Changes for page NDDS75 -- NB-IoT Distance Detect Sensor User Manual
Last modified by Bei Jinggeng on 2024/05/31 09:53
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 24 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - NSE01NB-IoTSoil Moisture & EC Sensor User Manual1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -3,16 +3,8 @@ 3 3 4 4 5 5 6 +**Contents:** 6 6 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 -**Table of Contents:** 15 - 16 16 {{toc/}} 17 17 18 18 ... ... @@ -20,82 +20,64 @@ 20 20 21 21 22 22 15 += 1. Introduction = 23 23 24 -= 1. Introduction =17 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 25 25 26 -== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 27 - 28 28 ((( 29 - 20 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 21 +))) 30 30 31 31 ((( 32 - DraginoNSE01 isan(% style="color:blue" %)**NB-IOT soilmoisture& EC sensor**(%%)foragriculturalIoT. Used tomeasure the soilmoisture ofsaline-alkali soiland loam.Thesoil sensor uses the FDRmethod to calculate soil moisture andcompensates it with soiltemperature andelectricalconductivity.It hasalsobeencalibratedfor mineralsoiltypesatthe factory.24 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 33 33 ))) 34 34 35 35 ((( 36 - Itcandetect (%style="color:blue"%)**SoilMoisture,Soil Temperature andSoilConductivity**(%%),anduploaditsvalue totheserver wirelessly.28 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 37 37 ))) 38 38 39 39 ((( 40 - Thewirelesstechnology usedin NSE01allowsthedeviceto senddataata lowdata rateand reachultra-longdistances, providingultra-long-distancespreadspectrum Communication.32 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 41 41 ))) 42 42 43 43 ((( 44 - NSE01arepoweredby(%style="color:blue"%)**8500mAhLi-SOCI2**(%%)batteries,which canbeusedforupto5 years.36 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 45 45 ))) 46 46 47 - 48 -))) 49 49 50 50 [[image:1654503236291-817.png]] 51 51 52 52 53 -[[image:165 7245163077-232.png]]43 +[[image:1654503265560-120.png]] 54 54 55 55 56 56 57 -== 1.2 47 +== 1.2 Features == 58 58 59 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 49 +* LoRaWAN 1.0.3 Class A 50 +* Ultra low power consumption 60 60 * Monitor Soil Moisture 61 61 * Monitor Soil Temperature 62 62 * Monitor Soil Conductivity 54 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 63 63 * AT Commands to change parameters 64 64 * Uplink on periodically 65 65 * Downlink to change configure 66 66 * IP66 Waterproof Enclosure 67 -* Ultra-Low Power consumption 68 -* AT Commands to change parameters 69 -* Micro SIM card slot for NB-IoT SIM 70 -* 8500mAh Battery for long term use 59 +* 4000mAh or 8500mAh Battery for long term use 71 71 72 72 73 -== 1.3 Specification == 74 74 75 75 76 - (% style="color:#037691"%)**Common DC Characteristics:**64 +== 1.3 Specification == 77 77 78 -* Supply Voltage: 2.1v ~~ 3.6v 79 -* Operating Temperature: -40 ~~ 85°C 80 - 81 -(% style="color:#037691" %)**NB-IoT Spec:** 82 - 83 -* - B1 @H-FDD: 2100MHz 84 -* - B3 @H-FDD: 1800MHz 85 -* - B8 @H-FDD: 900MHz 86 -* - B5 @H-FDD: 850MHz 87 -* - B20 @H-FDD: 800MHz 88 -* - B28 @H-FDD: 700MHz 89 - 90 -Probe(% style="color:#037691" %)** Specification:** 91 - 92 92 Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 93 93 94 -[[image:image-20220 708101224-1.png]]68 +[[image:image-20220606162220-5.png]] 95 95 96 96 97 97 98 -== 1.4 72 +== 1.4 Applications == 99 99 100 100 * Smart Agriculture 101 101 ... ... @@ -102,724 +102,982 @@ 102 102 (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 103 103 104 104 105 -== 1.5 Pin Definitions==79 +== 1.5 Firmware Change log == 106 106 107 107 108 - [[image:1657246476176-652.png]]82 +**LSE01 v1.0 :** Release 109 109 110 110 111 111 112 -= 2. UseNSE01 to communicatewithIoTServer=86 += 2. Configure LSE01 to connect to LoRaWAN network = 113 113 114 -== 2.1 88 +== 2.1 How it works == 115 115 116 - 117 117 ((( 118 -The NSE01 isequippedwithaNB-IoT module,thepre-loadedfirmwareinNSE01willgetenvironmentdatafrom sensorsandsend thevaluetolocalNB-IoTnetworkviatheNB-IoTmodule.The NB-IoTnetworkwillforwardthisvaluetoIoTserver viatheprotocoldefinedbyNSE01.91 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 119 119 ))) 120 120 121 - 122 122 ((( 123 - Thediagrambelowshows theworkingflowindefaultfirmware ofNSE01:95 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 124 124 ))) 125 125 126 -[[image:image-20220708101605-2.png]] 127 127 128 -((( 129 - 130 -))) 131 131 100 +== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 132 132 102 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 133 133 134 -== 2.2 Configure the NSE01 == 135 135 105 +[[image:1654503992078-669.png]] 136 136 137 -=== 2.2.1 Test Requirement === 138 138 108 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 139 139 110 + 111 +**Step 1**: Create a device in TTN with the OTAA keys from LSE01. 