ==
374 +
198 198  (((
199 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
376 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
200 200  )))
201 201  
202 -[[image:image-20220708110657-3.png]]
379 +(((
380 +
381 +)))
203 203  
204 204  (((
205 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
384 +(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
206 206  )))
207 207  
387 +(((
388 +(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
389 +)))
208 208  
209 209  
210 -=== 2.2.4 Use CoAP protocol to uplink data ===
392 +[[image:1654505857935-743.png]]
211 211  
212 -(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
213 213  
395 +[[image:1654505874829-548.png]]
214 214  
215 -**Use below commands:**
216 216  
217 -* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
218 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
219 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
398 +(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
220 220  
221 -For parameter description, please refer to AT command set
400 +(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
222 222  
223 -[[image:1657249793983-486.png]]
224 224  
403 +[[image:1654505905236-553.png]]
225 225  
226 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
227 227  
228 -[[image:1657249831934-534.png]]
406 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
229 229  
408 +[[image:1654505925508-181.png]]
230 230  
231 231  
232 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
233 233  
234 -This feature is supported since firmware version v1.0.1
412 +== 2.7 Frequency Plans ==
235 235  
414 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
236 236  
237 -* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
238 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
239 -* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
240 240  
241 -[[image:1657249864775-321.png]]
417 +=== 2.7.1 EU863-870 (EU868) ===
242 242  
419 +(% style="color:#037691" %)** Uplink:**
243 243  
244 -[[image:1657249930215-289.png]]
421 +868.1 - SF7BW125 to SF12BW125
245 245  
423 +868.3 - SF7BW125 to SF12BW125 and SF7BW250
246 246  
425 +868.5 - SF7BW125 to SF12BW125
247 247  
248 -=== 2.2.6 Use MQTT protocol to uplink data ===
427 +867.1 - SF7BW125 to SF12BW125
249 249  
250 -This feature is supported since firmware version v110
429 +867.3 - SF7BW125 to SF12BW125
251 251  
431 +867.5 - SF7BW125 to SF12BW125
252 252  
253 -* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
254 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
255 -* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
256 -* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
257 -* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
258 -* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
259 -* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
433 +867.7 - SF7BW125 to SF12BW125
260 260  
261 -[[image:1657249978444-674.png]]
435 +867.9 - SF7BW125 to SF12BW125
262 262  
437 +868.8 - FSK
263 263  
264 -[[image:1657249990869-686.png]]
265 265  
440 +(% style="color:#037691" %)** Downlink:**
266 266  
267 -(((
268 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
269 -)))
442 +Uplink channels 1-9 (RX1)
270 270  
444 +869.525 - SF9BW125 (RX2 downlink only)
271 271  
272 272  
273 -=== 2.2.7 Use TCP protocol to uplink data ===
274 274  
275 -This feature is supported since firmware version v110
448 +=== 2.7.2 US902-928(US915) ===
276 276  
450 +Used in USA, Canada and South America. Default use CHE=2
277 277  
278 -* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
279 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
452 +(% style="color:#037691" %)**Uplink:**
280 280  
281 -[[image:1657250217799-140.png]]
454 +903.9 - SF7BW125 to SF10BW125
282 282  
456 +904.1 - SF7BW125 to SF10BW125
283 283  
284 -[[image:1657250255956-604.png]]
458 +904.3 - SF7BW125 to SF10BW125
285 285  
460 +904.5 - SF7BW125 to SF10BW125
286 286  
462 +904.7 - SF7BW125 to SF10BW125
287 287  
288 -=== 2.2.8 Change Update Interval ===
464 +904.9 - SF7BW125 to SF10BW125
289 289  
290 -User can use below command to change the (% style="color:green" %)**uplink interval**.
