Changes for page NDDS75 -- NB-IoT Distance Detect Sensor User Manual
Last modified by Bei Jinggeng on 2024/05/31 09:53
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 23 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - NSE01NB-IoTSoil Moisture & EC Sensor User Manual1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -20,640 +20,777 @@ 20 20 21 21 22 22 23 += 1. Introduction = 23 23 24 -= 1. Introduction =25 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 25 25 26 -== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 27 - 28 28 ((( 29 29 30 30 31 -((( 32 -Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 30 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 33 33 ))) 34 34 35 35 ((( 36 -It candetect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and uploaditsvalueto the serverwirelessly.34 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 37 37 ))) 38 38 39 39 ((( 40 -The wireless technology used in NSE01 allowsthedevice to send data at a low data rate and reachultra-longdistances,providingultra-long-distance spread spectrumCommunication.38 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 41 41 ))) 42 42 43 43 ((( 44 - NSE01arepowered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%)batteries,whichcanbe usedforup to5years.42 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 45 45 ))) 46 46 47 - 45 +((( 46 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 48 48 ))) 49 49 49 + 50 50 [[image:1654503236291-817.png]] 51 51 52 52 53 -[[image:165 7245163077-232.png]]53 +[[image:1654503265560-120.png]] 54 54 55 55 56 56 57 -== 1.2 57 +== 1.2 Features == 58 58 59 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 59 +* LoRaWAN 1.0.3 Class A 60 +* Ultra low power consumption 60 60 * Monitor Soil Moisture 61 61 * Monitor Soil Temperature 62 62 * Monitor Soil Conductivity 64 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 63 63 * AT Commands to change parameters 64 64 * Uplink on periodically 65 65 * Downlink to change configure 66 66 * IP66 Waterproof Enclosure 67 -* Ultra-Low Power consumption 68 -* AT Commands to change parameters 69 -* Micro SIM card slot for NB-IoT SIM 70 -* 8500mAh Battery for long term use 69 +* 4000mAh or 8500mAh Battery for long term use 71 71 72 72 73 -== 1.3 Specification == 74 74 73 +== 1.3 Specification == 75 75 76 - (%style="color:#037691"%)**CommonDC Characteristics:**75 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 77 77 78 -* Supply Voltage: 2.1v ~~ 3.6v 79 -* Operating Temperature: -40 ~~ 85°C 77 +[[image:image-20220606162220-5.png]] 80 80 81 -(% style="color:#037691" %)**NB-IoT Spec:** 82 82 83 -* - B1 @H-FDD: 2100MHz 84 -* - B3 @H-FDD: 1800MHz 85 -* - B8 @H-FDD: 900MHz 86 -* - B5 @H-FDD: 850MHz 87 -* - B20 @H-FDD: 800MHz 88 -* - B28 @H-FDD: 700MHz 89 89 90 - Probe(% style="color:#037691"%)** Specification:**81 +== 1.4 Applications == 91 91 92 - MeasureVolume: Base on the centra pin oftheprobe, acylinder with 7cm diameterand 10cm height.83 +* Smart Agriculture 93 93 94 -[[image:image-20220708101224-1.png]] 85 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 86 + 95 95 88 +== 1.5 Firmware Change log == 96 96 97 97 98 - ==1.4Applications==91 +**LSE01 v1.0 :** Release 99 99 100 -* Smart Agriculture 101 101 102 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 103 - 104 104 105 -= =1.5PinDefinitions==95 += 2. Configure LSE01 to connect to LoRaWAN network = 106 106 97 +== 2.1 How it works == 107 107 108 -[[image:1657246476176-652.png]] 99 +((( 100 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 101 +))) 109 109 103 +((( 104 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 105 +))) 110 110 111 111 112 -= 2. Use NSE01 to communicate with IoT Server = 113 113 114 -== 2. 1Howitworks ==109 +== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 115 115 111 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 116 116 113 + 114 +[[image:1654503992078-669.png]] 115 + 116 + 117 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 118 + 119 + 120 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSE01. 121 + 122 +Each LSE01 is shipped with a sticker with the default device EUI as below: 123 + 124 +[[image:image-20220606163732-6.jpeg]] 125 + 126 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 127 + 128 +**Add APP EUI in the application** 129 + 130 + 131 +[[image:1654504596150-405.png]] 132 + 133 + 134 + 135 +**Add APP KEY and DEV EUI** 136 + 137 +[[image:1654504683289-357.png]] 138 + 139 + 140 + 141 +(% style="color:blue" %)**Step 2**(%%): Power on LSE01 142 + 143 + 144 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 145 + 146 +[[image:image-20220606163915-7.png]] 147 + 148 + 149 +(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 150 + 151 +[[image:1654504778294-788.png]] 152 + 153 + 154 + 155 +== 2.3 Uplink Payload == 156 + 157 + 158 +=== 2.3.1 MOD~=0(Default Mode) === 159 + 160 +LSE01 will uplink payload via LoRaWAN with below payload format: 161 + 117 117 ((( 118 - The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware inNSE01 will get environment data from sensors and send the value to local NB-IoT networkviathe NB-IoT module. The NB-IoT network will forwardthis valueto IoTserverviathe protocoldefinedbyNSE01.163 +Uplink payload includes in total 11 bytes. 