Changes for page NDDS75 -- NB-IoT Distance Detect Sensor User Manual
Last modified by Bei Jinggeng on 2024/05/31 09:53
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 24 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - NSE01NB-IoTSoil Moisture & EC Sensor User Manual1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -3,16 +3,8 @@ 3 3 4 4 5 5 6 +**Contents:** 6 6 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 -**Table of Contents:** 15 - 16 16 {{toc/}} 17 17 18 18 ... ... @@ -20,806 +20,1033 @@ 20 20 21 21 22 22 15 += 1. Introduction = 23 23 24 -= 1. Introduction =17 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 25 25 26 -== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 27 - 28 28 ((( 29 - 20 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 21 +))) 30 30 31 31 ((( 32 - DraginoNSE01 isan(% style="color:blue" %)**NB-IOT soilmoisture& EC sensor**(%%)foragriculturalIoT. Used tomeasure the soilmoisture ofsaline-alkali soiland loam.Thesoil sensor uses the FDRmethod to calculate soil moisture andcompensates it with soiltemperature andelectricalconductivity.It hasalsobeencalibratedfor mineralsoiltypesatthe factory.24 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 33 33 ))) 34 34 35 35 ((( 36 - Itcandetect (%style="color:blue"%)**SoilMoisture,Soil Temperature andSoilConductivity**(%%),anduploaditsvalue totheserver wirelessly.28 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 37 37 ))) 38 38 39 39 ((( 40 - Thewirelesstechnology usedin NSE01allowsthedeviceto senddataata lowdata rateand reachultra-longdistances, providingultra-long-distancespreadspectrum Communication.32 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 41 41 ))) 42 42 43 43 ((( 44 - NSE01arepoweredby(%style="color:blue"%)**8500mAhLi-SOCI2**(%%)batteries,which canbeusedforupto5 years.36 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 45 45 ))) 46 46 47 - 48 -))) 49 49 50 50 [[image:1654503236291-817.png]] 51 51 52 52 53 -[[image:165 7245163077-232.png]]43 +[[image:1654503265560-120.png]] 54 54 55 55 56 56 57 -== 1.2 47 +== 1.2 Features == 58 58 59 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 49 +* LoRaWAN 1.0.3 Class A 50 +* Ultra low power consumption 60 60 * Monitor Soil Moisture 61 61 * Monitor Soil Temperature 62 62 * Monitor Soil Conductivity 54 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 63 63 * AT Commands to change parameters 64 64 * Uplink on periodically 65 65 * Downlink to change configure 66 66 * IP66 Waterproof Enclosure 67 -* Ultra-Low Power consumption 68 -* AT Commands to change parameters 69 -* Micro SIM card slot for NB-IoT SIM 70 -* 8500mAh Battery for long term use 59 +* 4000mAh or 8500mAh Battery for long term use 71 71 61 +== 1.3 Specification == 72 72 73 - ==1.3Specification==63 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 74 74 65 +[[image:image-20220606162220-5.png]] 75 75 76 -(% style="color:#037691" %)**Common DC Characteristics:** 77 77 78 -* Supply Voltage: 2.1v ~~ 3.6v 79 -* Operating Temperature: -40 ~~ 85°C 80 80 81 - (% style="color:#037691"%)**NB-IoT Spec:**69 +== 1.4 Applications == 82 82 83 -* - B1 @H-FDD: 2100MHz 84 -* - B3 @H-FDD: 1800MHz 85 -* - B8 @H-FDD: 900MHz 86 -* - B5 @H-FDD: 850MHz 87 -* - B20 @H-FDD: 800MHz 88 -* - B28 @H-FDD: 700MHz 71 +* Smart Agriculture 89 89 90 -Probe(% style="color:#037691" %)** Specification:** 73 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 74 + 91 91 92 - MeasureVolume:Base on the centrapin of the probe,a cylinder with7cm diameter and 10cm height.76 +== 1.5 Firmware Change log == 93 93 94 -[[image:image-20220708101224-1.png]] 