466 +905.1 - SF7BW125 to SF10BW125
291 291  
292 -* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
468 +905.3 - SF7BW125 to SF10BW125
293 293  
294 -(((
295 -(% style="color:red" %)**NOTE:**
296 -)))
297 297  
298 -(((
299 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
300 -)))
471 +(% style="color:#037691" %)**Downlink:**
301 301  
473 +923.3 - SF7BW500 to SF12BW500
302 302  
475 +923.9 - SF7BW500 to SF12BW500
303 303  
304 -== 2. Uplink Payload ==
477 +924.5 - SF7BW500 to SF12BW500
305 305  
306 -In this mode, uplink payload includes in total 18 bytes
479 +925.1 - SF7BW500 to SF12BW500
307 307  
308 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
309 -|=(% style="width: 60px;" %)(((
310 -**Size(bytes)**
311 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1**
312 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
481 +925.7 - SF7BW500 to SF12BW500
313 313  
314 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
483 +926.3 - SF7BW500 to SF12BW500
315 315  
485 +926.9 - SF7BW500 to SF12BW500
316 316  
317 -[[image:image-20220708111918-4.png]]
487 +927.5 - SF7BW500 to SF12BW500
318 318  
489 +923.3 - SF12BW500(RX2 downlink only)
319 319  
320 -The payload is ASCII string, representative same HEX:
321 321  
322 -0x72403155615900640c7817075e0a8c02f900 where:
323 323  
324 -* Device ID: 0x 724031556159 = 724031556159
325 -* Version: 0x0064=100=1.0.0
493 +=== 2.7.3 CN470-510 (CN470) ===
326 326  
327 -* BAT: 0x0c78 = 3192 mV = 3.192V
328 -* Singal: 0x17 = 23
329 -* Soil Moisture: 0x075e= 1886 = 18.86  %
330 -* Soil Temperature:0x0a8c =2700=27 °C
331 -* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
332 -* Interrupt: 0x00 = 0
495 +Used in China, Default use CHE=1
333 333  
497 +(% style="color:#037691" %)**Uplink:**
334 334  
335 -== 2.4  Payload Explanation and Sensor Interface ==
499 +486.3 - SF7BW125 to SF12BW125
336 336  
501 +486.5 - SF7BW125 to SF12BW125
337 337  
338 -=== 2.4.1  Device ID ===
503 +486.7 - SF7BW125 to SF12BW125
339 339  
340 -By default, the Device ID equal to the last 6 bytes of IMEI.
505 +486.9 - SF7BW125 to SF12BW125
341 341  
342 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
507 +487.1 - SF7BW125 to SF12BW125
343 343  
344 -**Example:**
509 +487.3 - SF7BW125 to SF12BW125
345 345  
346 -AT+DEUI=A84041F15612
511 +487.5 - SF7BW125 to SF12BW125
347 347  
348 -The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
513 +487.7 - SF7BW125 to SF12BW125
349 349  
350 350  
516 +(% style="color:#037691" %)**Downlink:**
351 351  
352 -=== 2.4.2  Version Info ===
518 +506.7 - SF7BW125 to SF12BW125
353 353  
354 -Specify the software version: 0x64=100, means firmware version 1.00.
520 +506.9 - SF7BW125 to SF12BW125
355 355  
356 -For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
522 +507.1 - SF7BW125 to SF12BW125
357 357  
524 +507.3 - SF7BW125 to SF12BW125
358 358  
526 +507.5 - SF7BW125 to SF12BW125
359 359  
360 -=== 2.4.3  Battery Info ===
528 +507.7 - SF7BW125 to SF12BW125
361 361  
362 -(((
363 -Check the battery voltage for LSE01.
364 -)))
530 +507.9 - SF7BW125 to SF12BW125
365 365  
366 -(((
367 -Ex1: 0x0B45 = 2885mV
368 -)))
532 +508.1 - SF7BW125 to SF12BW125
369 369  
370 -(((
371 -Ex2: 0x0B49 = 2889mV
372 -)))
534 +505.3 - SF12BW125 (RX2 downlink only)
373 373  
374 374  
375 375  
376 -=== 2.4.4  Signal Strength ===
538 +=== 2.7.4 AU915-928(AU915) ===
377 377  
378 -NB-IoT Network signal Strength.
