Changes for page NDDS75 -- NB-IoT Distance Detect Sensor User Manual
Last modified by Bei Jinggeng on 2024/05/31 09:53
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 23 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - NSE01NB-IoTSoil Moisture & EC Sensor User Manual1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -3,14 +3,6 @@ 3 3 4 4 5 5 6 - 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 14 **Table of Contents:** 15 15 16 16 {{toc/}} ... ... @@ -20,82 +20,65 @@ 20 20 21 21 22 22 15 += 1. Introduction = 23 23 24 -= 1. Introduction =17 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 25 25 26 -== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 27 - 28 28 ((( 29 29 30 30 31 -((( 32 -Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 22 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 33 33 ))) 34 34 35 35 ((( 36 -It candetect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and uploaditsvalueto the serverwirelessly.26 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 37 37 ))) 38 38 39 39 ((( 40 -The wireless technology used in NSE01 allowsthedevice to send data at a low data rate and reachultra-longdistances,providingultra-long-distance spread spectrumCommunication.30 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 41 41 ))) 42 42 43 43 ((( 44 - NSE01arepowered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%)batteries,whichcanbe usedforup to5years.34 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 45 45 ))) 46 46 47 - 37 +((( 38 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 48 48 ))) 49 49 41 + 50 50 [[image:1654503236291-817.png]] 51 51 52 52 53 -[[image:165 7245163077-232.png]]45 +[[image:1654503265560-120.png]] 54 54 55 55 56 56 57 -== 1.2 49 +== 1.2 Features == 58 58 59 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 51 +* LoRaWAN 1.0.3 Class A 52 +* Ultra low power consumption 60 60 * Monitor Soil Moisture 61 61 * Monitor Soil Temperature 62 62 * Monitor Soil Conductivity 56 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 63 63 * AT Commands to change parameters 64 64 * Uplink on periodically 65 65 * Downlink to change configure 66 66 * IP66 Waterproof Enclosure 67 -* Ultra-Low Power consumption 68 -* AT Commands to change parameters 69 -* Micro SIM card slot for NB-IoT SIM 70 -* 8500mAh Battery for long term use 61 +* 4000mAh or 8500mAh Battery for long term use 71 71 72 72 73 -== 1.3 Specification == 74 74 65 +== 1.3 Specification == 75 75 76 -(% style="color:#037691" %)**Common DC Characteristics:** 77 - 78 -* Supply Voltage: 2.1v ~~ 3.6v 79 -* Operating Temperature: -40 ~~ 85°C 80 - 81 -(% style="color:#037691" %)**NB-IoT Spec:** 82 - 83 -* - B1 @H-FDD: 2100MHz 84 -* - B3 @H-FDD: 1800MHz 85 -* - B8 @H-FDD: 900MHz 86 -* - B5 @H-FDD: 850MHz 87 -* - B20 @H-FDD: 800MHz 88 -* - B28 @H-FDD: 700MHz 89 - 90 -Probe(% style="color:#037691" %)** Specification:** 91 - 92 92 Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 93 93 94 -[[image:image-20220 708101224-1.png]]69 +[[image:image-20220606162220-5.png]] 95 95 96 96 97 97 98 -== 1.4 73 +== 1.4 Applications == 99 99 100 100 * Smart Agriculture 101 101 ... ... @@ -102,724 +102,1012 @@ 102 102 (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 103 103 104 104 105 -== 1.5 Pin Definitions==80 +== 1.5 Firmware Change log == 106 106 107 107 108 - [[image:1657246476176-652.png]]83 +**LSE01 v1.0 :** Release 109 109 110 110 111 111 112 -= 2. UseNSE01 to communicatewithIoTServer=87 += 2. Configure LSE01 to connect to LoRaWAN network = 113 113 114 -== 2.1 89 +== 2.1 How it works == 115 115 91 +((( 92 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 93 +))) 116 116 117 117 ((( 118 - TheNSE01 isquippedwitha NB-IoT module,thepre-loadedfirmware inNSE01 will getnvironmentdatafromsensorsandsendthe value tolocal NB-IoT networkviatheNB-IoT module.The NB-IoT network willforwardthis valueto IoTserverviatheprotocol definedby NSE01.96 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 119 119 ))) 120 120 121 121 100 + 101 +== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 102 + 103 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 104 + 105 + 106 +[[image:1654503992078-669.png]] 107 + 108 + 109 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 110 + 111 + 112 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSE01. 113 + 114 +Each LSE01 is shipped with a sticker with the default device EUI as below: 115 + 116 +[[image:image-20220606163732-6.jpeg]] 117 + 118 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 119 + 120 +**Add APP EUI in the application** 121 + 122 + 123 +[[image:1654504596150-405.png]] 124 + 125 + 126 + 127 +**Add APP KEY and DEV EUI** 128 + 129 +[[image:1654504683289-357.png]] 130 + 131 + 132 + 133 +(% style="color:blue" %)**Step 2**(%%): Power on LSE01 134 + 135 + 136 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 137 + 138 +[[image:image-20220606163915-7.png]] 139 + 140 + 141 +(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 142 + 143 +[[image:1654504778294-788.png]] 144 + 145 + 146 + 147 +== 2.3 Uplink Payload == 148 + 149 + 150 +=== 2.3.1 MOD~=0(Default Mode) === 151 + 152 +LSE01 will uplink payload via LoRaWAN with below payload format: 153 + 122 122 ((( 123 - The diagram below shows the workingflowinfaultfirmwareofNSE01:155 +Uplink payload includes in total 11 bytes. 