112 + 113 +Each LSE01 is shipped with a sticker with the default device EUI as below: 114 + 115 +[[image:image-20220606163732-6.jpeg]] 116 + 117 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 118 + 119 +**Add APP EUI in the application** 120 + 121 + 122 +[[image:1654504596150-405.png]] 123 + 124 + 125 + 126 +**Add APP KEY and DEV EUI** 127 + 128 +[[image:1654504683289-357.png]] 129 + 130 + 131 + 132 +**Step 2**: Power on LSE01 133 + 134 + 135 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 136 + 137 +[[image:image-20220606163915-7.png]] 138 + 139 + 140 +**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 141 + 142 +[[image:1654504778294-788.png]] 143 + 144 + 145 + 146 +== 2.3 Uplink Payload == 147 + 148 +=== 2.3.1 MOD~=0(Default Mode) === 149 + 150 +LSE01 will uplink payload via LoRaWAN with below payload format: 151 + 152 + 153 +Uplink payload includes in total 11 bytes. 154 + 155 + 156 +(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %) 157 +|=((( 158 +**Size** 159 + 160 +**(bytes)** 161 +)))|=(% style="width: 45px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1** 162 +|**Value**|(% style="width:45px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:80px" %)((( 140 140 ((( 141 -To use NSE01 in your city, make sure meet below requirements: 164 +Temperature 165 + 166 +((( 167 +(Reserve, Ignore now) 142 142 ))) 143 143 144 -* Your local operator has already distributed a NB-IoT Network there. 145 -* The local NB-IoT network used the band that NSE01 supports. 146 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 170 +~|(% style="width:80px" %)[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]| 147 147 172 +(% style="width:80px" %) 148 148 ((( 149 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 174 +((( 175 +MOD & Digital Interrupt 176 + 177 +((( 178 +(Optional) 150 150 ))) 180 +))) 151 151 182 +[[image:1654504881641-514.png]] 152 152 153 -[[image:1657249419225-449.png]] 154 154 155 155 186 +=== 2.3.2 MOD~=1(Original value) === 156 156 157 - ===2.2.2InsertSIMcard===188 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 158 158 190 +(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %) 191 +|=((( 192 +**Size** 193 + 194 +**(bytes)** 195 +)))|=**2**|=**2**|=**2**|=**2**|=**2**|=**1** 196 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 159 159 ((( 160 -Insert the NB-IoT Card get from your provider. 161 -))) 198 +Temperature 162 162 163 163 ((( 164 - Userneedto take out the NB-IoT module and insert theSIM card like below:201 +(Reserve, Ignore now) 165 165 ))) 203 +))) 166 166 205 +~|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]| 167 167 168 -[[image:1657249468462-536.png]] 207 +((( 208 +[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw) 209 +))) 169 169 211 +~| 170 170 171 - 172 -=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 173 - 174 174 ((( 175 175 ((( 176 - Userneedto configure NSE01 viaserialport to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands,user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.215 +MOD & Digital Interrupt 177 177 ))) 217 + 218 +(Optional) 178 178 ))) 220 +))) 179 179 222 +[[image:1654504907647-967.png]] 180 180 181 -**Connection:** 182 182 183 - (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 184 184 185 - (%style="background-color:yellow"%)USB TTL TXD <~-~-~-~-> UART_RXD226 +=== 2.3.3 Battery Info === 186 186 187 - (% style="background-color:yellow"%)USB TTLRXD <~-~-~-~-> UART_TXD228 +Check the battery voltage for LSE01. 188 188 230 +Ex1: 0x0B45 = 2885mV 189 189 190 - InthePC,use below serial tool settings:232 +Ex2: 0x0B49 = 2889mV 191 191 192 -* Baud: (% style="color:green" %)**9600** 193 -* Data bits:** (% style="color:green" %)8(%%)** 194 -* Stop bits: (% style="color:green" %)**1** 195 -* Parity: (% style="color:green" %)**None** 196 -* Flow Control: (% style="color:green" %)**None** 197 197 235 + 236 +=== 2.3.4 Soil Moisture === 237 + 238 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 239 + 240 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 241 + 242 + 243 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 244 + 245 + 246 + 247 +=== 2.3.5 Soil Temperature === 248 + 249 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 250 + 251 +**Example**: 252 + 253 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 254 + 255 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 256 + 257 + 258 + 259 +=== 2.3.6 Soil Conductivity (EC) === 260 + 198 198 ((( 199 - Make surethe switch is inFLASHposition, then power on devicebyconnectingthe jumperNSE01.NSE01 willoutputsysteminfo oncepowerasbelow,wecan enterthe(% style="color:green" %)**password:12345678**(%%)toaccessATCommandinput.262 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 200 200 ))) 201 201 202 -[[image:image-20220708110657-3.png]] 265 +((( 266 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 267 +))) 203 203 204 204 ((( 205 - (% style="color:red"%)Note: the validAT Commandscan be foundat: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]270 +Generally, the EC value of irrigation water is less than 800uS / cm. 206 206 ))) 207 207 273 +((( 274 + 275 +))) 208 208 277 +((( 278 + 279 +))) 209 209 210 -=== 2. 2.4Use CoAP protocol to uplink data===281 +=== 2.3.7 MOD === 211 211 212 - (% style="color:red"%)Note:if you don'thaveCoAP server, you can refer thislinktosetupne:(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]283 +Firmware version at least v2.1 supports changing mode. 213 213 285 +For example, bytes[10]=90 214 214 215 - **Use below commands:**287 +mod=(bytes[10]>>7)&0x01=1. 