119 119 ))) 120 120 166 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 167 +|((( 168 +**Size** 121 121 170 +**(bytes)** 171 +)))|**2**|**2**|**2**|**2**|**2**|**1** 172 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 173 +Temperature 174 + 175 +(Reserve, Ignore now) 176 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 177 +MOD & Digital Interrupt 178 + 179 +(Optional) 180 +))) 181 + 182 + 183 + 184 +=== 2.3.2 MOD~=1(Original value) === 185 + 186 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 187 + 188 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 189 +|((( 190 +**Size** 191 + 192 +**(bytes)** 193 +)))|**2**|**2**|**2**|**2**|**2**|**1** 194 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 195 +Temperature 196 + 197 +(Reserve, Ignore now) 198 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 199 +MOD & Digital Interrupt 200 + 201 +(Optional) 202 +))) 203 + 204 + 205 + 206 +=== 2.3.3 Battery Info === 207 + 122 122 ((( 123 - Thediagram below showstheworkingflow in defaultfirmwareofNSE01:209 +Check the battery voltage for LSE01. 124 124 ))) 125 125 126 -[[image:image-20220708101605-2.png]] 212 +((( 213 +Ex1: 0x0B45 = 2885mV 214 +))) 127 127 128 128 ((( 217 +Ex2: 0x0B49 = 2889mV 218 +))) 219 + 220 + 221 + 222 +=== 2.3.4 Soil Moisture === 223 + 224 +((( 225 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 226 +))) 227 + 228 +((( 229 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 230 +))) 231 + 232 +((( 129 129 130 130 ))) 131 131 236 +((( 237 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 238 +))) 132 132 133 133 134 -== 2.2 Configure the NSE01 == 135 135 242 +=== 2.3.5 Soil Temperature === 136 136 137 -=== 2.2.1 Test Requirement === 244 +((( 245 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 246 +))) 138 138 248 +((( 249 +**Example**: 250 +))) 139 139 140 140 ((( 141 - TouseNSE01inyourcity,makesureeetbelowrequirements:253 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 142 142 ))) 143 143 144 - * Your local operator has already distributed a NB-IoT Network there.145 - *ThelocalNB-IoTnetworkusedthebandthatNSE01supports.146 - * Your operator is able to distribute the data received in their NB-IoT network to your IoT server.256 +((( 257 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 258 +))) 147 147 260 + 261 + 262 +=== 2.3.6 Soil Conductivity (EC) === 263 + 148 148 ((( 149 - Below figureshows our testingstructure.Here we have NB-IoTnetwork coverage by ChinaMobile, the bandthey useis B8. The NSE01 willuse CoAP((% style="color:red" %)120.24.4.116:5683)(%%)orrawUDP((%style="color:red" %)120.24.4.116:5601)(%%) orMQTT((% style="color:red" %)120.24.4.116:1883)(%%)orTCP((%style="color:red"%)120.24.4.116:5600)(%%)protocoltosenddatato thetest server265 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 150 150 ))) 151 151 268 +((( 269 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 270 +))) 152 152 153 -[[image:1657249419225-449.png]] 272 +((( 273 +Generally, the EC value of irrigation water is less than 800uS / cm. 274 +))) 154 154 276 +((( 277 + 278 +))) 155 155 280 +((( 281 + 282 +))) 156 156 157 -=== 2. 2.2Insert SIMcard===284 +=== 2.3.7 MOD === 158 158 286 +Firmware version at least v2.1 supports changing mode. 287 + 288 +For example, bytes[10]=90 289 + 290 +mod=(bytes[10]>>7)&0x01=1. 291 + 292 + 293 +**Downlink Command:** 294 + 295 +If payload = 0x0A00, workmode=0 296 + 297 +If** **payload =** **0x0A01, workmode=1 298 + 299 + 300 + 301 +=== 2.3.8 Decode payload in The Things Network === 302 + 303 +While using TTN network, you can add the payload format to decode the payload. 304 + 305 + 306 +[[image:1654505570700-128.png]] 307 + 159 159 ((( 160 - Insert theNB-IoT Cardgetfromyourprovider.309 +The payload decoder function for TTN is here: 161 161 ))) 162 162 163 163 ((( 164 - Userneedtotakeout theNB-IoT moduleandinsertthe SIM cardkebelow:313 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]] 165 165 ))) 166 166 167 167 168 - [[image:1657249468462-536.png]]317 +== 2.4 Uplink Interval == 169 169 319 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 170 170 171 171 172 -=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 173 173 323 +== 2.5 Downlink Payload == 324 + 325 +By default, LSE50 prints the downlink payload to console port. 326 + 327 +[[image:image-20220606165544-8.png]] 328 + 329 + 174 174 ((( 331 +**Examples:** 332 +))) 333 + 175 175 ((( 176 - Userneed to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.335 + 177 177 ))) 337 + 338 +* ((( 339 +**Set TDC** 178 178 ))) 179 179 342 +((( 343 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 344 +))) 180 180 181 -**Connection:** 346 +((( 347 +Payload: 01 00 00 1E TDC=30S 348 +))) 182 182 183 - (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 350 +((( 351 +Payload: 01 00 00 3C TDC=60S 352 +))) 184 184 185 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 354 +((( 355 + 356 +))) 186 186 