124 124 ))) 125 125 126 -[[image:image-20220708101605-2.png]] 158 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 159 +|((( 160 +**Size** 127 127 128 -((( 129 - 162 +**(bytes)** 163 +)))|**2**|**2**|**2**|**2**|**2**|**1** 164 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 165 +Temperature 166 + 167 +(Reserve, Ignore now) 168 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 169 +MOD & Digital Interrupt 170 + 171 +(Optional) 130 130 ))) 131 131 132 132 133 133 134 -== 2.2 Configure the NSE01 == 135 135 136 136 137 -=== 2. 2.1Test Requirement===178 +=== 2.3.2 MOD~=1(Original value) === 138 138 180 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 139 139 140 -( ((141 - To use NSE01 in your city, make sure meet below requirements:142 - )))182 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 183 +|((( 184 +**Size** 143 143 144 -* Your local operator has already distributed a NB-IoT Network there. 145 -* The local NB-IoT network used the band that NSE01 supports. 146 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 186 +**(bytes)** 187 +)))|**2**|**2**|**2**|**2**|**2**|**1** 188 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 189 +Temperature 147 147 148 -((( 149 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 191 +(Reserve, Ignore now) 192 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 193 +MOD & Digital Interrupt 194 + 195 +(Optional) 150 150 ))) 151 151 152 152 153 -[[image:1657249419225-449.png]] 154 154 155 155 156 156 157 -=== 2. 2.2InsertSIMcard===202 +=== 2.3.3 Battery Info === 158 158 159 159 ((( 160 - InserttheNB-IoT Cardgetfrom yourprovider.205 +Check the battery voltage for LSE01. 161 161 ))) 162 162 163 163 ((( 164 - Userneed to take out the NB-IoTmoduleand insert the SIM card like below:209 +Ex1: 0x0B45 = 2885mV 165 165 ))) 166 166 212 +((( 213 +Ex2: 0x0B49 = 2889mV 214 +))) 167 167 168 -[[image:1657249468462-536.png]] 169 169 170 170 218 +=== 2.3.4 Soil Moisture === 171 171 172 -=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 220 +((( 221 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 222 +))) 173 173 174 174 ((( 225 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 226 +))) 227 + 175 175 ((( 176 - Userneed to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.229 + 177 177 ))) 231 + 232 +((( 233 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 178 178 ))) 179 179 180 180 181 -**Connection:** 182 182 183 - (%style="background-color:yellow"%)USB TTL GND <~-~-~-~-> GND238 +=== 2.3.5 Soil Temperature === 184 184 185 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 240 +((( 241 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 242 +))) 186 186 187 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 244 +((( 245 +**Example**: 246 +))) 188 188 248 +((( 249 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 250 +))) 189 189 190 -In the PC, use below serial tool settings: 252 +((( 253 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 254 +))) 191 191 192 -* Baud: (% style="color:green" %)**9600** 193 -* Data bits:** (% style="color:green" %)8(%%)** 194 -* Stop bits: (% style="color:green" %)**1** 195 -* Parity: (% style="color:green" %)**None** 196 -* Flow Control: (% style="color:green" %)**None** 197 197 257 + 258 +=== 2.3.6 Soil Conductivity (EC) === 259 + 198 198 ((( 199 - Make surethe switch is inFLASHposition, then power on devicebyconnectingthe jumperNSE01.NSE01 willoutputsysteminfo oncepowerasbelow,wecan enterthe(% style="color:green" %)**password:12345678**(%%)toaccessATCommandinput.261 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 200 200 ))) 201 201 202 -[[image:image-20220708110657-3.png]] 264 +((( 265 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 266 +))) 203 203 204 204 ((( 205 - (% style="color:red"%)Note: the validAT Commandscan be foundat: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]269 +Generally, the EC value of irrigation water is less than 800uS / cm. 206 206 ))) 207 207 272 +((( 273 + 274 +))) 208 208 276 +((( 277 + 278 +))) 209 209 210 -=== 2. 2.4Use CoAP protocol to uplink data===280 +=== 2.3.7 MOD === 211 211 212 - (% style="color:red"%)Note:if you don'thaveCoAP server, you can refer thislinktosetupne:(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]282 +Firmware version at least v2.1 supports changing mode. 213 213 284 +For example, bytes[10]=90 214 214 215 - **Use below commands:**286 +mod=(bytes[10]>>7)&0x01=1. 216 216 217 -* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 218 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 219 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 220 220 221 - For parameter description,please refer toAT commandset289 +**Downlink Command:** 222 222 223 - [[image:1657249793983-486.png]]291 +If payload = 0x0A00, workmode=0 224 224 293 +If** **payload =** **0x0A01, workmode=1 225 225 226 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 227 227 228 -[[image:1657249831934-534.png]] 229 229 297 +=== 2.3.8 Decode payload in The Things Network === 230 230 299 +While using TTN network, you can add the payload format to decode the payload. 