540 +Default use CHE=2
379 379  
380 -**Ex1: 0x1d = 29**
542 +(% style="color:#037691" %)**Uplink:**
381 381  
382 -(% style="color:blue" %)**0**(%%)  -113dBm or less
544 +916.8 - SF7BW125 to SF12BW125
383 383  
384 -(% style="color:blue" %)**1**(%%)  -111dBm
546 +917.0 - SF7BW125 to SF12BW125
385 385  
386 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
548 +917.2 - SF7BW125 to SF12BW125
387 387  
388 -(% style="color:blue" %)**31**  (%%) -51dBm or greater
550 +917.4 - SF7BW125 to SF12BW125
389 389  
390 -(% style="color:blue" %)**99**   (%%) Not known or not detectable
552 +917.6 - SF7BW125 to SF12BW125
391 391  
554 +917.8 - SF7BW125 to SF12BW125
392 392  
556 +918.0 - SF7BW125 to SF12BW125
393 393  
394 -=== 2.4.5  Soil Moisture ===
558 +918.2 - SF7BW125 to SF12BW125
395 395  
396 -(((
397 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
398 -)))
399 399  
400 -(((
401 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
402 -)))
561 +(% style="color:#037691" %)**Downlink:**
403 403  
404 -(((
405 -
406 -)))
563 +923.3 - SF7BW500 to SF12BW500
407 407  
408 -(((
409 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
410 -)))
565 +923.9 - SF7BW500 to SF12BW500
411 411  
567 +924.5 - SF7BW500 to SF12BW500
412 412  
569 +925.1 - SF7BW500 to SF12BW500
413 413  
414 -=== 2.4.6  Soil Temperature ===
571 +925.7 - SF7BW500 to SF12BW500
415 415  
416 -(((
417 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
418 -)))
573 +926.3 - SF7BW500 to SF12BW500
419 419  
420 -(((
421 -**Example**:
422 -)))
575 +926.9 - SF7BW500 to SF12BW500
423 423  
424 -(((
425 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
426 -)))
577 +927.5 - SF7BW500 to SF12BW500
427 427  
428 -(((
429 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
430 -)))
579 +923.3 - SF12BW500(RX2 downlink only)
431 431  
432 432  
433 433  
434 -=== 2.4.7  Soil Conductivity (EC) ===
583 +=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
435 435  
436 -(((
437 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
438 -)))
585 +(% style="color:#037691" %)**Default Uplink channel:**
439 439  
440 -(((
441 -For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
442 -)))
587 +923.2 - SF7BW125 to SF10BW125
443 443  
444 -(((
445 -Generally, the EC value of irrigation water is less than 800uS / cm.
446 -)))
589 +923.4 - SF7BW125 to SF10BW125
447 447  
448 -(((
449 -
450 -)))
451 451  
452 -(((
453 -
454 -)))
592 +(% style="color:#037691" %)**Additional Uplink Channel**:
455 455  
456 -=== 2.4.8  Digital Interrupt ===
594 +(OTAA mode, channel added by JoinAccept message)
457 457  
458 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
596 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
459 459  
460 -The command is:
598 +922.2 - SF7BW125 to SF10BW125
461 461  
462 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
600 +922.4 - SF7BW125 to SF10BW125
463 463  
602 +922.6 - SF7BW125 to SF10BW125
464 464  
465 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
604 +922.8 - SF7BW125 to SF10BW125
466 466  
606 +923.0 - SF7BW125 to SF10BW125
467 467  
468 -Example:
608 +922.0 - SF7BW125 to SF10BW125
469 469  
470 -0x(00): Normal uplink packet.
471 471  
472 -0x(01): Interrupt Uplink Packet.
611 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
473 473  
613 +923.6 - SF7BW125 to SF10BW125
474 474  
615 +923.8 - SF7BW125 to SF10BW125
475 475  
476 -=== 2.4. ​+5V Output ===
617 +924.0 - SF7BW125 to SF10BW125
477 477  
478 -NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
619 +924.2 - SF7BW125 to SF10BW125
479 479  
621 +924.4 - SF7BW125 to SF10BW125
480 480  
481 -The 5V output time can be controlled by AT Command.