187 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 358 +* ((( 359 +**Reset** 360 +))) 188 188 362 +((( 363 +If payload = 0x04FF, it will reset the LSE01 364 +))) 189 189 190 -In the PC, use below serial tool settings: 191 191 192 -* Baud: (% style="color:green" %)**9600** 193 -* Data bits:** (% style="color:green" %)8(%%)** 194 -* Stop bits: (% style="color:green" %)**1** 195 -* Parity: (% style="color:green" %)**None** 196 -* Flow Control: (% style="color:green" %)**None** 367 +* **CFM** 197 197 369 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 370 + 371 + 372 + 373 +== 2.6 Show Data in DataCake IoT Server == 374 + 198 198 ((( 199 - Make sure the switch is in FLASHposition,thenpowern devicebyconnectingthejumper onNSE01. NSE01willoutputsystem info oncepoweronasbelow, we can enterthe (%style="color:green"%)**password:12345678**(%%)toaccessATmmandinput.376 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 200 200 ))) 201 201 202 -[[image:image-20220708110657-3.png]] 379 +((( 380 + 381 +))) 203 203 204 204 ((( 205 -(% style="color: red" %)Note: thevalidATCommandscanbe foundat: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]384 +(% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time. 206 206 ))) 207 207 387 +((( 388 +(% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 389 +))) 208 208 209 209 210 - === 2.2.4 UseCoAPprotocol to uplink data ===392 +[[image:1654505857935-743.png]] 211 211 212 -(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 213 213 395 +[[image:1654505874829-548.png]] 214 214 215 -**Use below commands:** 216 216 217 -* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 218 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 219 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 398 +(% style="color:blue" %)**Step 3**(%%)**:** Create an account or log in Datacake. 220 220 221 - Forparameterdescription,pleaserefertoATcommandset400 +(% style="color:blue" %)**Step 4**(%%)**:** Search the LSE01 and add DevEUI. 222 222 223 -[[image:1657249793983-486.png]] 224 224 403 +[[image:1654505905236-553.png]] 225 225 226 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 227 227 228 - [[image:1657249831934-534.png]]406 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 229 229 408 +[[image:1654505925508-181.png]] 230 230 231 231 232 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 233 233 234 - Thisfeatureis supported sincefirmware versionv1.0.1412 +== 2.7 Frequency Plans == 235 235 414 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 236 236 237 -* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 238 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 239 -* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 240 240 241 - [[image:1657249864775-321.png]]417 +=== 2.7.1 EU863-870 (EU868) === 242 242 419 +(% style="color:#037691" %)** Uplink:** 243 243 244 - [[image:1657249930215-289.png]]421 +868.1 - SF7BW125 to SF12BW125 245 245 423 +868.3 - SF7BW125 to SF12BW125 and SF7BW250 246 246 425 +868.5 - SF7BW125 to SF12BW125 247 247 248 - === 2.2.6UseMQTT protocolto uplink data ===427 +867.1 - SF7BW125 to SF12BW125 249 249 250 - Thisfeatureissupported since firmware versionv110429 +867.3 - SF7BW125 to SF12BW125 251 251 431 +867.5 - SF7BW125 to SF12BW125 252 252 253 -* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 254 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 255 -* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 256 -* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 257 -* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 258 -* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 259 -* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 433 +867.7 - SF7BW125 to SF12BW125 260 260 261 - [[image:1657249978444-674.png]]435 +867.9 - SF7BW125 to SF12BW125 262 262 437 +868.8 - FSK 263 263 264 -[[image:1657249990869-686.png]] 265 265 440 +(% style="color:#037691" %)** Downlink:** 266 266 267 -((( 268 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 269 -))) 442 +Uplink channels 1-9 (RX1) 270 270 444 +869.525 - SF9BW125 (RX2 downlink only) 271 271 272 272 273 -=== 2.2.7 Use TCP protocol to uplink data === 274 274 275 - Thisfeatureis supported since firmware version v110448 +=== 2.7.2 US902-928(US915) === 276 276 450 +Used in USA, Canada and South America. Default use CHE=2 277 277 278 -* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 279 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 452 +(% style="color:#037691" %)**Uplink:** 280 280 281 - [[image:1657250217799-140.png]]454 +903.9 - SF7BW125 to SF10BW125 282 282 456 +904.1 - SF7BW125 to SF10BW125 283 283 284 - [[image:1657250255956-604.png]]458 +904.3 - SF7BW125 to SF10BW125 285 285 460 +904.5 - SF7BW125 to SF10BW125 286 286 462 +904.7 - SF7BW125 to SF10BW125 287 287 288 - === 2.2.8ChangeUpdateInterval ===464 +904.9 - SF7BW125 to SF10BW125 289 289 290 - Usercanusebelow commandtochange the (% style="color:green" %)**uplink interval**.466 +905.1 - SF7BW125 to SF10BW125 291 291 292 - * (% style="color:blue" %)**AT+TDC=600**(%%)~/~/SetUpdate Interval to600s468 +905.3 - SF7BW125 to SF10BW125 293 293 294 -((( 295 -(% style="color:red" %)**NOTE:** 296 -))) 297 297 298 -((( 299 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 300 -))) 471 +(% style="color:#037691" %)**Downlink:** 301 301 473 +923.3 - SF7BW500 to SF12BW500 302 302 475 +923.9 - SF7BW500 to SF12BW500 303 303 304 - ==2.3UplinkPayload==477 +924.5 - SF7BW500 to SF12BW500 305 305 306 - Inthismode,uplink payload includes intotal18 bytes479 +925.1 - SF7BW500 to SF12BW500 307 307 308 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 309 -|=(% style="width: 60px;" %)((( 310 -**Size(bytes)** 311 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1** 312 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 481 +925.7 - SF7BW500 to SF12BW500 313 313 314 - Ifweusethe MQTT client tosubscribe to this MQTT topic, we can see the following information when the NSE01uplink data.483 +926.3 - SF7BW500 to SF12BW500 315 315 485 +926.9 - SF7BW500 to SF12BW500 316 316 317 - [[image:image-20220708111918-4.png]]487 +927.5 - SF7BW500 to SF12BW500 318 318 489 +923.3 - SF12BW500(RX2 downlink only) 319 319 320 -The payload is ASCII string, representative same HEX: 321 321 322 -0x72403155615900640c7817075e0a8c02f900 where: 323 323 324 -* Device ID: 0x 724031556159 = 724031556159 325 -* Version: 0x0064=100=1.0.0 493 +=== 2.7.3 CN470-510 (CN470) === 326 326 327 -* BAT: 0x0c78 = 3192 mV = 3.192V 328 -* Singal: 0x17 = 23 329 -* Soil Moisture: 0x075e= 1886 = 18.86 % 330 -* Soil Temperature:0x0a8c =2700=27 °C 331 -* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 332 -* Interrupt: 0x00 = 0 495 +Used in China, Default use CHE=1 333 333 497 +(% style="color:#037691" %)**Uplink:** 334 334 335 - == 2.4PayloadExplanation andSensorInterface==499 +486.3 - SF7BW125 to SF12BW125 336 336 501 +486.5 - SF7BW125 to SF12BW125 337 337 338 - === 2.4.1DeviceID===503 +486.7 - SF7BW125 to SF12BW125 339 339 340 - Bydefault,theDevice ID equaltothe last 6 bytes of IMEI.505 +486.9 - SF7BW125 to SF12BW125 341 341 342 - Usercanuse(% style="color:blue"%)**AT+DEUI**(%%) to set Device ID507 +487.1 - SF7BW125 to SF12BW125 343 343 344 - **Example:**509 +487.3 - SF7BW125 to SF12BW125 345 345 346 - AT+DEUI=A84041F15612511 +487.5 - SF7BW125 to SF12BW125 347 347 348 - TheDevice ID is stored in a none-erasearea,Upgradethe firmwareorrun AT+FDR won't erase Device ID.513 +487.7 - SF7BW125 to SF12BW125 349 349 350 350 516 +(% style="color:#037691" %)**Downlink:** 351 351 352 - ===2.4.2VersionInfo ===518 +506.7 - SF7BW125 to SF12BW125 353 353 354 - Specify the software version:0x64=100,meansfirmwareversion1.00.520 +506.9 - SF7BW125 to SF12BW125 355 355 356 - For example:0x0064: this device is NSE01with firmware version1.0.0.522 +507.1 - SF7BW125 to SF12BW125 357 357 524 +507.3 - SF7BW125 to SF12BW125 358 358 526 +507.5 - SF7BW125 to SF12BW125 359 359 360 - === 2.4.3BatteryInfo===528 +507.7 - SF7BW125 to SF12BW125 361 361 362 -((( 363 -Check the battery voltage for LSE01. 364 -))) 530 +507.9 - SF7BW125 to SF12BW125 365 365 366 -((( 367 -Ex1: 0x0B45 = 2885mV 368 -))) 532 +508.1 - SF7BW125 to SF12BW125 369 369 370 -((( 371 -Ex2: 0x0B49 = 2889mV 372 -))) 534 +505.3 - SF12BW125 (RX2 downlink only) 373 373 374 374 375 375 376 -=== 2. 4.4SignalStrength===538 +=== 2.7.4 AU915-928(AU915) === 377 377 378 - NB-IoT Network signalStrength.540 +Default use CHE=2 379 379 380 - **Ex1:0x1d= 29**542 +(% style="color:#037691" %)**Uplink:** 381 381 382 - (%style="color:blue" %)**0**(%%)-113dBmorless544 +916.8 - SF7BW125 to SF12BW125 383 383 384 - (%style="color:blue"%)**1**(%%)-111dBm546 +917.0 - SF7BW125 to SF12BW125 385 385 386 - (%style="color:blue"%)**2...30**(%%)-109dBm... -53dBm548 +917.2 - SF7BW125 to SF12BW125 387 387 388 - (% style="color:blue" %)**31**(%%)-51dBmorgreater550 +917.4 - SF7BW125 to SF12BW125 389 389 390 - (% style="color:blue" %)**99**(%%)Notknownor not detectable552 +917.6 - SF7BW125 to SF12BW125 391 391 554 +917.8 - SF7BW125 to SF12BW125 392 392 556 +918.0 - SF7BW125 to SF12BW125 393 393 394 - ===2.4.5SoilMoisture ===558 +918.2 - SF7BW125 to SF12BW125 395 395 396 -((( 397 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 398 -))) 399 399 400 -((( 401 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 402 -))) 561 +(% style="color:#037691" %)**Downlink:** 403 403 404 -((( 405 - 406 -))) 563 +923.3 - SF7BW500 to SF12BW500 407 407 408 -((( 409 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 410 -))) 565 +923.9 - SF7BW500 to SF12BW500 411 411 567 +924.5 - SF7BW500 to SF12BW500 412 412 569 +925.1 - SF7BW500 to SF12BW500 413 413 414 - ===2.4.6SoilTemperature===571 +925.7 - SF7BW500 to SF12BW500 415 415 416 -((( 417 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 418 -))) 573 +926.3 - SF7BW500 to SF12BW500 419 419 420 -((( 421 -**Example**: 422 -))) 575 +926.9 - SF7BW500 to SF12BW500 423 423 424 -((( 425 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 426 -))) 577 +927.5 - SF7BW500 to SF12BW500 427 427 428 -((( 429 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 430 -))) 579 +923.3 - SF12BW500(RX2 downlink only) 431 431 432 432 433 433 434 -=== 2. 