95 95 79 +**LSE01 v1.0 :** Release 96 96 97 97 98 -== 1.4 Applications == 99 99 100 - *SmartAgriculture83 += 2. Configure LSE01 to connect to LoRaWAN network = 101 101 102 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 103 - 85 +== 2.1 How it works == 104 104 105 -== 1.5 Pin Definitions == 87 +((( 88 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 89 +))) 106 106 91 +((( 92 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 93 +))) 107 107 108 -[[image:1657246476176-652.png]] 109 109 110 110 97 +== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 111 111 112 - =2. UseNSE01to communicate withIoTServer=99 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 113 113 114 -== 2.1 How it works == 115 115 102 +[[image:1654503992078-669.png]] 116 116 117 -((( 118 -The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 119 -))) 120 120 105 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 121 121 122 -((( 123 -The diagram below shows the working flow in default firmware of NSE01: 124 -))) 125 125 126 - [[image:image-20220708101605-2.png]]108 +**Step 1**: Create a device in TTN with the OTAA keys from LSE01. 127 127 128 -((( 129 - 130 -))) 110 +Each LSE01 is shipped with a sticker with the default device EUI as below: 131 131 112 +[[image:image-20220606163732-6.jpeg]] 132 132 114 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 133 133 134 - ==2.2ConfiguretheNSE01 ==116 +**Add APP EUI in the application** 135 135 136 136 137 - === 2.2.1 Test Requirement ===119 +[[image:1654504596150-405.png]] 138 138 139 139 122 + 123 +**Add APP KEY and DEV EUI** 124 + 125 +[[image:1654504683289-357.png]] 126 + 127 + 128 + 129 +**Step 2**: Power on LSE01 130 + 131 + 132 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 133 + 134 +[[image:image-20220606163915-7.png]] 135 + 136 + 137 +**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 138 + 139 +[[image:1654504778294-788.png]] 140 + 141 + 142 + 143 +== 2.3 Uplink Payload == 144 + 145 +(% class="wikigeneratedid" %) 146 +=== === 147 + 148 +=== 2.3.1 MOD~=0(Default Mode) === 149 + 150 +LSE01 will uplink payload via LoRaWAN with below payload format: 151 + 140 140 ((( 141 - To useNSE01inyour city, makesuremeetbelow requirements:153 +Uplink payload includes in total 11 bytes. 142 142 ))) 143 143 144 - *Yourlocaloperatorhasalready distributeda NB-IoT Networkthere.145 - * The local NB-IoT network used the band that NSE01 supports.146 -* Your operatoris ableto distribute the data received in their NB-IoT network to your IoT server.156 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 157 +|((( 158 +**Size** 147 147 148 -((( 149 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 160 +**(bytes)** 161 +)))|**2**|**2**|**2**|**2**|**2**|**1** 162 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 163 +Temperature 164 + 165 +(Reserve, Ignore now) 166 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 167 +MOD & Digital Interrupt 168 + 169 +(Optional) 150 150 ))) 151 151 152 152 153 -[[image:1657249419225-449.png]] 154 154 174 +=== 2.3.2 MOD~=1(Original value) === 155 155 176 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 156 156 157 -=== 2.2.2 Insert SIM card === 178 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 179 +|((( 180 +**Size** 158 158 182 +**(bytes)** 183 +)))|**2**|**2**|**2**|**2**|**2**|**1** 184 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 185 +Temperature 186 + 187 +(Reserve, Ignore now) 188 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 189 +MOD & Digital Interrupt 190 + 191 +(Optional) 192 +))) 193 + 194 + 195 + 196 +=== 2.3.3 Battery Info === 197 + 159 159 ((( 160 - InserttheNB-IoT Cardgetfrom yourprovider.199 +Check the battery voltage for LSE01. 