623 +924.6 - SF7BW125 to SF10BW125
482 482  
483 -(% style="color:blue" %)**AT+5VT=1000**
484 484  
485 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
626 +(% style="color:#037691" %)** Downlink:**
486 486  
628 +Uplink channels 1-8 (RX1)
487 487  
630 +923.2 - SF10BW125 (RX2)
488 488  
489 -== 2.5  Downlink Payload ==
490 490  
491 -By default, NSE01 prints the downlink payload to console port.
492 492  
493 -[[image:image-20220708133731-5.png]]
634 +=== 2.7.6 KR920-923 (KR920) ===
494 494  
636 +Default channel:
495 495  
496 -(((
497 -(% style="color:blue" %)**Examples:**
498 -)))
638 +922.1 - SF7BW125 to SF12BW125
499 499  
500 -(((
501 -
502 -)))
640 +922.3 - SF7BW125 to SF12BW125
503 503  
504 -* (((
505 -(% style="color:blue" %)**Set TDC**
506 -)))
642 +922.5 - SF7BW125 to SF12BW125
507 507  
508 -(((
509 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
510 -)))
511 511  
512 -(((
513 -Payload:    01 00 00 1E    TDC=30S
514 -)))
645 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
515 515  
516 -(((
517 -Payload:    01 00 00 3C    TDC=60S
518 -)))
647 +922.1 - SF7BW125 to SF12BW125
519 519  
520 -(((
521 -
522 -)))
649 +922.3 - SF7BW125 to SF12BW125
523 523  
524 -* (((
525 -(% style="color:blue" %)**Reset**
526 -)))
651 +922.5 - SF7BW125 to SF12BW125
527 527  
528 -(((
529 -If payload = 0x04FF, it will reset the NSE01
530 -)))
653 +922.7 - SF7BW125 to SF12BW125
531 531  
655 +922.9 - SF7BW125 to SF12BW125
532 532  
533 -* (% style="color:blue" %)**INTMOD**
657 +923.1 - SF7BW125 to SF12BW125
534 534  
535 -Downlink Payload: 06000003, Set AT+INTMOD=3
659 +923.3 - SF7BW125 to SF12BW125
536 536  
537 537  
662 +(% style="color:#037691" %)**Downlink:**
538 538  
539 -== 2.6  ​LED Indicator ==
664 +Uplink channels 1-7(RX1)
540 540  
541 -(((
542 -The NSE01 has an internal LED which is to show the status of different state.
666 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
543 543  
544 544  
545 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
546 -* Then the LED will be on for 1 second means device is boot normally.
547 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
548 -* For each uplink probe, LED will be on for 500ms.
549 -)))
550 550  
670 +=== 2.7.7 IN865-867 (IN865) ===
551 551  
672 +(% style="color:#037691" %)** Uplink:**
552 552  
674 +865.0625 - SF7BW125 to SF12BW125
553 553  
554 -== 2.7  Installation in Soil ==
676 +865.4025 - SF7BW125 to SF12BW125
555 555  
556 -__**Measurement the soil surface**__
678 +865.9850 - SF7BW125 to SF12BW125
557 557  
558 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
559 559  
560 -[[image:1657259653666-883.png]]
681 +(% style="color:#037691" %) **Downlink:**
561 561  
683 +Uplink channels 1-3 (RX1)
562 562  
563 -(((
564 -
685 +866.550 - SF10BW125 (RX2)
565 565  
566 -(((
567 -Dig a hole with diameter > 20CM.
568 -)))
569 569  
570 -(((
571 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
572 -)))
573 -)))
574 574  
575 -[[image:1654506665940-119.png]]
576 576  
577 -(((
578 -
579 -)))
690 +== 2.8 LED Indicator ==
580 580  
692 +The LSE01 has an internal LED which is to show the status of different state.
581 581  
582 -== 2.8  ​Firmware Change Log ==
694 +* Blink once when device power on.
695 +* Solid ON for 5 seconds once device successful Join the network.