231 231 232 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 233 233 234 - This feature is supported since firmwareversion v1.0.1302 +[[image:1654505570700-128.png]] 235 235 304 +((( 305 +The payload decoder function for TTN is here: 306 +))) 236 236 237 - *(% style="color:blue" %)**AT+PRO=2 **(%%) ~/~/ Set to use UDP protocol to uplink238 - *(%style="color:blue"%)**AT+SERVADDR=120.24.4.116,5601 ** (%%)~/~/toet UDPserveressndport239 - * (% style="color:blue" %)**AT+CFM=1 ** (%%)~/~/If the server does not respond, this command is unnecessary308 +((( 309 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]] 310 +))) 240 240 241 -[[image:1657249864775-321.png]] 242 242 313 +== 2.4 Uplink Interval == 243 243 244 - [[image:1657249930215-289.png]]315 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 245 245 246 246 247 247 248 -== =2.2.6Use MQTT protocolto uplinkdata ===319 +== 2.5 Downlink Payload == 249 249 250 - Thisfeatureissupportedsincefirmwareversionv110321 +By default, LSE50 prints the downlink payload to console port. 251 251 323 +[[image:image-20220606165544-8.png]] 252 252 253 -* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 254 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 255 -* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 256 -* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 257 -* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 258 -* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 259 -* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 260 260 261 -[[image:1657249978444-674.png]] 326 +((( 327 +**Examples:** 328 +))) 262 262 330 +((( 331 + 332 +))) 263 263 264 -[[image:1657249990869-686.png]] 334 +* ((( 335 +**Set TDC** 336 +))) 265 265 338 +((( 339 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 340 +))) 266 266 267 267 ((( 268 - MQTT protocol has a much higher power consumption compare vs UDP/ CoAP protocol. Please check the power analyze documentandadjusttheuplinkperiodto a suitable interval.343 +Payload: 01 00 00 1E TDC=30S 269 269 ))) 270 270 346 +((( 347 +Payload: 01 00 00 3C TDC=60S 348 +))) 271 271 350 +((( 351 + 352 +))) 272 272 273 -=== 2.2.7 Use TCP protocol to uplink data === 354 +* ((( 355 +**Reset** 356 +))) 274 274 275 -This feature is supported since firmware version v110 358 +((( 359 +If payload = 0x04FF, it will reset the LSE01 360 +))) 276 276 277 277 278 -* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 279 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 363 +* **CFM** 280 280 281 - [[image:1657250217799-140.png]]365 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 282 282 283 283 284 -[[image:1657250255956-604.png]] 285 285 369 +== 2.6 Show Data in DataCake IoT Server == 286 286 371 +((( 372 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 373 +))) 287 287 288 -=== 2.2.8 Change Update Interval === 375 +((( 376 + 377 +))) 289 289 290 -User can use below command to change the (% style="color:green" %)**uplink interval**. 291 - 292 -* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 293 - 294 294 ((( 295 - (%style="color:red"%)**NOTE:**380 +**Step 1**: Be sure that your device is programmed and properly connected to the network at this time. 296 296 ))) 297 297 298 298 ((( 299 - (% style="color:red"%)1. Bydefault,thedevicewillsend anuplink message every1hour.384 +**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 300 300 ))) 301 301 302 302 388 +[[image:1654505857935-743.png]] 303 303 304 -== 2.3 Uplink Payload == 305 305 306 - In thismode, uplink payload includes in total18bytes391 +[[image:1654505874829-548.png]] 307 307 308 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 309 -|=(% style="width: 60px;" %)((( 310 -**Size(bytes)** 311 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1** 312 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 393 +Step 3: Create an account or log in Datacake. 313 313 314 - If we usetheMQTTclient to subscribe to this MQTT topic, we can see thefollowing information whenthe NSE01uplinkdata.395 +Step 4: Search the LSE01 and add DevEUI. 315 315 316 316 317 -[[image: image-20220708111918-4.png]]398 +[[image:1654505905236-553.png]] 318 318 319 319 320 - Thepayloadis ASCII string,representative sameHEX:401 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 321 321 322 - 0x72403155615900640c7817075e0a8c02f900 where:403 +[[image:1654505925508-181.png]] 323 323 324 -* Device ID: 0x 724031556159 = 724031556159 325 -* Version: 0x0064=100=1.0.0 326 326 327 -* BAT: 0x0c78 = 3192 mV = 3.192V 328 -* Singal: 0x17 = 23 329 -* Soil Moisture: 0x075e= 1886 = 18.86 % 330 -* Soil Temperature:0x0a8c =2700=27 °C 331 -* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 332 -* Interrupt: 0x00 = 0 333 333 407 +== 2.7 Frequency Plans == 334 334 335 - ==2.4PayloadExplanationandSensorInterface==409 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 336 336 337 337 338 -=== 2. 