161 161 ))) 162 162 163 163 ((( 164 - Userneed to take out the NB-IoTmoduleand insert the SIM card like below:203 +Ex1: 0x0B45 = 2885mV 165 165 ))) 166 166 206 +((( 207 +Ex2: 0x0B49 = 2889mV 208 +))) 167 167 168 -[[image:1657249468462-536.png]] 169 169 170 170 212 +=== 2.3.4 Soil Moisture === 171 171 172 -=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 214 +((( 215 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 216 +))) 173 173 174 174 ((( 219 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 220 +))) 221 + 175 175 ((( 176 - Userneed to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.223 + 177 177 ))) 225 + 226 +((( 227 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 178 178 ))) 179 179 180 180 181 -**Connection:** 182 182 183 - (%style="background-color:yellow"%)USB TTL GND <~-~-~-~-> GND232 +=== 2.3.5 Soil Temperature === 184 184 185 - (%style="background-color:yellow"%)USBTTLTXD<~-~-~-~->UART_RXD234 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 186 186 187 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD236 +**Example**: 188 188 238 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 189 189 190 -I nthe PC, use below serialtool settings:240 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 191 191 192 -* Baud: (% style="color:green" %)**9600** 193 -* Data bits:** (% style="color:green" %)8(%%)** 194 -* Stop bits: (% style="color:green" %)**1** 195 -* Parity: (% style="color:green" %)**None** 196 -* Flow Control: (% style="color:green" %)**None** 197 197 243 + 244 +=== 2.3.6 Soil Conductivity (EC) === 245 + 198 198 ((( 199 - Make surethe switch is inFLASHposition, then power on devicebyconnectingthe jumperNSE01.NSE01 willoutputsysteminfo oncepowerasbelow,wecan enterthe(% style="color:green" %)**password:12345678**(%%)toaccessATCommandinput.247 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 200 200 ))) 201 201 202 -[[image:image-20220708110657-3.png]] 250 +((( 251 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 252 +))) 203 203 204 204 ((( 205 - (% style="color:red"%)Note: the validAT Commandscan be foundat: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]255 +Generally, the EC value of irrigation water is less than 800uS / cm. 206 206 ))) 207 207 258 +((( 259 + 260 +))) 208 208 262 +((( 263 + 264 +))) 209 209 210 -=== 2. 2.4Use CoAP protocol to uplink data===266 +=== 2.3.7 MOD === 211 211 212 - (% style="color:red"%)Note:if you don'thaveCoAP server, you can refer thislinktosetupne:(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]268 +Firmware version at least v2.1 supports changing mode. 213 213 270 +For example, bytes[10]=90 214 214 215 - **Use below commands:**272 +mod=(bytes[10]>>7)&0x01=1. 216 216 217 -* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 218 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 219 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 220 220 221 - For parameter description,please refer toAT commandset275 +**Downlink Command:** 222 222 223 - [[image:1657249793983-486.png]]277 +If payload = 0x0A00, workmode=0 224 224 279 +If** **payload =** **0x0A01, workmode=1 225 225 226 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 227 227 228 -[[image:1657249831934-534.png]] 229 229 283 +=== 2.3.8 Decode payload in The Things Network === 230 230 285 +While using TTN network, you can add the payload format to decode the payload. 