696 +* Blink once when device transmit a packet.
583 583  
584 584  
585 -Download URL & Firmware Change log
586 586  
587 -[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
588 588  
589 589  
590 -Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
591 591  
703 +== 2.9 Installation in Soil ==
592 592  
705 +**Measurement the soil surface**
593 593  
594 -== 2.9  ​Battery Analysis ==
595 595  
596 -=== 2.9.1  ​Battery Type ===
708 +[[image:1654506634463-199.png]]
597 597  
710 +(((
711 +(((
712 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
713 +)))
714 +)))
598 598  
599 -The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
600 600  
601 601  
602 -The battery is designed to last for several years depends on the actually use environment and update interval. 
718 +[[image:1654506665940-119.png]]
603 603  
720 +(((
721 +Dig a hole with diameter > 20CM.
722 +)))
604 604  
605 -The battery related documents as below:
724 +(((
725 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
726 +)))
606 606  
607 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
608 -* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
609 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
610 610  
729 +== 2.10 ​Firmware Change Log ==
730 +
611 611  (((
612 -[[image:image-20220708140453-6.png]]
732 +**Firmware download link:**
613 613  )))
614 614  
735 +(((
736 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
737 +)))
615 615  
739 +(((
740 +
741 +)))
616 616  
617 -=== 2.9.2  Power consumption Analyze ===
743 +(((
744 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
745 +)))
618 618  
619 619  (((
620 -Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
748 +
621 621  )))
622 622  
751 +(((
752 +**V1.0.**
753 +)))
623 623  
624 624  (((
625 -Instruction to use as below:
756 +Release
626 626  )))
627 627  
759 +
760 +== 2.11 ​Battery Analysis ==
761 +
762 +=== 2.11.1 ​Battery Type ===
763 +
628 628  (((
629 -(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
765 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
630 630  )))
631 631  
768 +(((
769 +The battery is designed to last for more than 5 years for the LSN50.
770 +)))
632 632  
633 633  (((
634 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose
773 +(((
774 +The battery-related documents are as below:
635 635  )))
776 +)))
636 636  
637 637  * (((
638 -Product Model
779 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
639 639  )))
640 640  * (((
641 -Uplink Interval
782 +[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
642 642  )))
643 643  * (((
644 -Working Mode
785 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
645 645  )))
646 646  
647 -(((
648 -And the Life expectation in difference case will be shown on the right.
649 -)))
788 + [[image:image-20220610172436-1.png]]
650 650  
651 -[[image:image-20220708141352-7.jpeg]]
652 652  
653 653  
792 +=== 2.11.2 ​Battery Note ===
654 654  
655 -=== 2.9.3  ​Battery Note ===
656 -
657 657  (((
658 658  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
659 659  )))
... ... @@ -660,166 +660,298 @@
660 660  
661 661  
662 662  
663 -=== 2.9. Replace the battery ===
800 +=== 2.11.3 Replace the battery ===
664 664  
665 665  (((
666 -The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
803 +If Battery is lower than 2.7v, user should replace the battery of LSE01.
667 667  )))
668 668  
669 -
670 -
671 -= 3. ​ Access NB-IoT Module =
672 -
673 673  (((
674 -Users can directly access the AT command set of the NB-IoT module.