4.1DeviceID===412 +=== 2.7.1 EU863-870 (EU868) === 339 339 340 - Bydefault, theDevice ID equal tothelast6bytesof IMEI.414 +(% style="color:#037691" %)** Uplink:** 341 341 342 - Usercanuse(% style="color:blue"%)**AT+DEUI**(%%) to set Device ID416 +868.1 - SF7BW125 to SF12BW125 343 343 344 - **Example:**418 +868.3 - SF7BW125 to SF12BW125 and SF7BW250 345 345 346 - AT+DEUI=A84041F15612420 +868.5 - SF7BW125 to SF12BW125 347 347 348 - TheDevice ID is stored in a none-erasearea,Upgradethe firmwareorrun AT+FDR won't erase Device ID.422 +867.1 - SF7BW125 to SF12BW125 349 349 424 +867.3 - SF7BW125 to SF12BW125 350 350 426 +867.5 - SF7BW125 to SF12BW125 351 351 352 - ===2.4.2VersionInfo ===428 +867.7 - SF7BW125 to SF12BW125 353 353 354 - Specifythesoftware version: 0x64=100,means firmware version1.00.430 +867.9 - SF7BW125 to SF12BW125 355 355 356 - For example: 0x0064: this device is NSE01 with firmware version 1.0.0.432 +868.8 - FSK 357 357 358 358 435 +(% style="color:#037691" %)** Downlink:** 359 359 360 - ===2.4.3 BatteryInfo===437 +Uplink channels 1-9 (RX1) 361 361 362 -((( 363 -Check the battery voltage for LSE01. 364 -))) 439 +869.525 - SF9BW125 (RX2 downlink only) 365 365 366 -((( 367 -Ex1: 0x0B45 = 2885mV 368 -))) 369 369 370 -((( 371 -Ex2: 0x0B49 = 2889mV 372 -))) 373 373 443 +=== 2.7.2 US902-928(US915) === 374 374 445 +Used in USA, Canada and South America. Default use CHE=2 375 375 376 - ===2.4.4 Signal Strength===447 +(% style="color:#037691" %)**Uplink:** 377 377 378 - NB-IoTNetworksignalStrength.449 +903.9 - SF7BW125 to SF10BW125 379 379 380 - **Ex1:0x1d=29**451 +904.1 - SF7BW125 to SF10BW125 381 381 382 - (% style="color:blue" %)**0**(%%)113dBmorless453 +904.3 - SF7BW125 to SF10BW125 383 383 384 - (%style="color:blue"%)**1**(%%)-111dBm455 +904.5 - SF7BW125 to SF10BW125 385 385 386 - (%style="color:blue"%)**2...30**(%%)-109dBm... -53dBm457 +904.7 - SF7BW125 to SF10BW125 387 387 388 - (%style="color:blue"%)**31** (%%) -51dBmorgreater459 +904.9 - SF7BW125 to SF10BW125 389 389 390 - (% style="color:blue" %)**99**(%%)Notknownor not detectable461 +905.1 - SF7BW125 to SF10BW125 391 391 463 +905.3 - SF7BW125 to SF10BW125 392 392 393 393 394 - ===2.4.5 SoilMoisture===466 +(% style="color:#037691" %)**Downlink:** 395 395 396 -((( 397 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 398 -))) 468 +923.3 - SF7BW500 to SF12BW500 399 399 400 -((( 401 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 402 -))) 470 +923.9 - SF7BW500 to SF12BW500 403 403 404 -((( 405 - 406 -))) 472 +924.5 - SF7BW500 to SF12BW500 407 407 408 -((( 409 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 410 -))) 474 +925.1 - SF7BW500 to SF12BW500 411 411 476 +925.7 - SF7BW500 to SF12BW500 412 412 478 +926.3 - SF7BW500 to SF12BW500 413 413 414 - ===2.4.6oilTemperature===480 +926.9 - SF7BW500 to SF12BW500 415 415 416 -((( 417 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 418 -))) 482 +927.5 - SF7BW500 to SF12BW500 419 419 420 -((( 421 -**Example**: 422 -))) 484 +923.3 - SF12BW500(RX2 downlink only) 423 423 424 -((( 425 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 426 -))) 427 427 428 -((( 429 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 430 -))) 431 431 488 +=== 2.7.3 CN470-510 (CN470) === 432 432 490 +Used in China, Default use CHE=1 433 433 434 - ===2.4.7 SoilConductivity(EC)===492 +(% style="color:#037691" %)**Uplink:** 435 435 436 -((( 437 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 438 -))) 494 +486.3 - SF7BW125 to SF12BW125 439 439 440 -((( 441 -For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 442 -))) 496 +486.5 - SF7BW125 to SF12BW125 443 443 444 -((( 445 -Generally, the EC value of irrigation water is less than 800uS / cm. 446 -))) 498 +486.7 - SF7BW125 to SF12BW125 447 447 448 -((( 449 - 450 -))) 500 +486.9 - SF7BW125 to SF12BW125 451 451 452 -((( 453 - 454 -))) 502 +487.1 - SF7BW125 to SF12BW125 455 455 456 - === 2.4.8DigitalInterrupt===504 +487.3 - SF7BW125 to SF12BW125 457 457 458 - Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods.Whenthere is a trigger, the NSE01will send a packettothe server.506 +487.5 - SF7BW125 to SF12BW125 459 459 460 - Thecommandis:508 +487.7 - SF7BW125 to SF12BW125 461 461 462 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 463 463 511 +(% style="color:#037691" %)**Downlink:** 464 464 465 - The lower four bits of this data field shows if this packet is generated by interrupt or not.Clickhereforthe hardware and softwareset up.513 +506.7 - SF7BW125 to SF12BW125 466 466 515 +506.9 - SF7BW125 to SF12BW125 467 467 468 - Example:517 +507.1 - SF7BW125 to SF12BW125 469 469 470 -0 x(00):Normaluplinkpacket.519 +507.3 - SF7BW125 to SF12BW125 471 471 472 -0 x(01):InterruptUplinkPacket.521 +507.5 - SF7BW125 to SF12BW125 473 473 523 +507.7 - SF7BW125 to SF12BW125 474 474 525 +507.9 - SF7BW125 to SF12BW125 475 475 476 - === 2.4.9+5VOutput===527 +508.1 - SF7BW125 to SF12BW125 477 477 478 - NSE01willenable +5Voutputbefore all samplingand disable the +5v after all sampling.529 +505.3 - SF12BW125 (RX2 downlink only) 479 479 480 480 481 -The 5V output time can be controlled by AT Command. 