231 231 232 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 233 233 234 - This feature is supported since firmwareversion v1.0.1288 +[[image:1654505570700-128.png]] 235 235 290 +The payload decoder function for TTN is here: 236 236 237 -* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 238 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 239 -* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 292 +LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 240 240 241 -[[image:1657249864775-321.png]] 242 242 243 243 244 - [[image:1657249930215-289.png]]296 +== 2.4 Uplink Interval == 245 245 298 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 246 246 247 247 248 -=== 2.2.6 Use MQTT protocol to uplink data === 249 249 250 - Thisfeatureis supported sincefirmware versionv110302 +== 2.5 Downlink Payload == 251 251 304 +By default, LSE50 prints the downlink payload to console port. 252 252 253 -* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 254 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 255 -* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 256 -* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 257 -* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 258 -* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 259 -* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 306 +[[image:image-20220606165544-8.png]] 260 260 261 -[[image:1657249978444-674.png]] 262 262 309 +**Examples:** 263 263 264 -[[image:1657249990869-686.png]] 265 265 312 +* **Set TDC** 266 266 267 -((( 268 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 269 -))) 314 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 270 270 316 +Payload: 01 00 00 1E TDC=30S 271 271 318 +Payload: 01 00 00 3C TDC=60S 272 272 273 -=== 2.2.7 Use TCP protocol to uplink data === 274 274 275 - Thisfeature issupported since firmware version v110321 +* **Reset** 276 276 323 +If payload = 0x04FF, it will reset the LSE01 277 277 278 -* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 279 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 280 280 281 - [[image:1657250217799-140.png]]326 +* **CFM** 282 282 328 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 283 283 284 -[[image:1657250255956-604.png]] 285 285 286 286 332 +== 2.6 Show Data in DataCake IoT Server == 287 287 288 - === 2.2.8ChangeUpdateInterval===334 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 289 289 290 -User can use below command to change the (% style="color:green" %)**uplink interval**. 291 291 292 -* (%style="color:blue"%)**AT+TDC=600**(%%)~/~/ SetUpdateIntervalto600s337 +**Step 1**: Be sure that your device is programmed and properly connected to the network at this time. 293 293 294 -((( 295 -(% style="color:red" %)**NOTE:** 296 -))) 339 +**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 297 297 298 -((( 299 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 300 -))) 301 301 342 +[[image:1654505857935-743.png]] 302 302 303 303 304 - ==2.3 Uplink Payload ==345 +[[image:1654505874829-548.png]] 305 305 306 - Inthis mode, uplinkpayloadincludes intal18bytes347 +Step 3: Create an account or log in Datacake. 307 307 308 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 309 -|=(% style="width: 60px;" %)((( 310 -**Size(bytes)** 311 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1** 312 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 349 +Step 4: Search the LSE01 and add DevEUI. 