216 216 217 -* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 218 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 219 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 220 220 221 - For parameter description,please refer toAT commandset290 +**Downlink Command:** 222 222 223 - [[image:1657249793983-486.png]]292 +If payload = 0x0A00, workmode=0 224 224 294 +If** **payload =** **0x0A01, workmode=1 225 225 226 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 227 227 228 -[[image:1657249831934-534.png]] 229 229 298 +=== 2.3.8 Decode payload in The Things Network === 230 230 300 +While using TTN network, you can add the payload format to decode the payload. 231 231 232 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 233 233 234 - This feature is supported since firmwareversion v1.0.1303 +[[image:1654505570700-128.png]] 235 235 305 +The payload decoder function for TTN is here: 236 236 237 -* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 238 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 239 -* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 307 +LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 240 240 241 -[[image:1657249864775-321.png]] 242 242 243 243 244 - [[image:1657249930215-289.png]]311 +== 2.4 Uplink Interval == 245 245 313 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 246 246 247 247 248 -=== 2.2.6 Use MQTT protocol to uplink data === 249 249 250 - Thisfeatureis supported sincefirmware versionv110317 +== 2.5 Downlink Payload == 251 251 319 +By default, LSE50 prints the downlink payload to console port. 252 252 253 -* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 254 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 255 -* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 256 -* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 257 -* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 258 -* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 259 -* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 321 +[[image:image-20220606165544-8.png]] 260 260 261 -[[image:1657249978444-674.png]] 262 262 324 +**Examples:** 263 263 264 -[[image:1657249990869-686.png]] 265 265 327 +* **Set TDC** 266 266 267 -((( 268 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 269 -))) 329 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 270 270 331 +Payload: 01 00 00 1E TDC=30S 271 271 333 +Payload: 01 00 00 3C TDC=60S 272 272 273 -=== 2.2.7 Use TCP protocol to uplink data === 274 274 275 - Thisfeature issupported since firmware version v110336 +* **Reset** 276 276 338 +If payload = 0x04FF, it will reset the LSE01 277 277 278 -* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 279 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 280 280 281 - [[image:1657250217799-140.png]]341 +* **CFM** 282 282 343 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 283 283 284 -[[image:1657250255956-604.png]] 285 285 286 286 347 +== 2.6 Show Data in DataCake IoT Server == 287 287 288 - === 2.2.8ChangeUpdateInterval===349 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 289 289 290 -User can use below command to change the (% style="color:green" %)**uplink interval**. 291 291 292 -* (%style="color:blue"%)**AT+TDC=600**(%%)~/~/ SetUpdateIntervalto600s352 +**Step 1**: Be sure that your device is programmed and properly connected to the network at this time. 293 293 294 -((( 295 -(% style="color:red" %)**NOTE:** 296 -))) 354 +**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 297 297 298 -((( 299 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 300 -))) 301 301 357 +[[image:1654505857935-743.png]] 302 302 303 303 304 - ==2.3 Uplink Payload ==360 +[[image:1654505874829-548.png]] 305 305 306 - Inthis mode, uplinkpayloadincludes intal18bytes362 +Step 3: Create an account or log in Datacake. 307 307 308 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 309 -|=(% style="width: 60px;" %)((( 310 -**Size(bytes)** 311 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1** 312 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 364 +Step 4: Search the LSE01 and add DevEUI. 313 313 314 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 315 315 367 +[[image:1654505905236-553.png]] 316 316 317 -[[image:image-20220708111918-4.png]] 318 318 370 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 319 319 320 - The payloadis ASCII string, representative same HEX:372 +[[image:1654505925508-181.png]] 321 321 322 -0x72403155615900640c7817075e0a8c02f900 where: 323 323 324 -* Device ID: 0x 724031556159 = 724031556159 325 -* Version: 0x0064=100=1.0.0 326 326 327 -* BAT: 0x0c78 = 3192 mV = 3.192V 328 -* Singal: 0x17 = 23 329 -* Soil Moisture: 0x075e= 1886 = 18.86 % 330 -* Soil Temperature:0x0a8c =2700=27 °C 331 -* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 332 -* Interrupt: 0x00 = 0 376 +== 2.7 Frequency Plans == 333 333 378 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 334 334 335 -== 2.4 Payload Explanation and Sensor Interface == 336 336 381 +=== 