482 482 483 - (% style="color:blue"%)**AT+5VT=1000**533 +=== 2.7.4 AU915-928(AU915) === 484 484 485 - Means set 5V valid time to have 1000ms. So the real 5V output will actuallyhave 1000ms+ sampling timefor other sensors.535 +Default use CHE=2 486 486 537 +(% style="color:#037691" %)**Uplink:** 487 487 539 +916.8 - SF7BW125 to SF12BW125 488 488 489 - ==2.5DownlinkPayload ==541 +917.0 - SF7BW125 to SF12BW125 490 490 491 - Bydefault,NSE01prints the downlinkpayload to console port.543 +917.2 - SF7BW125 to SF12BW125 492 492 493 - [[image:image-20220708133731-5.png]]545 +917.4 - SF7BW125 to SF12BW125 494 494 547 +917.6 - SF7BW125 to SF12BW125 495 495 496 -((( 497 -(% style="color:blue" %)**Examples:** 498 -))) 549 +917.8 - SF7BW125 to SF12BW125 499 499 500 -((( 501 - 502 -))) 551 +918.0 - SF7BW125 to SF12BW125 503 503 504 -* ((( 505 -(% style="color:blue" %)**Set TDC** 506 -))) 553 +918.2 - SF7BW125 to SF12BW125 507 507 508 -((( 509 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 510 -))) 511 511 512 -((( 513 -Payload: 01 00 00 1E TDC=30S 514 -))) 556 +(% style="color:#037691" %)**Downlink:** 515 515 516 -((( 517 -Payload: 01 00 00 3C TDC=60S 518 -))) 558 +923.3 - SF7BW500 to SF12BW500 519 519 520 -((( 521 - 522 -))) 560 +923.9 - SF7BW500 to SF12BW500 523 523 524 -* ((( 525 -(% style="color:blue" %)**Reset** 526 -))) 562 +924.5 - SF7BW500 to SF12BW500 527 527 528 -((( 529 -If payload = 0x04FF, it will reset the NSE01 530 -))) 564 +925.1 - SF7BW500 to SF12BW500 531 531 566 +925.7 - SF7BW500 to SF12BW500 532 532 533 - *(%style="color:blue"%)**INTMOD**568 +926.3 - SF7BW500 to SF12BW500 534 534 535 - DownlinkPayload:06000003,SetAT+INTMOD=3570 +926.9 - SF7BW500 to SF12BW500 536 536 572 +927.5 - SF7BW500 to SF12BW500 537 537 574 +923.3 - SF12BW500(RX2 downlink only) 538 538 539 -== 2.6 LED Indicator == 540 540 541 -((( 542 -The NSE01 has an internal LED which is to show the status of different state. 543 543 578 +=== 2.7.5 AS920-923 & AS923-925 (AS923) === 544 544 545 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 546 -* Then the LED will be on for 1 second means device is boot normally. 547 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 548 -* For each uplink probe, LED will be on for 500ms. 549 -))) 580 +(% style="color:#037691" %)**Default Uplink channel:** 550 550 582 +923.2 - SF7BW125 to SF10BW125 551 551 584 +923.4 - SF7BW125 to SF10BW125 552 552 553 553 554 - ==2.7 Installation inSoil==587 +(% style="color:#037691" %)**Additional Uplink Channel**: 555 555 556 - __**Measurementthesoilsurface**__589 +(OTAA mode, channel added by JoinAccept message) 557 557 558 - Choosethe proper measuring position. Avoid theprobe to touch rocksorhard things.Splitthe surface soil accordingto the measured deep. Keep the measured as originaldensity. Verticalinsert the probeinto the soil to be measured.Make sure not shake wheninserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]591 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 559 559 560 - [[image:1657259653666-883.png]]593 +922.2 - SF7BW125 to SF10BW125 561 561 595 +922.4 - SF7BW125 to SF10BW125 562 562 563 -((( 564 - 597 +922.6 - SF7BW125 to SF10BW125 565 565 566 -((( 567 -Dig a hole with diameter > 20CM. 568 -))) 599 +922.8 - SF7BW125 to SF10BW125 569 569 570 -((( 571 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 572 -))) 573 -))) 601 +923.0 - SF7BW125 to SF10BW125 574 574 575 - [[image:1654506665940-119.png]]603 +922.0 - SF7BW125 to SF10BW125 576 576 577 -((( 578 - 579 -))) 580 580 606 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 581 581 582 - ==2.8FirmwareChange Log==608 +923.6 - SF7BW125 to SF10BW125 583 583 610 +923.8 - SF7BW125 to SF10BW125 584 584 585 - DownloadURL&FirmwareChange log612 +924.0 - SF7BW125 to SF10BW125 586 586 587 - [[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]614 +924.2 - SF7BW125 to SF10BW125 588 588 616 +924.4 - SF7BW125 to SF10BW125 589 589 590 - UpgradeInstruction:[[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]618 +924.6 - SF7BW125 to SF10BW125 591 591 592 592 621 +(% style="color:#037691" %)** Downlink:** 593 593 594 - ==2.9 Battery Analysis==623 +Uplink channels 1-8 (RX1) 595 595 596 - ===2.9.1BatteryType ===625 +923.2 - SF10BW125 (RX2) 597 597 598 598 599 -The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 600 600 629 +=== 2.7.6 KR920-923 (KR920) === 601 601 602 - Thebattery is designed to lastfor severalyears depends ontheactually use environment and update interval.631 +Default channel: 603 603 633 +922.1 - SF7BW125 to SF12BW125 604 604 605 - Thebatteryrelateddocuments as below:635 +922.3 - SF7BW125 to SF12BW125 606 606 607 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 608 -* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 609 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 637 +922.5 - SF7BW125 to SF12BW125 610 610 639 + 640 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 641 + 642 +922.1 - SF7BW125 to SF12BW125 643 + 644 +922.3 - SF7BW125 to SF12BW125 645 + 646 +922.5 - SF7BW125 to SF12BW125 647 + 648 +922.7 - SF7BW125 to SF12BW125 649 + 650 +922.9 - SF7BW125 to SF12BW125 651 + 652 +923.1 - SF7BW125 to SF12BW125 653 + 654 +923.3 - SF7BW125 to SF12BW125 655 + 656 + 657 +(% style="color:#037691" %)**Downlink:** 658 + 659 +Uplink channels 1-7(RX1) 660 + 661 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 662 + 663 + 664 + 665 +=== 2.7.7 IN865-867 (IN865) === 666 + 667 +(% style="color:#037691" %)** Uplink:** 668 + 669 +865.0625 - SF7BW125 to SF12BW125 670 + 671 +865.4025 - SF7BW125 to SF12BW125 672 + 673 +865.9850 - SF7BW125 to SF12BW125 674 + 675 + 676 +(% style="color:#037691" %) **Downlink:** 677 + 678 +Uplink channels 1-3 (RX1) 679 + 680 +866.550 - SF10BW125 (RX2) 681 + 682 + 683 + 684 + 685 +== 2.8 LED Indicator == 686 + 687 +The LSE01 has an internal LED which is to show the status of different state. 