313 313 314 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 315 315 352 +[[image:1654505905236-553.png]] 316 316 317 -[[image:image-20220708111918-4.png]] 318 318 355 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 319 319 320 - The payloadis ASCII string, representative same HEX:357 +[[image:1654505925508-181.png]] 321 321 322 -0x72403155615900640c7817075e0a8c02f900 where: 323 323 324 -* Device ID: 0x 724031556159 = 724031556159 325 -* Version: 0x0064=100=1.0.0 326 326 327 -* BAT: 0x0c78 = 3192 mV = 3.192V 328 -* Singal: 0x17 = 23 329 -* Soil Moisture: 0x075e= 1886 = 18.86 % 330 -* Soil Temperature:0x0a8c =2700=27 °C 331 -* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 332 -* Interrupt: 0x00 = 0 361 +== 2.7 Frequency Plans == 333 333 363 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 334 334 335 -== 2.4 Payload Explanation and Sensor Interface == 336 336 366 +=== 2.7.1 EU863-870 (EU868) === 337 337 338 - ===2.4.1 DeviceID===368 +(% style="color:#037691" %)** Uplink:** 339 339 340 - Bydefault,theDevice ID equaltothe last 6 bytes of IMEI.370 +868.1 - SF7BW125 to SF12BW125 341 341 342 - Usercanuse(% style="color:blue"%)**AT+DEUI**(%%)toset Device ID372 +868.3 - SF7BW125 to SF12BW125 and SF7BW250 343 343 344 - **Example:**374 +868.5 - SF7BW125 to SF12BW125 345 345 346 - AT+DEUI=A84041F15612376 +867.1 - SF7BW125 to SF12BW125 347 347 348 - TheDevice ID is stored in a none-erasearea,Upgradethe firmwareorrun AT+FDR won't erase Device ID.378 +867.3 - SF7BW125 to SF12BW125 349 349 380 +867.5 - SF7BW125 to SF12BW125 350 350 382 +867.7 - SF7BW125 to SF12BW125 351 351 352 - ===2.4.2VersionInfo ===384 +867.9 - SF7BW125 to SF12BW125 353 353 354 - Specify the software version: 0x64=100, means firmware version 1.00.386 +868.8 - FSK 355 355 356 -For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 357 357 389 +(% style="color:#037691" %)** Downlink:** 358 358 391 +Uplink channels 1-9 (RX1) 359 359 360 - === 2.4.3BatteryInfo===393 +869.525 - SF9BW125 (RX2 downlink only) 361 361 362 -((( 363 -Check the battery voltage for LSE01. 364 -))) 365 365 366 -((( 367 -Ex1: 0x0B45 = 2885mV 368 -))) 369 369 370 -((( 371 -Ex2: 0x0B49 = 2889mV 372 -))) 397 +=== 2.7.2 US902-928(US915) === 373 373 399 +Used in USA, Canada and South America. Default use CHE=2 374 374 401 +(% style="color:#037691" %)**Uplink:** 375 375 376 - === 2.4.4SignalStrength===403 +903.9 - SF7BW125 to SF10BW125 377 377 378 - NB-IoTNetworksignalStrength.405 +904.1 - SF7BW125 to SF10BW125 379 379 380 - **Ex1:0x1d=29**407 +904.3 - SF7BW125 to SF10BW125 381 381 382 - (% style="color:blue" %)**0**(%%)113dBmorless409 +904.5 - SF7BW125 to SF10BW125 383 383 384 - (%style="color:blue"%)**1**(%%)-111dBm411 +904.7 - SF7BW125 to SF10BW125 385 385 386 - (%style="color:blue"%)**2...30**(%%)-109dBm... -53dBm413 +904.9 - SF7BW125 to SF10BW125 387 387 388 - (% style="color:blue" %)**31**(%%)-51dBmorgreater415 +905.1 - SF7BW125 to SF10BW125 389 389 390 - (% style="color:blue" %)**99**(%%)Notknownor not detectable417 +905.3 - SF7BW125 to SF10BW125 391 391 392 392 420 +(% style="color:#037691" %)**Downlink:** 393 393 394 - ===2.4.5SoilMoisture===422 +923.3 - SF7BW500 to SF12BW500 395 395 396 -((( 397 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 398 -))) 424 +923.9 - SF7BW500 to SF12BW500 399 399 400 -((( 401 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 402 -))) 426 +924.5 - SF7BW500 to SF12BW500 403 403 404 -((( 405 - 406 -))) 428 +925.1 - SF7BW500 to SF12BW500 407 407 408 -((( 409 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 410 -))) 430 +925.7 - SF7BW500 to SF12BW500 411 411 432 +926.3 - SF7BW500 to SF12BW500 412 412 434 +926.9 - SF7BW500 to SF12BW500 413 413 414 - ===2.4.6SoilTemperature===436 +927.5 - SF7BW500 to SF12BW500 415 415 416 -((( 417 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 418 -))) 438 +923.3 - SF12BW500(RX2 downlink only) 