2.7.1 EU863-870 (EU868) === 337 337 338 - ===2.4.1 DeviceID===383 +(% style="color:#037691" %)** Uplink:** 339 339 340 - Bydefault,theDevice ID equaltothe last 6 bytes of IMEI.385 +868.1 - SF7BW125 to SF12BW125 341 341 342 - Usercanuse(% style="color:blue"%)**AT+DEUI**(%%)toset Device ID387 +868.3 - SF7BW125 to SF12BW125 and SF7BW250 343 343 344 - **Example:**389 +868.5 - SF7BW125 to SF12BW125 345 345 346 - AT+DEUI=A84041F15612391 +867.1 - SF7BW125 to SF12BW125 347 347 348 - TheDevice ID is stored in a none-erasearea,Upgradethe firmwareorrun AT+FDR won't erase Device ID.393 +867.3 - SF7BW125 to SF12BW125 349 349 395 +867.5 - SF7BW125 to SF12BW125 350 350 397 +867.7 - SF7BW125 to SF12BW125 351 351 352 - ===2.4.2VersionInfo ===399 +867.9 - SF7BW125 to SF12BW125 353 353 354 - Specify the software version: 0x64=100, means firmware version 1.00.401 +868.8 - FSK 355 355 356 -For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 357 357 404 +(% style="color:#037691" %)** Downlink:** 358 358 406 +Uplink channels 1-9 (RX1) 359 359 360 - === 2.4.3BatteryInfo===408 +869.525 - SF9BW125 (RX2 downlink only) 361 361 362 -((( 363 -Check the battery voltage for LSE01. 364 -))) 365 365 366 -((( 367 -Ex1: 0x0B45 = 2885mV 368 -))) 369 369 370 -((( 371 -Ex2: 0x0B49 = 2889mV 372 -))) 412 +=== 2.7.2 US902-928(US915) === 373 373 414 +Used in USA, Canada and South America. Default use CHE=2 374 374 416 +(% style="color:#037691" %)**Uplink:** 375 375 376 - === 2.4.4SignalStrength===418 +903.9 - SF7BW125 to SF10BW125 377 377 378 - NB-IoTNetworksignalStrength.420 +904.1 - SF7BW125 to SF10BW125 379 379 380 - **Ex1:0x1d=29**422 +904.3 - SF7BW125 to SF10BW125 381 381 382 - (% style="color:blue" %)**0**(%%)113dBmorless424 +904.5 - SF7BW125 to SF10BW125 383 383 384 - (%style="color:blue"%)**1**(%%)-111dBm426 +904.7 - SF7BW125 to SF10BW125 385 385 386 - (%style="color:blue"%)**2...30**(%%)-109dBm... -53dBm428 +904.9 - SF7BW125 to SF10BW125 387 387 388 - (% style="color:blue" %)**31**(%%)-51dBmorgreater430 +905.1 - SF7BW125 to SF10BW125 389 389 390 - (% style="color:blue" %)**99**(%%)Notknownor not detectable432 +905.3 - SF7BW125 to SF10BW125 391 391 392 392 435 +(% style="color:#037691" %)**Downlink:** 393 393 394 - ===2.4.5SoilMoisture===437 +923.3 - SF7BW500 to SF12BW500 395 395 396 -((( 397 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 398 -))) 439 +923.9 - SF7BW500 to SF12BW500 399 399 400 -((( 401 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 402 -))) 441 +924.5 - SF7BW500 to SF12BW500 403 403 404 -((( 405 - 406 -))) 443 +925.1 - SF7BW500 to SF12BW500 407 407 408 -((( 409 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 410 -))) 445 +925.7 - SF7BW500 to SF12BW500 411 411 447 +926.3 - SF7BW500 to SF12BW500 412 412 449 +926.9 - SF7BW500 to SF12BW500 413 413 414 - ===2.4.6SoilTemperature===451 +927.5 - SF7BW500 to SF12BW500 415 415 416 -((( 417 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 418 -))) 453 +923.3 - SF12BW500(RX2 downlink only) 419 419 420 -((( 421 -**Example**: 422 -))) 423 423 424 -((( 425 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 426 -))) 427 427 428 -((( 429 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 430 -))) 457 +=== 2.7.3 CN470-510 (CN470) === 431 431 459 +Used in China, Default use CHE=1 432 432 461 +(% style="color:#037691" %)**Uplink:** 433 433 434 - === 2.4.7SoilConductivity(EC) ===463 +486.3 - SF7BW125 to SF12BW125 435 435 436 -((( 437 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 438 -))) 465 +486.5 - SF7BW125 to SF12BW125 439 439 440 -((( 441 -For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 442 -))) 467 +486.7 - SF7BW125 to SF12BW125 443 443 444 -((( 445 -Generally, the EC value of irrigation water is less than 800uS / cm. 446 -))) 469 +486.9 - SF7BW125 to SF12BW125 447 447 448 -((( 449 - 450 -))) 471 +487.1 - SF7BW125 to SF12BW125 451 451 452 -((( 453 - 454 -))) 473 +487.3 - SF7BW125 to SF12BW125 455 455 456 - === 2.4.8DigitalInterrupt===475 +487.5 - SF7BW125 to SF12BW125 457 457 458 - Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods.Whenthere is a trigger, the NSE01will send a packettothe server.477 +487.7 - SF7BW125 to SF12BW125 459 459 460 -The command is: 461 461 462 -(% style="color: blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**480 +(% style="color:#037691" %)**Downlink:** 463 463 482 +506.7 - SF7BW125 to SF12BW125 464 464 465 - The lower four bits of this data field shows if this packet is generated by interrupt or not.Clickhereforthe hardware and softwareset up.484 +506.9 - SF7BW125 to SF12BW125 466 466 486 +507.1 - SF7BW125 to SF12BW125 467 467 468 - Example:488 +507.3 - SF7BW125 to SF12BW125 469 469 470 -0 x(00):Normaluplinkpacket.490 +507.5 - SF7BW125 to SF12BW125 471 471 472 -0 x(01):InterruptUplinkPacket.492 +507.7 - SF7BW125 to SF12BW125 473 473 494 +507.9 - SF7BW125 to SF12BW125 474 474 496 +508.1 - SF7BW125 to SF12BW125 475 475 476 - === 2.4.9+5VOutput===498 +505.3 - SF12BW125 (RX2 downlink only) 477 477 478 -NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 479 479 480 480 481 - The5Voutput time can be controlled byATCommand.502 +=== 2.7.4 AU915-928(AU915) === 482 482 483 - (% style="color:blue"%)**AT+5VT=1000**504 +Default use CHE=2 484 484 485 - Meansset5V valid timetohave 1000ms. So the real5Voutput will actually have 1000ms+ sampling time for other sensors.506 +(% style="color:#037691" %)**Uplink:** 486 486 508 +916.8 - SF7BW125 to SF12BW125 487 487 510 +917.0 - SF7BW125 to SF12BW125 488 488 489 - ==2.5DownlinkPayload ==512 +917.2 - SF7BW125 to SF12BW125 490 490 491 - Bydefault,NSE01prints the downlinkpayload to console port.514 +917.4 - SF7BW125 to SF12BW125 492 492 493 - [[image:image-20220708133731-5.png]]516 +917.6 - SF7BW125 to SF12BW125 494 494 518 +917.8 - SF7BW125 to SF12BW125 495 495 496 -((( 497 -(% style="color:blue" %)**Examples:** 498 -))) 520 +918.0 - SF7BW125 to SF12BW125 499 499 500 -((( 501 - 502 -))) 522 +918.2 - SF7BW125 to SF12BW125 503 503 504 -* ((( 505 -(% style="color:blue" %)**Set TDC** 506 -))) 507 507 508 -((( 509 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 510 -))) 525 +(% style="color:#037691" %)**Downlink:** 511 511 512 -((( 513 -Payload: 01 00 00 1E TDC=30S 514 -))) 527 +923.3 - SF7BW500 to SF12BW500 515 515 516 -((( 517 -Payload: 01 00 00 3C TDC=60S 518 -))) 529 +923.9 - SF7BW500 to SF12BW500 519 519 520 -((( 521 - 522 -))) 531 +924.5 - SF7BW500 to SF12BW500 523 523 524 -* ((( 525 -(% style="color:blue" %)**Reset** 526 -))) 533 +925.1 - SF7BW500 to SF12BW500 527 527 528 -((( 529 -If payload = 0x04FF, it will reset the NSE01 530 -))) 535 +925.7 - SF7BW500 to SF12BW500 531 531 537 +926.3 - SF7BW500 to SF12BW500 532 532 533 - *(%style="color:blue"%)**INTMOD**539 +926.9 - SF7BW500 to SF12BW500 534 534 535 - DownlinkPayload:06000003,SetAT+INTMOD=3541 +927.5 - SF7BW500 to SF12BW500 536 536 543 +923.3 - SF12BW500(RX2 downlink only) 537 537 538 538 539 -== 2.6 LED Indicator == 540 540 541 -((( 542 -The NSE01 has an internal LED which is to show the status of different state. 547 +=== 2.7.5 AS920-923 & AS923-925 (AS923) === 543 543 549 +(% style="color:#037691" %)**Default Uplink channel:** 544 544 545 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 546 -* Then the LED will be on for 1 second means device is boot normally. 547 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 548 -* For each uplink probe, LED will be on for 500ms. 549 -))) 551 +923.2 - SF7BW125 to SF10BW125 550 550 553 +923.4 - SF7BW125 to SF10BW125 551 551 552 552 556 +(% style="color:#037691" %)**Additional Uplink Channel**: 553 553 554 - ==2.7InstallationinSoil==558 +(OTAA mode, channel added by JoinAccept message) 555 555 556 - __**Measurementthesoilsurface**__560 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 557 557 558 - Choose the proper measuring position.Avoidthe probe to touch rocks or hard things.Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]562 +922.2 - SF7BW125 to SF10BW125 559 559 560 - [[image:1657259653666-883.png]]564 +922.4 - SF7BW125 to SF10BW125 561 561 566 +922.6 - SF7BW125 to SF10BW125 562 562 563 -((( 564 - 568 +922.8 - SF7BW125 to SF10BW125 565 565 566 -((( 567 -Dig a hole with diameter > 20CM. 568 -))) 570 +923.0 - SF7BW125 to SF10BW125 569 569 570 -((( 571 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 572 -))) 573 -))) 572 +922.0 - SF7BW125 to SF10BW125 574 574 575 -[[image:1654506665940-119.png]] 576 576 577 -((( 578 - 579 -))) 575 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 580 580 577 +923.6 - SF7BW125 to SF10BW125 581 581 582 - ==2.8FirmwareChange Log==579 +923.8 - SF7BW125 to SF10BW125 583 583 581 +924.0 - SF7BW125 to SF10BW125 584 584 585 - DownloadURL&FirmwareChange log583 +924.2 - SF7BW125 to SF10BW125 586 586 587 - [[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]585 +924.4 - SF7BW125 to SF10BW125 588 588 587 +924.6 - SF7BW125 to SF10BW125 589 589 590 -Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]] 591 591 590 +(% style="color:#037691" %)** Downlink:** 592 592 592 +Uplink channels 1-8 (RX1) 593 593 594 - ==2.9BatteryAnalysis ==594 +923.2 - SF10BW125 (RX2) 595 595 596 -=== 2.9.1 Battery Type === 597 597 598 598 599 - TheNSE01 battery is a combination of an 8500mAh Li/SOCI2Battery and a Super Capacitor.The battery is none-rechargeablebattery type with a low discharge rate(<2% per year).This type of battery is commonly used in IoT devices such as water meter.598 +=== 2.7.6 KR920-923 (KR920) === 600 600 600 +Default channel: 601 601 602 - Thebatteryisdesignedtolast for several years depends on the actually use environment and update interval.602 +922.1 - SF7BW125 to SF12BW125 603 603 604 +922.3 - SF7BW125 to SF12BW125 604 604 605 - Thebatteryrelateddocuments as below:606 +922.5 - SF7BW125 to SF12BW125 606 606 607 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 608 -* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 609 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 610 610 609 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 610 + 611 +922.1 - SF7BW125 to SF12BW125 612 + 613 +922.3 - SF7BW125 to SF12BW125 614 + 615 +922.5 - SF7BW125 to SF12BW125 616 + 617 +922.7 - SF7BW125 to SF12BW125 618 + 619 +922.9 - SF7BW125 to SF12BW125 620 + 621 +923.1 - SF7BW125 to SF12BW125 622 + 623 +923.3 - SF7BW125 to SF12BW125 624 + 625 + 626 +(% style="color:#037691" %)**Downlink:** 627 + 628 +Uplink channels 1-7(RX1) 629 + 630 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 631 + 632 + 633 + 634 +=== 2.7.7 IN865-867 (IN865) === 635 + 636 +(% style="color:#037691" %)** Uplink:** 637 + 638 +865.0625 - SF7BW125 to SF12BW125 639 + 640 +865.4025 - SF7BW125 to SF12BW125 641 + 642 +865.9850 - SF7BW125 to SF12BW125 643 + 644 + 645 +(% style="color:#037691" %) **Downlink:** 646 + 647 +Uplink channels 1-3 (RX1) 648 + 649 +866.550 - SF10BW125 (RX2) 650 + 651 + 652 + 653 + 654 +== 2.8 LED Indicator == 655 + 656 +The LSE01 has an internal LED which is to show the status of different state. 