688 + 689 +* Blink once when device power on. 690 +* Solid ON for 5 seconds once device successful Join the network. 691 +* Blink once when device transmit a packet. 692 + 693 +== 2.9 Installation in Soil == 694 + 695 +**Measurement the soil surface** 696 + 697 + 698 +[[image:1654506634463-199.png]] 699 + 611 611 ((( 612 -[[image:image-20220708140453-6.png]] 701 +((( 702 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 613 613 ))) 704 +))) 614 614 615 615 707 +[[image:1654506665940-119.png]] 616 616 617 -=== 2.9.2 Power consumption Analyze === 709 +((( 710 +Dig a hole with diameter > 20CM. 711 +))) 618 618 619 619 ((( 620 - Draginobattery powered productare allrunsinLow Powermode. Wehavean update battery calculator whichbase onthemeasurementof the realdevice. User canuse this calculatorto checkthebatterylife andcalculatethe batterylifeif want to use different transmit interval.714 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 621 621 ))) 622 622 623 623 718 +== 2.10 Firmware Change Log == 719 + 624 624 ((( 625 - Instructiontouseasbelow:721 +**Firmware download link:** 626 626 ))) 627 627 628 628 ((( 629 - (% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:[[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]725 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 630 630 ))) 631 631 728 +((( 729 + 730 +))) 632 632 633 633 ((( 634 - (% style="color:blue" %)**Step2: **(%%)Openithoose733 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 635 635 ))) 636 636 637 - *(((638 - ProductModel736 +((( 737 + 639 639 ))) 640 -* ((( 641 -Uplink Interval 739 + 740 +((( 741 +**V1.0.** 642 642 ))) 643 -* ((( 644 -Working Mode 645 -))) 646 646 647 647 ((( 648 - And theLifeexpectation in difference casewill be shown on the right.745 +Release 649 649 ))) 650 650 651 -[[image:image-20220708141352-7.jpeg]] 652 652 749 +== 2.11 Battery Analysis == 653 653 751 +=== 2.11.1 Battery Type === 654 654 655 -=== 2.9.3 Battery Note === 753 +((( 754 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 755 +))) 656 656 657 657 ((( 658 -The Li-SICObattery is designedfor small current/ longperiod application. It isnotgood to use a high current,short period transmit method. Therecommendedminimum period for use ofthis batteryis5minutes. Ifyou useshorterperiod time to transmitLoRa,thenthe battery life may be decreased.758 +The battery is designed to last for more than 5 years for the LSN50. 659 659 ))) 660 660 761 +((( 762 +((( 763 +The battery-related documents are as below: 764 +))) 765 +))) 661 661 767 +* ((( 768 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 769 +))) 770 +* ((( 771 +[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 772 +))) 773 +* ((( 774 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 775 +))) 662 662 663 - ===2.9.4 Replacethe battery ===777 + [[image:image-20220610172436-1.png]] 664 664 779 + 780 + 781 +=== 2.11.2 Battery Note === 782 + 665 665 ((( 666 -The defaultbatterypackofNSE01includesaER26500 plussupercapacitor. Ifusercan'tfind this pack locally,theycanfindER26500 orquivalence withoutthe SPC1520 capacitor, which will alsowork inmostcase. TheSPCcanlarge thebatterylifeforhigh frequency use(update periodbelow5minutes).784 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 667 667 ))) 668 668 669 669 670 670 671 -= 3. AccessNB-IoTModule =789 +=== 2.11.3 Replace the battery === 672 672 673 673 ((( 674 - Userscan directlyaccesstheAT command setoftheNB-IoTmodule.792 +If Battery is lower than 2.7v, user should replace the battery of LSE01. 675 675 ))) 676 676 677 677 ((( 678 - The AT Commandsetcanrefer theBC35-G NB-IoTModuleATCommand: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]]796 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 679 679 ))) 680 680 681 -[[image:1657261278785-153.png]] 799 +((( 800 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 801 +))) 682 682 683 683 684 684 685 -= 4.805 += 3. Using the AT Commands = 686 686 687 -== 4.1807 +== 3.1 Access AT Commands == 688 688 689 -See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 690 690 810 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 691 691 692 - AT+<CMD>? : Helpon<CMD>812 +[[image:1654501986557-872.png||height="391" width="800"]] 693 693 694 -AT+<CMD> : Run <CMD> 695 695 696 - AT+<CMD>=<value>: Setthevalue815 +Or if you have below board, use below connection: 697 697 698 -AT+<CMD>=? : Get the value 699 699 818 +[[image:1654502005655-729.png||height="503" width="801"]] 700 700 820 + 821 + 822 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 823 + 824 + 825 + [[image:1654502050864-459.png||height="564" width="806"]] 826 + 827 + 828 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]] 829 + 830 + 831 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 832 + 833 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 834 + 835 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 836 + 837 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 838 + 839 + 701 701 (% style="color:#037691" %)**General Commands**(%%) 702 702 703 -AT 842 +(% style="background-color:#dcdcdc" %)**AT**(%%) : Attention 704 704 705 -AT? 844 +(% style="background-color:#dcdcdc" %)**AT?