4.7oilConductivity(EC) ===583 +=== 2.7.5 AS920-923 & AS923-925 (AS923) === 435 435 436 -((( 437 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 438 -))) 585 +(% style="color:#037691" %)**Default Uplink channel:** 439 439 440 -((( 441 -For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 442 -))) 587 +923.2 - SF7BW125 to SF10BW125 443 443 444 -((( 445 -Generally, the EC value of irrigation water is less than 800uS / cm. 446 -))) 589 +923.4 - SF7BW125 to SF10BW125 447 447 448 -((( 449 - 450 -))) 451 451 452 -((( 453 - 454 -))) 592 +(% style="color:#037691" %)**Additional Uplink Channel**: 455 455 456 - ===2.4.8DigitalInterrupt===594 +(OTAA mode, channel added by JoinAccept message) 457 457 458 - Digital Interrupt refers to pin(% style="color:blue" %)**GPIO_EXTI**(%%),and thereare differenttrigger methods. When thereisatrigger,the NSE01 will sendaacket tothe server.596 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 459 459 460 - Thecommandis:598 +922.2 - SF7BW125 to SF10BW125 461 461 462 - (%style="color:blue"%)**AT+INTMOD=3**(%%) ~/~/(more info aboutINMOD please refer [[**AT CommandManual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**600 +922.4 - SF7BW125 to SF10BW125 463 463 602 +922.6 - SF7BW125 to SF10BW125 464 464 465 - The lower four bits of this data field shows if this packet is generated by interrupt or not.Clickhereforthe hardware and softwareset up.604 +922.8 - SF7BW125 to SF10BW125 466 466 606 +923.0 - SF7BW125 to SF10BW125 467 467 468 - Example:608 +922.0 - SF7BW125 to SF10BW125 469 469 470 -0x(00): Normal uplink packet. 471 471 472 - 0x(01):InterruptUplinkPacket.611 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 473 473 613 +923.6 - SF7BW125 to SF10BW125 474 474 615 +923.8 - SF7BW125 to SF10BW125 475 475 476 - ===2.4.9+5VOutput===617 +924.0 - SF7BW125 to SF10BW125 477 477 478 - NSE01willenable +5Voutput beforeall sampling and disable the +5v after all sampling.619 +924.2 - SF7BW125 to SF10BW125 479 479 621 +924.4 - SF7BW125 to SF10BW125 480 480 481 - The5Voutput time can be controlledby AT Command.623 +924.6 - SF7BW125 to SF10BW125 482 482 483 -(% style="color:blue" %)**AT+5VT=1000** 484 484 485 - Meansset5V valid timetohave 1000ms. Sothereal5Voutputwill actually have 1000ms + sampling time for other sensors.626 +(% style="color:#037691" %)** Downlink:** 486 486 628 +Uplink channels 1-8 (RX1) 487 487 630 +923.2 - SF10BW125 (RX2) 488 488 489 -== 2.5 Downlink Payload == 490 490 491 -By default, NSE01 prints the downlink payload to console port. 492 492 493 - [[image:image-20220708133731-5.png]]634 +=== 2.7.6 KR920-923 (KR920) === 494 494 636 +Default channel: 495 495 496 -((( 497 -(% style="color:blue" %)**Examples:** 498 -))) 638 +922.1 - SF7BW125 to SF12BW125 499 499 500 -((( 501 - 502 -))) 640 +922.3 - SF7BW125 to SF12BW125 503 503 504 -* ((( 505 -(% style="color:blue" %)**Set TDC** 506 -))) 642 +922.5 - SF7BW125 to SF12BW125 507 507 508 -((( 509 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 510 -))) 511 511 512 -((( 513 -Payload: 01 00 00 1E TDC=30S 514 -))) 645 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 515 515 516 -((( 517 -Payload: 01 00 00 3C TDC=60S 518 -))) 647 +922.1 - SF7BW125 to SF12BW125 519 519 520 -((( 521 - 522 -))) 649 +922.3 - SF7BW125 to SF12BW125 523 523 524 -* ((( 525 -(% style="color:blue" %)**Reset** 526 -))) 651 +922.5 - SF7BW125 to SF12BW125 527 527 528 -((( 529 -If payload = 0x04FF, it will reset the NSE01 530 -))) 653 +922.7 - SF7BW125 to SF12BW125 531 531 655 +922.9 - SF7BW125 to SF12BW125 532 532 533 - *(%style="color:blue"%)**INTMOD**657 +923.1 - SF7BW125 to SF12BW125 534 534 535 - Downlink Payload: 06000003,SetAT+INTMOD=3659 +923.3 - SF7BW125 to SF12BW125 536 536 537 537 662 +(% style="color:#037691" %)**Downlink:** 538 538 539 - == 2.6 LED Indicator==664 +Uplink channels 1-7(RX1) 540 540 541 -((( 542 -The NSE01 has an internal LED which is to show the status of different state. 666 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 543 543 544 544 545 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 546 -* Then the LED will be on for 1 second means device is boot normally. 547 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 548 -* For each uplink probe, LED will be on for 500ms. 549 -))) 550 550 670 +=== 2.7.7 IN865-867 (IN865) === 551 551 672 +(% style="color:#037691" %)** Uplink:** 552 552 674 +865.0625 - SF7BW125 to SF12BW125 553 553 554 - == 2.7InstallationinSoil ==676 +865.4025 - SF7BW125 to SF12BW125 555 555 556 - __**Measurementthesoilsurface**__678 +865.9850 - SF7BW125 to SF12BW125 557 557 558 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 559 559 560 - [[image:1657259653666-883.png]]681 +(% style="color:#037691" %) **Downlink:** 561 561 683 +Uplink channels 1-3 (RX1) 562 562 563 -((( 564 - 685 +866.550 - SF10BW125 (RX2) 565 565 566 -((( 567 -Dig a hole with diameter > 20CM. 568 -))) 569 569 570 -((( 571 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 572 -))) 573 -))) 574 574 575 -[[image:1654506665940-119.png]] 576 576 577 -((( 578 - 579 -))) 690 +== 2.8 LED Indicator == 580 580 692 +The LSE01 has an internal LED which is to show the status of different state. 