657 + 658 +* Blink once when device power on. 659 +* Solid ON for 5 seconds once device successful Join the network. 660 +* Blink once when device transmit a packet. 661 + 662 +== 2.9 Installation in Soil == 663 + 664 +**Measurement the soil surface** 665 + 666 + 667 +[[image:1654506634463-199.png]] 668 + 611 611 ((( 612 -[[image:image-20220708140453-6.png]] 670 +((( 671 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 613 613 ))) 673 +))) 614 614 615 615 676 +[[image:1654506665940-119.png]] 616 616 617 -=== 2.9.2 Power consumption Analyze === 678 +((( 679 +Dig a hole with diameter > 20CM. 680 +))) 618 618 619 619 ((( 620 - Draginobattery powered productare allrunsinLow Powermode. Wehavean update battery calculator whichbase onthemeasurementof the realdevice. User canuse this calculatorto checkthebatterylife andcalculatethe batterylifeif want to use different transmit interval.683 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 621 621 ))) 622 622 623 623 687 +== 2.10 Firmware Change Log == 688 + 624 624 ((( 625 - Instructiontouseasbelow:690 +**Firmware download link:** 626 626 ))) 627 627 628 628 ((( 629 - (% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:[[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]694 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 630 630 ))) 631 631 697 +((( 698 + 699 +))) 632 632 633 633 ((( 634 - (% style="color:blue" %)**Step2: **(%%)Openithoose702 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 635 635 ))) 636 636 637 - *(((638 - ProductModel705 +((( 706 + 639 639 ))) 640 -* ((( 641 -Uplink Interval 708 + 709 +((( 710 +**V1.0.** 642 642 ))) 643 -* ((( 644 -Working Mode 645 -))) 646 646 647 647 ((( 648 - And theLifeexpectation in difference casewill be shown on the right.714 +Release 649 649 ))) 650 650 651 -[[image:image-20220708141352-7.jpeg]] 652 652 718 +== 2.11 Battery Analysis == 653 653 720 +=== 2.11.1 Battery Type === 654 654 655 -=== 2.9.3 Battery Note === 722 +((( 723 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 724 +))) 656 656 657 657 ((( 658 -The Li-SICObattery is designedfor small current/ longperiod application. It isnotgood to use a high current,short period transmit method. Therecommendedminimum period for use ofthis batteryis5minutes. Ifyou useshorterperiod time to transmitLoRa,thenthe battery life may be decreased.727 +The battery is designed to last for more than 5 years for the LSN50. 659 659 ))) 660 660 730 +((( 731 +((( 732 +The battery-related documents are as below: 733 +))) 734 +))) 661 661 736 +* ((( 737 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 738 +))) 739 +* ((( 740 +[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 741 +))) 742 +* ((( 743 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 744 +))) 662 662 663 - ===2.9.4 Replacethe battery ===746 + [[image:image-20220606171726-9.png]] 664 664 748 + 749 + 750 +=== 2.11.2 Battery Note === 751 + 665 665 ((( 666 -The defaultbatterypackofNSE01includesaER26500 plussupercapacitor. Ifusercan'tfind this pack locally,theycanfindER26500 orquivalence withoutthe SPC1520 capacitor, which will alsowork inmostcase. TheSPCcanlarge thebatterylifeforhigh frequency use(update periodbelow5minutes).753 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 667 667 ))) 668 668 669 669 670 670 671 -= 3. AccessNB-IoTModule =758 +=== 2.11.3 Replace the battery === 672 672 673 673 ((( 674 - Userscan directlyaccesstheAT command setoftheNB-IoTmodule.761 +If Battery is lower than 2.7v, user should replace the battery of LSE01. 675 675 ))) 676 676 677 677 ((( 678 - The AT Commandsetcanrefer theBC35-G NB-IoTModuleATCommand: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]]765 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 679 679 ))) 680 680 681 -[[image:1657261278785-153.png]] 768 +((( 769 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 770 +))) 682 682 683 683 684 684 685 -= 4.774 += 3. Using the AT Commands = 686 686 687 -== 4.1776 +== 3.1 Access AT Commands == 688 688 689 -See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 690 690 779 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 691 691 692 - AT+<CMD>? : Helpon<CMD>781 +[[image:1654501986557-872.png||height="391" width="800"]] 693 693 694 -AT+<CMD> : Run <CMD> 695 695 696 - AT+<CMD>=<value>: Setthevalue784 +Or if you have below board, use below connection: 697 697 698 -AT+<CMD>=? : Get the value 699 699 787 +[[image:1654502005655-729.png||height="503" width="801"]] 700 700 789 + 790 + 791 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 792 + 793 + 794 + [[image:1654502050864-459.png||height="564" width="806"]] 795 + 796 + 797 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]] 798 + 799 + 800 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 801 + 802 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 803 + 804 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 805 + 806 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 807 + 808 + 701 701 (% style="color:#037691" %)**General Commands**(%%) 702 702 703 -AT 811 +(% style="background-color:#dcdcdc" %)**AT**(%%) : Attention 704 704 705 -AT? 813 +(% style="background-color:#dcdcdc" %)**AT?