**(%%) : Short Help 706 706 707 -ATZ 846 +(% style="background-color:#dcdcdc" %)**ATZ**(%%) : MCU Reset 708 708 709 -AT+TDC 848 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%) : Application Data Transmission Interval 710 710 711 -AT+CFG : Print all configurations 712 712 713 - AT+CFGMOD: Workingmode selection851 +(% style="color:#037691" %)**Keys, IDs and EUIs management** 714 714 715 -AT+I NTMOD:Setthe trigger interruptmode853 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%) : Application EUI 716 716 717 -AT+ 5VTSetextend the timeof5V power855 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%) : Application Key 718 718 719 -AT+P ROChooseagreement857 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%) : Application Session Key 720 720 721 -AT+ WEIGREGet weightorsetweight to 0859 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%) : Device Address 722 722 723 -AT+ WEIGAPGet or SettheGapValue of weight861 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%) : Device EUI 724 724 725 -AT+ RXDL: Extendthe sendingandreceivingtime863 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%) : Network ID (You can enter this command change only after successful network connection) 726 726 727 -AT+ CNTFACGettcountingparameters865 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%) : Network Session Key Joining and sending date on LoRa network 728 728 729 -AT+ SERVADDR:ServerAddress867 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%) : Confirm Mode 730 730 869 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 731 731 732 -(% style="color:# 037691" %)**COAPManagement**871 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%) : Join LoRa? Network 733 733 734 -AT+ URIsourceparameters873 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%) : LoRa? Network Join Mode 735 735 875 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 736 736 737 -(% style="color:# 037691" %)**UDPManagement**877 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%) : Print Last Received Data in Raw Format 738 738 739 -AT+C FM:Uploadconfirmationmode (onlyvalid forUDP)879 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%) : Print Last Received Data in Binary Format 740 740 881 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 741 741 742 -(% style="color:# 037691" %)**MQTTManagement**883 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%) : Send Hexadecimal Data 743 743 744 -AT+CLIENT : Get or Set MQTT client 745 745 746 - AT+UNAMEGetSetMQTT Username886 +(% style="color:#037691" %)**LoRa Network Management** 747 747 748 -AT+ PWDGetor SetMQTT password888 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%) : Adaptive Rate 749 749 750 -AT+ PUBTOPICGetorSetMQTTpublishtopic890 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%) : LoRa Class(Currently only support class A 751 751 752 -AT+ SUBTOPIC :GetorSetMQTT subscriptiontopic892 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%) : Duty Cycle Setting 753 753 894 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 754 754 755 -(% style="color:# 037691" %)**Information**896 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink 756 756 757 -AT+F DRctoryDataReset898 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%) : Frame Counter Uplink 758 758 759 -AT+ PWORDSerialAccessPassword900 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%) : Join Accept Delay1 760 760 902 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 761 761 904 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 762 762 763 -= 5.FAQ=906 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%) : Receive Delay1 764 764 765 -= =5.1HowtoUpgradeFirmware==908 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%) : Receive Delay2 766 766 910 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 767 767 912 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 913 + 914 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 915 + 916 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 917 + 918 + 919 +(% style="color:#037691" %)**Information** 920 + 921 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 922 + 923 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 924 + 925 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 926 + 927 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 928 + 929 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 930 + 931 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 932 + 933 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 934 + 935 + 936 += 4. FAQ = 937 + 938 +== 4.1 How to change the LoRa Frequency Bands/Region? == 939 + 768 768 ((( 769 -User can upgrade the firmware for 1) bug fix, 2) new feature release. 