807 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
675 675  )))
676 676  
677 677  (((
678 -The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
811 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
679 679  )))
680 680  
681 -[[image:1657261278785-153.png]]
682 682  
683 683  
816 += 3. ​Using the AT Commands =
684 684  
685 -= 4.  Using the AT Commands =
818 +== 3.1 Access AT Commands ==
686 686  
687 -== 4.1  Access AT Commands ==
688 688  
689 -See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
821 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
690 690  
823 +[[image:1654501986557-872.png||height="391" width="800"]]
691 691  
692 -AT+<CMD>?  : Help on <CMD>
693 693  
694 -AT+<CMD>         : Run <CMD>
826 +Or if you have below board, use below connection:
695 695  
696 -AT+<CMD>=<value> : Set the value
697 697  
698 -AT+<CMD>=?  : Get the value
829 +[[image:1654502005655-729.png||height="503" width="801"]]
699 699  
700 700  
832 +
833 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
834 +
835 +
836 + [[image:1654502050864-459.png||height="564" width="806"]]
837 +
838 +
839 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
840 +
841 +
842 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
843 +
844 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
845 +
846 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
847 +
848 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
849 +
850 +
701 701  (% style="color:#037691" %)**General Commands**(%%)      
702 702  
703 -AT  : Attention       
853 +(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
704 704  
705 -AT?  : Short Help     
855 +(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
706 706  
707 -ATZ  : MCU Reset    
857 +(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
708 708  
709 -AT+TDC  : Application Data Transmission Interval
859 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
710 710  
711 -AT+CFG  : Print all configurations
712 712  
713 -AT+CFGMOD           : Working mode selection
862 +(% style="color:#037691" %)**Keys, IDs and EUIs management**
714 714  
715 -AT+INTMOD            : Set the trigger interrupt mode
864 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
716 716  
717 -AT+5VT  : Set extend the time of 5V power  
866 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
718 718  
719 -AT+PRO  : Choose agreement
868 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
720 720  
721 -AT+WEIGRE  : Get weight or set weight to 0
870 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
722 722  
723 -AT+WEIGAP  : Get or Set the GapValue of weight
872 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
724 724  
725 -AT+RXDL  : Extend the sending and receiving time
874 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
726 726  
727 -AT+CNTFAC  : Get or set counting parameters
876 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
728 728  
729 -AT+SERVADDR  : Server Address
878 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
730 730  
880 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
731 731  
732 -(% style="color:#037691" %)**COAP Management**      
882 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
733 733  
734 -AT+URI            : Resource parameters
884 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
735 735  
886 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
736 736  
737 -(% style="color:#037691" %)**UDP Management**
888 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
738 738  
739 -AT+CFM          : Upload confirmation mode (only valid for UDP)
890 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
740 740  
892 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
741 741  
742 -(% style="color:#037691" %)**MQTT Management**
894 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
743 743  
744 -AT+CLIENT               : Get or Set MQTT client
745 745  
746 -AT+UNAME  : Get or Set MQTT Username
897 +(% style="color:#037691" %)**LoRa Network Management**
747 747  
748 -AT+PWD                  : Get or Set MQTT password
899 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
749 749  
750 -AT+PUBTOPI : Get or Set MQTT publish topic
901 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
751 751  
752 -AT+SUBTOPIC  : Get or Set MQTT subscription topic
903 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
753 753  
905 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
754 754  
755 -(% style="color:#037691" %)**Information**          
907 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
756 756  
757 -AT+FDR  : Factory Data Reset
909 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
758 758  
759 -AT+PWOR : Serial Access Password
911 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
760 760  
913 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
761 761  
915 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
762 762  
763 -= ​5.  FAQ =
917 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
764 764  
765 -== 5.1 How to Upgrade Firmware ==
919 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
766 766  
921 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
767 767  
923 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
924 +
925 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
926 +
927 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
928 +
929 +
930 +(% style="color:#037691" %)**Information** 
931 +
932 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
933 +
934 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
935 +
936 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
937 +
938 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
939 +
940 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
941 +
942 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
943 +
944 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
945 +
946 +
947 += ​4. FAQ =
948 +
949 +== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
950 +
768 768  (((
769 -User can upgrade the firmware for 1) bug fix, 2) new feature release.