581 581 582 -== 2.8 Firmware Change Log == 694 +* Blink once when device power on. 695 +* Solid ON for 5 seconds once device successful Join the network. 696 +* Blink once when device transmit a packet. 583 583 584 584 585 -Download URL & Firmware Change log 586 586 587 -[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 588 588 589 589 590 -Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]] 591 591 703 +== 2.9 Installation in Soil == 592 592 705 +**Measurement the soil surface** 593 593 594 -== 2.9 Battery Analysis == 595 595 596 - === 2.9.1 Battery Type===708 +[[image:1654506634463-199.png]] 597 597 710 +((( 711 +((( 712 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 713 +))) 714 +))) 598 598 599 -The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 600 600 601 601 602 - The batteryis designed to last for several years depends on the actually use environmentand updateinterval.718 +[[image:1654506665940-119.png]] 603 603 720 +((( 721 +Dig a hole with diameter > 20CM. 722 +))) 604 604 605 -The battery related documents as below: 724 +((( 725 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 726 +))) 606 606 607 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 608 -* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 609 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 610 610 729 +== 2.10 Firmware Change Log == 730 + 611 611 ((( 612 - [[image:image-20220708140453-6.png]]732 +**Firmware download link:** 613 613 ))) 614 614 735 +((( 736 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 737 +))) 615 615 739 +((( 740 + 741 +))) 616 616 617 -=== 2.9.2 Power consumption Analyze === 743 +((( 744 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 745 +))) 618 618 619 619 ((( 620 - Draginobattery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.748 + 621 621 ))) 622 622 751 +((( 752 +**V1.0.** 753 +))) 623 623 624 624 ((( 625 - Instruction to usebelow:756 +Release 626 626 ))) 627 627 759 + 760 +== 2.11 Battery Analysis == 761 + 762 +=== 2.11.1 Battery Type === 763 + 628 628 ((( 629 - (% style="color:blue"%)**Step1:**(%%)Downlinkthe up-to-dateDRAGINO_Battery_Life_Prediction_Table.xlsxfrom: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]765 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 630 630 ))) 631 631 768 +((( 769 +The battery is designed to last for more than 5 years for the LSN50. 770 +))) 632 632 633 633 ((( 634 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose 773 +((( 774 +The battery-related documents are as below: 635 635 ))) 776 +))) 636 636 637 637 * ((( 638 - ProductModel779 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 639 639 ))) 640 640 * ((( 641 - UplinkInterval782 +[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 642 642 ))) 643 643 * ((( 644 - WorkingMode785 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 645 645 ))) 646 646 647 -((( 648 -And the Life expectation in difference case will be shown on the right. 649 -))) 788 + [[image:image-20220610172436-1.png]] 650 650 651 -[[image:image-20220708141352-7.jpeg]] 652 652 653 653 792 +=== 2.11.2 Battery Note === 654 654 655 -=== 2.9.3 Battery Note === 656 - 657 657 ((( 658 658 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 659 659 ))) ... ... @@ -660,166 +660,298 @@ 660 660 661 661 662 662 663 -=== 2. 9.4Replace the battery ===800 +=== 2.11.3 Replace the battery === 664 664 665 665 ((( 666 - The defaultbatterypack of NSE01includesa ER26500 plus super capacitor. If usercan'tfind this pack locally, they canfind ER26500or equivalencewithouttheSPC1520 capacitor, which willalso work in mostcase.The SPC can enlargethe batterylife for highfrequencyuse (update period below 5 minutes).803 +If Battery is lower than 2.7v, user should replace the battery of LSE01. 667 667 ))) 668 668 669 - 670 - 671 -= 3. Access NB-IoT Module = 672 - 673 673 ((( 674 - Userscan directly accesstheATcommand set of theNB-IoTmodule.807 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 675 675 ))) 676 676 677 677 ((( 678 -The ATCommand setcanrefer theBC35-GNB-IoTModuleATCommand: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]]811 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 679 679 ))) 680 680 681 -[[image:1657261278785-153.png]] 682 682 683 683 816 += 3. Using the AT Commands = 684 684 685 -= 4.UsingtheAT Commands =818 +== 3.1 Access AT Commands == 686 686 687 -== 4.1 Access AT Commands == 688 688 689 -S eethislinkfordetail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]821 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 690 690 823 +[[image:1654501986557-872.png||height="391" width="800"]] 691 691 692 -AT+<CMD>? : Help on <CMD> 693 693 694 - AT+<CMD>: Run<CMD>826 +Or if you have below board, use below connection: 695 695 696 -AT+<CMD>=<value> : Set the value 697 697 698 - AT+<CMD>=?:Get the value829 +[[image:1654502005655-729.png||height="503" width="801"]] 699 699 700 700 832 + 833 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 834 + 835 + 836 + [[image:1654502050864-459.png||height="564" width="806"]] 837 + 838 + 839 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]] 840 + 841 + 842 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 843 + 844 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 845 + 846 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 847 + 848 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 849 + 850 + 701 701 (% style="color:#037691" %)**General Commands**(%%) 702 702 703 -AT 853 +(% style="background-color:#dcdcdc" %)**AT**(%%) : Attention 704 704 705 -AT? 855 +(% style="background-color:#dcdcdc" %)**AT?