**(%%) : Short Help 706 706 707 -ATZ 815 +(% style="background-color:#dcdcdc" %)**ATZ**(%%) : MCU Reset 708 708 709 -AT+TDC 817 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%) : Application Data Transmission Interval 710 710 711 -AT+CFG : Print all configurations 712 712 713 - AT+CFGMOD: Workingmode selection820 +(% style="color:#037691" %)**Keys, IDs and EUIs management** 714 714 715 -AT+I NTMOD:Setthe trigger interruptmode822 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%) : Application EUI 716 716 717 -AT+ 5VTSetextend the timeof5V power824 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%) : Application Key 718 718 719 -AT+P ROChooseagreement826 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%) : Application Session Key 720 720 721 -AT+ WEIGREGet weightorsetweight to 0828 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%) : Device Address 722 722 723 -AT+ WEIGAPGet or SettheGapValue of weight830 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%) : Device EUI 724 724 725 -AT+ RXDL: Extendthe sendingandreceivingtime832 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%) : Network ID (You can enter this command change only after successful network connection) 726 726 727 -AT+ CNTFACGettcountingparameters834 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%) : Network Session Key Joining and sending date on LoRa network 728 728 729 -AT+ SERVADDR:ServerAddress836 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%) : Confirm Mode 730 730 838 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 731 731 732 -(% style="color:# 037691" %)**COAPManagement**840 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%) : Join LoRa? Network 733 733 734 -AT+ URIsourceparameters842 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%) : LoRa? Network Join Mode 735 735 844 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 736 736 737 -(% style="color:# 037691" %)**UDPManagement**846 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%) : Print Last Received Data in Raw Format 738 738 739 -AT+C FM:Uploadconfirmationmode (onlyvalid forUDP)848 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%) : Print Last Received Data in Binary Format 740 740 850 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 741 741 742 -(% style="color:# 037691" %)**MQTTManagement**852 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%) : Send Hexadecimal Data 743 743 744 -AT+CLIENT : Get or Set MQTT client 745 745 746 - AT+UNAMEGetSetMQTT Username855 +(% style="color:#037691" %)**LoRa Network Management** 747 747 748 -AT+ PWDGetor SetMQTT password857 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%) : Adaptive Rate 749 749 750 -AT+ PUBTOPICGetorSetMQTTpublishtopic859 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%) : LoRa Class(Currently only support class A 751 751 752 -AT+ SUBTOPIC :GetorSetMQTT subscriptiontopic861 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%) : Duty Cycle Setting 753 753 863 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 754 754 755 -(% style="color:# 037691" %)**Information**865 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink 756 756 757 -AT+F DRctoryDataReset867 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%) : Frame Counter Uplink 758 758 759 -AT+ PWORDSerialAccessPassword869 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%) : Join Accept Delay1 760 760 871 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 761 761 873 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 762 762 763 -= 5.FAQ=875 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%) : Receive Delay1 764 764 765 -= =5.1HowtoUpgradeFirmware==877 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%) : Receive Delay2 766 766 879 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 767 767 881 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 882 + 883 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 884 + 885 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 886 + 887 + 888 +(% style="color:#037691" %)**Information** 889 + 890 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 891 + 892 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 893 + 894 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 895 + 896 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 897 + 898 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 899 + 900 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 901 + 902 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 903 + 904 + 905 += 4. FAQ = 906 + 907 +== 4.1 How to change the LoRa Frequency Bands/Region? == 908 + 768 768 ((( 769 -User can upgrade the firmware for 1) bug fix, 2) new feature release. 