419 419 420 -((( 421 -**Example**: 422 -))) 423 423 424 -((( 425 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 426 -))) 427 427 428 -((( 429 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 430 -))) 442 +=== 2.7.3 CN470-510 (CN470) === 431 431 444 +Used in China, Default use CHE=1 432 432 446 +(% style="color:#037691" %)**Uplink:** 433 433 434 - === 2.4.7SoilConductivity(EC) ===448 +486.3 - SF7BW125 to SF12BW125 435 435 436 -((( 437 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 438 -))) 450 +486.5 - SF7BW125 to SF12BW125 439 439 440 -((( 441 -For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 442 -))) 452 +486.7 - SF7BW125 to SF12BW125 443 443 444 -((( 445 -Generally, the EC value of irrigation water is less than 800uS / cm. 446 -))) 454 +486.9 - SF7BW125 to SF12BW125 447 447 448 -((( 449 - 450 -))) 456 +487.1 - SF7BW125 to SF12BW125 451 451 452 -((( 453 - 454 -))) 458 +487.3 - SF7BW125 to SF12BW125 455 455 456 - === 2.4.8DigitalInterrupt===460 +487.5 - SF7BW125 to SF12BW125 457 457 458 - Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods.Whenthere is a trigger, the NSE01will send a packettothe server.462 +487.7 - SF7BW125 to SF12BW125 459 459 460 -The command is: 461 461 462 -(% style="color: blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**465 +(% style="color:#037691" %)**Downlink:** 463 463 467 +506.7 - SF7BW125 to SF12BW125 464 464 465 - The lower four bits of this data field shows if this packet is generated by interrupt or not.Clickhereforthe hardware and softwareset up.469 +506.9 - SF7BW125 to SF12BW125 466 466 471 +507.1 - SF7BW125 to SF12BW125 467 467 468 - Example:473 +507.3 - SF7BW125 to SF12BW125 469 469 470 -0 x(00):Normaluplinkpacket.475 +507.5 - SF7BW125 to SF12BW125 471 471 472 -0 x(01):InterruptUplinkPacket.477 +507.7 - SF7BW125 to SF12BW125 473 473 479 +507.9 - SF7BW125 to SF12BW125 474 474 481 +508.1 - SF7BW125 to SF12BW125 475 475 476 - === 2.4.9+5VOutput===483 +505.3 - SF12BW125 (RX2 downlink only) 477 477 478 -NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 479 479 480 480 481 - The5Voutput time can be controlled byATCommand.487 +=== 2.7.4 AU915-928(AU915) === 482 482 483 - (% style="color:blue"%)**AT+5VT=1000**489 +Default use CHE=2 484 484 485 - Meansset5V valid timetohave 1000ms. So the real5Voutput will actually have 1000ms+ sampling time for other sensors.491 +(% style="color:#037691" %)**Uplink:** 486 486 493 +916.8 - SF7BW125 to SF12BW125 487 487 495 +917.0 - SF7BW125 to SF12BW125 488 488 489 - ==2.5DownlinkPayload ==497 +917.2 - SF7BW125 to SF12BW125 490 490 491 - Bydefault,NSE01prints the downlinkpayload to console port.499 +917.4 - SF7BW125 to SF12BW125 492 492 493 - [[image:image-20220708133731-5.png]]501 +917.6 - SF7BW125 to SF12BW125 494 494 503 +917.8 - SF7BW125 to SF12BW125 495 495 496 -((( 497 -(% style="color:blue" %)**Examples:** 498 -))) 505 +918.0 - SF7BW125 to SF12BW125 499 499 500 -((( 501 - 502 -))) 507 +918.2 - SF7BW125 to SF12BW125 503 503 504 -* ((( 505 -(% style="color:blue" %)**Set TDC** 506 -))) 507 507 508 -((( 509 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 510 -))) 510 +(% style="color:#037691" %)**Downlink:** 511 511 512 -((( 513 -Payload: 01 00 00 1E TDC=30S 514 -))) 512 +923.3 - SF7BW500 to SF12BW500 515 515 516 -((( 517 -Payload: 01 00 00 3C TDC=60S 518 -))) 514 +923.9 - SF7BW500 to SF12BW500 519 519 520 -((( 521 - 522 -))) 516 +924.5 - SF7BW500 to SF12BW500 523 523 524 -* ((( 525 -(% style="color:blue" %)**Reset** 526 -))) 518 +925.1 - SF7BW500 to SF12BW500 527 527 528 -((( 529 -If payload = 0x04FF, it will reset the NSE01 530 -))) 520 +925.7 - SF7BW500 to SF12BW500 531 531 522 +926.3 - SF7BW500 to SF12BW500 532 532 533 - *(%style="color:blue"%)**INTMOD**524 +926.9 - SF7BW500 to SF12BW500 534 534 535 - DownlinkPayload:06000003,SetAT+INTMOD=3526 +927.5 - SF7BW500 to SF12BW500 536 536 528 +923.3 - SF12BW500(RX2 downlink only) 537 537 538 538 539 -== 2.6 LED Indicator == 540 540 541 -((( 542 -The NSE01 has an internal LED which is to show the status of different state. 