**(%%) : Short Help 706 706 707 -ATZ 857 +(% style="background-color:#dcdcdc" %)**ATZ**(%%) : MCU Reset 708 708 709 -AT+TDC 859 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%) : Application Data Transmission Interval 710 710 711 -AT+CFG : Print all configurations 712 712 713 - AT+CFGMOD: Workingmode selection862 +(% style="color:#037691" %)**Keys, IDs and EUIs management** 714 714 715 -AT+I NTMOD:Setthe trigger interruptmode864 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%) : Application EUI 716 716 717 -AT+ 5VTSetextend the timeof5V power866 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%) : Application Key 718 718 719 -AT+P ROChooseagreement868 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%) : Application Session Key 720 720 721 -AT+ WEIGREGet weightorsetweight to 0870 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%) : Device Address 722 722 723 -AT+ WEIGAPGet or SettheGapValue of weight872 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%) : Device EUI 724 724 725 -AT+ RXDL: Extendthe sendingandreceivingtime874 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%) : Network ID (You can enter this command change only after successful network connection) 726 726 727 -AT+ CNTFACGettcountingparameters876 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%) : Network Session Key Joining and sending date on LoRa network 728 728 729 -AT+ SERVADDR:ServerAddress878 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%) : Confirm Mode 730 730 880 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 731 731 732 -(% style="color:# 037691" %)**COAPManagement**882 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%) : Join LoRa? Network 733 733 734 -AT+ URIsourceparameters884 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%) : LoRa? Network Join Mode 735 735 886 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 736 736 737 -(% style="color:# 037691" %)**UDPManagement**888 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%) : Print Last Received Data in Raw Format 738 738 739 -AT+C FM:Uploadconfirmationmode (onlyvalid forUDP)890 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%) : Print Last Received Data in Binary Format 740 740 892 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 741 741 742 -(% style="color:# 037691" %)**MQTTManagement**894 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%) : Send Hexadecimal Data 743 743 744 -AT+CLIENT : Get or Set MQTT client 745 745 746 - AT+UNAMEGetSetMQTT Username897 +(% style="color:#037691" %)**LoRa Network Management** 747 747 748 -AT+ PWDGetor SetMQTT password899 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%) : Adaptive Rate 749 749 750 -AT+ PUBTOPICGetorSetMQTTpublishtopic901 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%) : LoRa Class(Currently only support class A 751 751 752 -AT+ SUBTOPIC :GetorSetMQTT subscriptiontopic903 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%) : Duty Cycle Setting 753 753 905 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 754 754 755 -(% style="color:# 037691" %)**Information**907 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink 756 756 757 -AT+F DRctoryDataReset909 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%) : Frame Counter Uplink 758 758 759 -AT+ PWORDSerialAccessPassword911 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%) : Join Accept Delay1 760 760 913 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 761 761 915 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 762 762 763 -= 5.FAQ=917 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%) : Receive Delay1 764 764 765 -= =5.1HowtoUpgradeFirmware==919 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%) : Receive Delay2 766 766 921 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 767 767 923 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 924 + 925 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 926 + 927 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 928 + 929 + 930 +(% style="color:#037691" %)**Information** 931 + 932 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 933 + 934 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 935 + 936 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 937 + 938 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 939 + 940 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 941 + 942 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 943 + 944 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 945 + 946 + 947 += 4. FAQ = 948 + 949 +== 4.1 How to change the LoRa Frequency Bands/Region? == 950 + 768 768 ((( 769 -User can upgrade the firmware for 1) bug fix, 2) new feature release. 