910 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 911 +When downloading the images, choose the required image file for download. 770 770 ))) 771 771 772 772 ((( 773 - Pleasesee this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]915 + 774 774 ))) 775 775 776 776 ((( 777 - (%style="color:red"%)Notice,NSE01andLSE01share thememotherboard.Theyuse thesameconnection andmethodto update.919 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 778 778 ))) 779 779 922 +((( 923 + 924 +))) 780 780 926 +((( 927 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 928 +))) 781 781 782 -= 6. Trouble Shooting = 930 +((( 931 + 932 +))) 783 783 784 -== 6.1 Connection problem when uploading firmware == 934 +((( 935 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 936 +))) 785 785 938 +[[image:image-20220606154726-3.png]] 786 786 787 -(% class="wikigeneratedid" %) 940 + 941 +When you use the TTN network, the US915 frequency bands use are: 942 + 943 +* 903.9 - SF7BW125 to SF10BW125 944 +* 904.1 - SF7BW125 to SF10BW125 945 +* 904.3 - SF7BW125 to SF10BW125 946 +* 904.5 - SF7BW125 to SF10BW125 947 +* 904.7 - SF7BW125 to SF10BW125 948 +* 904.9 - SF7BW125 to SF10BW125 949 +* 905.1 - SF7BW125 to SF10BW125 950 +* 905.3 - SF7BW125 to SF10BW125 951 +* 904.6 - SF8BW500 952 + 788 788 ((( 789 - (%style="font-size:14px"%)**Pleasesee:**(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color:rgb(255,255,255);font-size:14px;"]]954 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 790 790 ))) 791 791 957 +(% class="box infomessage" %) 958 +((( 959 +**AT+CHE=2** 960 +))) 792 792 962 +(% class="box infomessage" %) 963 +((( 964 +**ATZ** 965 +))) 793 793 794 -== 6.2 AT Command input doesn't work == 967 +((( 968 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 969 +))) 795 795 796 796 ((( 797 - Inthe case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.972 + 798 798 ))) 799 799 975 +((( 976 +The **AU915** band is similar. Below are the AU915 Uplink Channels. 977 +))) 800 800 979 +[[image:image-20220606154825-4.png]] 801 801 802 -= 7. Order Info = 803 803 804 804 805 - PartNumber**:** (% style="color:#4f81bd"%)**NSE01**983 += 5. Trouble Shooting = 806 806 985 +== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 807 807 987 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 988 + 989 + 990 +== 5.2 AT Command input doesn’t work == 991 + 992 +((( 993 +In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 994 +))) 995 + 996 + 997 +== 5.3 Device rejoin in at the second uplink packet == 998 + 999 +(% style="color:#4f81bd" %)**Issue describe as below:** 1000 + 1001 +[[image:1654500909990-784.png]] 1002 + 1003 + 1004 +(% style="color:#4f81bd" %)**Cause for this issue:** 1005 + 1006 +((( 1007 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 1008 +))) 1009 + 1010 + 1011 +(% style="color:#4f81bd" %)**Solution: ** 1012 + 1013 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 1014 + 1015 +[[image:1654500929571-736.png||height="458" width="832"]] 1016 + 1017 + 1018 += 6. Order Info = 1019 + 1020 + 1021 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 1022 + 1023 + 1024 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 1025 + 1026 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 1027 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 1028 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 1029 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 1030 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1031 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1032 +* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1033 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1034 + 1035 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1036 + 1037 +* (% style="color:red" %)**4**(%%): 4000mAh battery 1038 +* (% style="color:red" %)**8**(%%): 8500mAh battery 1039 + 808 808 (% class="wikigeneratedid" %) 809 809 ((( 810 810 811 811 ))) 812 812 813 -= 8.1045 += 7. Packing Info = 814 814 815 815 ((( 816 816 817 817 818 818 (% style="color:#037691" %)**Package Includes**: 1051 +))) 819 819 820 - 821 -* NSE01 NB-IoT Soil Moisture & EC Sensor x 1 822 -* External antenna x 1 1053 +* ((( 1054 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 823 823 ))) 824 824 825 825 ((( ... ... @@ -826,20 +826,30 @@ 826 826 827 827 828 828 (% style="color:#037691" %)**Dimension and weight**: 1061 +))) 829 829 830 - 831 -* Size: 195 x 125 x 55 mm 832 -* Weight: 420g 1063 +* ((( 1064 +Device Size: cm 833 833 ))) 1066 +* ((( 1067 +Device Weight: g 1068 +))) 1069 +* ((( 1070 +Package Size / pcs : cm 1071 +))) 1072 +* ((( 1073 +Weight / pcs : g 834 834 835 -((( 836 - 837 837 838 - 839 839 840 840 ))) 841 841 842 -= 9.1079 += 8. Support = 843 843 844 844 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 845 845 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1083 + 1084 + 1085 +))) 1086 +))) 1087 +)))
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -102.7 KB - Content