952 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
953 +When downloading the images, choose the required image file for download. ​
770 770  )))
771 771  
772 772  (((
773 -Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
957 +
774 774  )))
775 775  
776 776  (((
777 -(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
961 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
778 778  )))
779 779  
964 +(((
965 +
966 +)))
780 780  
968 +(((
969 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
970 +)))
781 781  
782 -= 6.  Trouble Shooting =
972 +(((
973 +
974 +)))
783 783  
784 -== 6.1  ​Connection problem when uploading firmware ==
976 +(((
977 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
978 +)))
785 785  
980 +[[image:image-20220606154726-3.png]]
786 786  
787 -(% class="wikigeneratedid" %)
982 +
983 +When you use the TTN network, the US915 frequency bands use are:
984 +
985 +* 903.9 - SF7BW125 to SF10BW125
986 +* 904.1 - SF7BW125 to SF10BW125
987 +* 904.3 - SF7BW125 to SF10BW125
988 +* 904.5 - SF7BW125 to SF10BW125
989 +* 904.7 - SF7BW125 to SF10BW125
990 +* 904.9 - SF7BW125 to SF10BW125
991 +* 905.1 - SF7BW125 to SF10BW125
992 +* 905.3 - SF7BW125 to SF10BW125
993 +* 904.6 - SF8BW500
994 +
788 788  (((
789 -(% style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]]
996 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
997 +
998 +* (% style="color:#037691" %)**AT+CHE=2**
999 +* (% style="color:#037691" %)**ATZ**
790 790  )))
791 791  
1002 +(((
1003 +
792 792  
1005 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
1006 +)))
793 793  
794 -== 6.2  AT Command input doesn't work ==
1008 +(((
1009 +
1010 +)))
795 795  
796 796  (((
797 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1013 +The **AU915** band is similar. Below are the AU915 Uplink Channels.
798 798  )))
799 799  
1016 +[[image:image-20220606154825-4.png]]
800 800  
801 801  
802 -= 7. ​ Order Info =
803 803  
1020 += 5. Trouble Shooting =
804 804  
805 -Part Number**:** (% style="color:#4f81bd" %)**NSE01**
1022 +== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
806 806  
1024 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
807 807  
1026 +
1027 +== 5.2 AT Command input doesn’t work ==
1028 +
1029 +(((
1030 +In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1031 +)))
1032 +
1033 +
1034 +== 5.3 Device rejoin in at the second uplink packet ==
1035 +
1036 +(% style="color:#4f81bd" %)**Issue describe as below:**
1037 +
1038 +[[image:1654500909990-784.png]]
1039 +
1040 +
1041 +(% style="color:#4f81bd" %)**Cause for this issue:**
1042 +
1043 +(((
1044 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
1045 +)))
1046 +
1047 +
1048 +(% style="color:#4f81bd" %)**Solution: **
1049 +
1050 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1051 +
1052 +[[image:1654500929571-736.png||height="458" width="832"]]
1053 +
1054 +
1055 += 6. ​Order Info =
1056 +
1057 +
1058 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1059 +
1060 +
1061 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1062 +
1063 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1064 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1065 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1066 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1067 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1068 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1069 +* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1070 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1071 +
1072 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1073 +
1074 +* (% style="color:red" %)**4**(%%): 4000mAh battery
1075 +* (% style="color:red" %)**8**(%%): 8500mAh battery
1076 +
808 808  (% class="wikigeneratedid" %)
809 809  (((
810 810  
811 811  )))
812 812  
813 -= 8.  Packing Info =
1082 += 7. Packing Info =
814 814  
815 815  (((
816 816  
817 817  
818 818  (% style="color:#037691" %)**Package Includes**:
1088 +)))
819 819  
820 -
821 -* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
822 -* External antenna x 1
1090 +* (((
1091 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
823 823  )))
824 824  
825 825  (((
... ... @@ -826,20 +826,24 @@
826 826  
827 827  
828 828  (% style="color:#037691" %)**Dimension and weight**:
1098 +)))
829 829  
830 -
831 -* Size: 195 x 125 x 55 mm
832 -* Weight:   420g
1100 +* (((
1101 +Device Size: cm
833 833  )))
1103 +* (((
1104 +Device Weight: g
1105 +)))
1106 +* (((
1107 +Package Size / pcs : cm
1108 +)))
1109 +* (((
1110 +Weight / pcs : g
834 834  
835 -(((
836 836  
837 -
838 -
839 -
840 840  )))
841 841  
842 -= 9.  Support =
1115 += 8. Support =
843 843  
844 844  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
845 845  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657245163077-232.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -102.7 KB
Content