532 +=== 2.7.5 AS920-923 & AS923-925 (AS923) === 543 543 534 +(% style="color:#037691" %)**Default Uplink channel:** 544 544 545 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 546 -* Then the LED will be on for 1 second means device is boot normally. 547 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 548 -* For each uplink probe, LED will be on for 500ms. 549 -))) 536 +923.2 - SF7BW125 to SF10BW125 550 550 538 +923.4 - SF7BW125 to SF10BW125 551 551 552 552 541 +(% style="color:#037691" %)**Additional Uplink Channel**: 553 553 554 - ==2.7InstallationinSoil==543 +(OTAA mode, channel added by JoinAccept message) 555 555 556 - __**Measurementthesoilsurface**__545 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 557 557 558 - Choose the proper measuring position.Avoidthe probe to touch rocks or hard things.Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]547 +922.2 - SF7BW125 to SF10BW125 559 559 560 - [[image:1657259653666-883.png]]549 +922.4 - SF7BW125 to SF10BW125 561 561 551 +922.6 - SF7BW125 to SF10BW125 562 562 563 -((( 564 - 553 +922.8 - SF7BW125 to SF10BW125 565 565 566 -((( 567 -Dig a hole with diameter > 20CM. 568 -))) 555 +923.0 - SF7BW125 to SF10BW125 569 569 570 -((( 571 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 572 -))) 573 -))) 557 +922.0 - SF7BW125 to SF10BW125 574 574 575 -[[image:1654506665940-119.png]] 576 576 577 -((( 578 - 579 -))) 560 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 580 580 562 +923.6 - SF7BW125 to SF10BW125 581 581 582 - ==2.8FirmwareChange Log==564 +923.8 - SF7BW125 to SF10BW125 583 583 566 +924.0 - SF7BW125 to SF10BW125 584 584 585 - DownloadURL&FirmwareChange log568 +924.2 - SF7BW125 to SF10BW125 586 586 587 - [[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]570 +924.4 - SF7BW125 to SF10BW125 588 588 572 +924.6 - SF7BW125 to SF10BW125 589 589 590 -Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]] 591 591 575 +(% style="color:#037691" %)** Downlink:** 592 592 577 +Uplink channels 1-8 (RX1) 593 593 594 - ==2.9BatteryAnalysis ==579 +923.2 - SF10BW125 (RX2) 595 595 596 -=== 2.9.1 Battery Type === 597 597 598 598 599 - TheNSE01 battery is a combination of an 8500mAh Li/SOCI2Battery and a Super Capacitor.The battery is none-rechargeablebattery type with a low discharge rate(<2% per year).This type of battery is commonly used in IoT devices such as water meter.583 +=== 2.7.6 KR920-923 (KR920) === 600 600 585 +Default channel: 601 601 602 - Thebatteryisdesignedtolast for several years depends on the actually use environment and update interval.587 +922.1 - SF7BW125 to SF12BW125 603 603 589 +922.3 - SF7BW125 to SF12BW125 604 604 605 - Thebatteryrelateddocuments as below:591 +922.5 - SF7BW125 to SF12BW125 606 606 607 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 608 -* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 609 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 610 610 594 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 595 + 596 +922.1 - SF7BW125 to SF12BW125 597 + 598 +922.3 - SF7BW125 to SF12BW125 599 + 600 +922.5 - SF7BW125 to SF12BW125 601 + 602 +922.7 - SF7BW125 to SF12BW125 603 + 604 +922.9 - SF7BW125 