952 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 953 +When downloading the images, choose the required image file for download. 770 770 ))) 771 771 772 772 ((( 773 - Pleasesee this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]957 + 774 774 ))) 775 775 776 776 ((( 777 - (%style="color:red"%)Notice,NSE01andLSE01share thememotherboard.Theyuse thesameconnection andmethodto update.961 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 778 778 ))) 779 779 964 +((( 965 + 966 +))) 780 780 968 +((( 969 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 970 +))) 781 781 782 -= 6. Trouble Shooting = 972 +((( 973 + 974 +))) 783 783 784 -== 6.1 Connection problem when uploading firmware == 976 +((( 977 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 978 +))) 785 785 980 +[[image:image-20220606154726-3.png]] 786 786 787 -(% class="wikigeneratedid" %) 982 + 983 +When you use the TTN network, the US915 frequency bands use are: 984 + 985 +* 903.9 - SF7BW125 to SF10BW125 986 +* 904.1 - SF7BW125 to SF10BW125 987 +* 904.3 - SF7BW125 to SF10BW125 988 +* 904.5 - SF7BW125 to SF10BW125 989 +* 904.7 - SF7BW125 to SF10BW125 990 +* 904.9 - SF7BW125 to SF10BW125 991 +* 905.1 - SF7BW125 to SF10BW125 992 +* 905.3 - SF7BW125 to SF10BW125 993 +* 904.6 - SF8BW500 994 + 788 788 ((( 789 -(% style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]] 996 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 997 + 998 +* (% style="color:#037691" %)**AT+CHE=2** 999 +* (% style="color:#037691" %)**ATZ** 790 790 ))) 791 791 1002 +((( 1003 + 792 792 1005 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 1006 +))) 793 793 794 -== 6.2 AT Command input doesn't work == 1008 +((( 1009 + 1010 +))) 795 795 796 796 ((( 797 - In thecaseif user can seethe console output but can't typeinput to the device. Pleasecheck if youalreadyincludethe(%style="color:green" %)**ENTER**(%%) while sendingout the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.1013 +The **AU915** band is similar. Below are the AU915 Uplink Channels. 798 798 ))) 799 799 1016 +[[image:image-20220606154825-4.png]] 800 800 801 801 802 -= 7. Order Info = 803 803 1020 += 5. Trouble Shooting = 804 804 805 - PartNumber**:** (%style="color:#4f81bd"%)**NSE01**1022 +== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 806 806 1024 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 807 807 1026 + 1027 +== 5.2 AT Command input doesn’t work == 1028 + 1029 +((( 1030 +In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1031 +))) 1032 + 1033 + 1034 +== 5.3 Device rejoin in at the second uplink packet == 1035 + 1036 +(% style="color:#4f81bd" %)**Issue describe as below:** 1037 + 1038 +[[image:1654500909990-784.png]] 1039 + 1040 + 1041 +(% style="color:#4f81bd" %)**Cause for this issue:** 1042 + 1043 +((( 1044 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 1045 +))) 1046 + 1047 + 1048 +(% style="color:#4f81bd" %)**Solution: ** 1049 + 1050 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 1051 + 1052 +[[image:1654500929571-736.png||height="458" width="832"]] 1053 + 1054 + 1055 += 6. Order Info = 1056 + 1057 + 1058 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 1059 + 1060 + 1061 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 1062 + 1063 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 1064 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 1065 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 1066 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 1067 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1068 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1069 +* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1070 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1071 + 1072 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1073 + 1074 +* (% style="color:red" %)**4**(%%): 4000mAh battery 1075 +* (% style="color:red" %)**8**(%%): 8500mAh battery 1076 + 808 808 (% class="wikigeneratedid" %) 809 809 ((( 810 810 811 811 ))) 812 812 813 -= 8.1082 += 7. Packing Info = 814 814 815 815 ((( 816 816 817 817 818 818 (% style="color:#037691" %)**Package Includes**: 1088 +))) 819 819 820 - 821 -* NSE01 NB-IoT Soil Moisture & EC Sensor x 1 822 -* External antenna x 1 1090 +* ((( 1091 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 823 823 ))) 824 824 825 825 ((( ... ... @@ -826,20 +826,24 @@ 826 826 827 827 828 828 (% style="color:#037691" %)**Dimension and weight**: 1098 +))) 829 829 830 - 831 -* Size: 195 x 125 x 55 mm 832 -* Weight: 420g 1100 +* ((( 1101 +Device Size: cm 833 833 ))) 1103 +* ((( 1104 +Device Weight: g 1105 +))) 1106 +* ((( 1107 +Package Size / pcs : cm 1108 +))) 1109 +* ((( 1110 +Weight / pcs : g 834 834 835 -((( 836 836 837 - 838 - 839 - 840 840 ))) 841 841 842 -= 9.1115 += 8. Support = 843 843 844 844 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 845 845 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -102.7 KB - Content