941 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 942 +When downloading the images, choose the required image file for download. 770 770 ))) 771 771 772 772 ((( 773 - Pleasesee this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]946 + 774 774 ))) 775 775 776 776 ((( 777 - (%style="color:red"%)Notice,NSE01andLSE01share thememotherboard.Theyuse thesameconnection andmethodto update.950 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 778 778 ))) 779 779 953 +((( 954 + 955 +))) 780 780 957 +((( 958 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 959 +))) 781 781 782 -= 6. Trouble Shooting = 961 +((( 962 + 963 +))) 783 783 784 -== 6.1 Connection problem when uploading firmware == 965 +((( 966 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 967 +))) 785 785 969 +[[image:image-20220606154726-3.png]] 786 786 787 -(% class="wikigeneratedid" %) 971 + 972 +When you use the TTN network, the US915 frequency bands use are: 973 + 974 +* 903.9 - SF7BW125 to SF10BW125 975 +* 904.1 - SF7BW125 to SF10BW125 976 +* 904.3 - SF7BW125 to SF10BW125 977 +* 904.5 - SF7BW125 to SF10BW125 978 +* 904.7 - SF7BW125 to SF10BW125 979 +* 904.9 - SF7BW125 to SF10BW125 980 +* 905.1 - SF7BW125 to SF10BW125 981 +* 905.3 - SF7BW125 to SF10BW125 982 +* 904.6 - SF8BW500 983 + 788 788 ((( 789 - (%style="font-size:14px"%)**Pleasesee:**(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color:rgb(255,255,255);font-size:14px;"]]985 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 790 790 ))) 791 791 988 +(% class="box infomessage" %) 989 +((( 990 +**AT+CHE=2** 991 +))) 792 792 993 +(% class="box infomessage" %) 994 +((( 995 +**ATZ** 996 +))) 793 793 794 -== 6.2 AT Command input doesn't work == 998 +((( 999 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 1000 +))) 795 795 796 796 ((( 797 - Inthe case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.1003 + 798 798 ))) 799 799 1006 +((( 1007 +The **AU915** band is similar. Below are the AU915 Uplink Channels. 1008 +))) 800 800 1010 +[[image:image-20220606154825-4.png]] 801 801 802 -= 7. Order Info = 803 803 804 804 805 - PartNumber**:** (% style="color:#4f81bd"%)**NSE01**1014 += 5. Trouble Shooting = 806 806 1016 +== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 807 807 1018 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 1019 + 1020 + 1021 +== 5.2 AT Command input doesn’t work == 1022 + 1023 +((( 1024 +In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1025 +))) 1026 + 1027 + 1028 +== 5.3 Device rejoin in at the second uplink packet == 1029 + 1030 +(% style="color:#4f81bd" %)**Issue describe as below:** 1031 + 1032 +[[image:1654500909990-784.png]] 1033 + 1034 + 1035 +(% style="color:#4f81bd" %)**Cause for this issue:** 1036 + 1037 +((( 1038 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 1039 +))) 1040 + 1041 + 1042 +(% style="color:#4f81bd" %)**Solution: ** 1043 + 1044 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 1045 + 1046 +[[image:1654500929571-736.png||height="458" width="832"]] 1047 + 1048 + 1049 += 6. Order Info = 1050 + 1051 + 1052 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 1053 + 1054 + 1055 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 1056 + 1057 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 1058 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 1059 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 1060 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 1061 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1062 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1063 +* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1064 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1065 + 1066 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1067 + 1068 +* (% style="color:red" %)**4**(%%): 4000mAh battery 1069 +* (% style="color:red" %)**8**(%%): 8500mAh battery 1070 + 808 808 (% class="wikigeneratedid" %) 809 809 ((( 810 810 811 811 ))) 812 812 813 -= 8.1076 += 7. Packing Info = 814 814 815 815 ((( 816 816 817 817 818 818 (% style="color:#037691" %)**Package Includes**: 1082 +))) 819 819 820 - 821 -* NSE01 NB-IoT Soil Moisture & EC Sensor x 1 822 -* External antenna x 1 1084 +* ((( 1085 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 823 823 ))) 824 824 825 825 ((( ... ... @@ -826,20 +826,24 @@ 826 826 827 827 828 828 (% style="color:#037691" %)**Dimension and weight**: 1092 +))) 829 829 830 - 831 -* Size: 195 x 125 x 55 mm 832 -* Weight: 420g 1094 +* ((( 1095 +Device Size: cm 833 833 ))) 1097 +* ((( 1098 +Device Weight: g 1099 +))) 1100 +* ((( 1101 +Package Size / pcs : cm 1102 +))) 1103 +* ((( 1104 +Weight / pcs : g 834 834 835 -((( 836 836 837 - 838 - 839 - 840 840 ))) 841 841 842 -= 9.1109 += 8. Support = 843 843 844 844 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 845 845 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -102.7 KB - Content