to SF12BW125 605 + 606 +923.1 - SF7BW125 to SF12BW125 607 + 608 +923.3 - SF7BW125 to SF12BW125 609 + 610 + 611 +(% style="color:#037691" %)**Downlink:** 612 + 613 +Uplink channels 1-7(RX1) 614 + 615 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 616 + 617 + 618 + 619 +=== 2.7.7 IN865-867 (IN865) === 620 + 621 +(% style="color:#037691" %)** Uplink:** 622 + 623 +865.0625 - SF7BW125 to SF12BW125 624 + 625 +865.4025 - SF7BW125 to SF12BW125 626 + 627 +865.9850 - SF7BW125 to SF12BW125 628 + 629 + 630 +(% style="color:#037691" %) **Downlink:** 631 + 632 +Uplink channels 1-3 (RX1) 633 + 634 +866.550 - SF10BW125 (RX2) 635 + 636 + 637 + 638 + 639 +== 2.8 LED Indicator == 640 + 641 +The LSE01 has an internal LED which is to show the status of different state. 642 + 643 +* Blink once when device power on. 644 +* Solid ON for 5 seconds once device successful Join the network. 645 +* Blink once when device transmit a packet. 646 + 647 + 648 + 649 +== 2.9 Installation in Soil == 650 + 651 +**Measurement the soil surface** 652 + 653 + 654 +[[image:1654506634463-199.png]] 655 + 611 611 ((( 612 -[[image:image-20220708140453-6.png]] 657 +((( 658 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 613 613 ))) 660 +))) 614 614 615 615 663 +[[image:1654506665940-119.png]] 616 616 617 -=== 2.9.2 Power consumption Analyze === 665 +((( 666 +Dig a hole with diameter > 20CM. 667 +))) 618 618 619 619 ((( 620 - Draginobattery powered productare allrunsinLow Powermode. Wehavean update battery calculator whichbase onthemeasurementof the realdevice. User canuse this calculatorto checkthebatterylife andcalculatethe batterylifeif want to use different transmit interval.670 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 621 621 ))) 622 622 623 623 674 +== 2.10 Firmware Change Log == 675 + 624 624 ((( 625 - Instructiontouseasbelow:677 +**Firmware download link:** 626 626 ))) 627 627 628 628 ((( 629 - (% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:[[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]681 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 630 630 ))) 631 631 684 +((( 685 + 686 +))) 632 632 633 633 ((( 634 - (% style="color:blue" %)**Step2: **(%%)Openithoose689 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 635 635 ))) 636 636 637 - *(((638 - ProductModel692 +((( 693 + 639 639 ))) 640 -* ((( 641 -Uplink Interval 695 + 696 +((( 697 +**V1.0.** 642 642 ))) 643 -* ((( 644 -Working Mode 645 -))) 646 646 647 647 ((( 648 - And theLifeexpectation in difference casewill be shown on the right.701 +Release 649 649 ))) 650 650 651 -[[image:image-20220708141352-7.jpeg]] 652 652 705 +== 2.11 Battery Analysis == 653 653 707 +=== 2.11.1 Battery Type === 654 654 655 -=== 2.9.3 Battery Note === 709 +((( 710 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 711 +))) 656 656 657 657 ((( 658 -The Li-SICObattery is designedfor small current/ longperiod application. It isnotgood to use a high current,short period transmit method. Therecommendedminimum period for use ofthis batteryis5minutes. Ifyou useshorterperiod time to transmitLoRa,thenthe battery life may be decreased.714 +The battery is designed to last for more than 5 years for the LSN50. 659 659 ))) 660 660 717 +((( 718 +((( 719 +The battery-related documents are as below: 720 +))) 721 +))) 661 661 723 +* ((( 724 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 725 +))) 726 +* ((( 727 +[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 728 +))) 729 +* ((( 730 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 731 +))) 662 662 663 - ===2.9.4 Replacethe battery ===733 + [[image:image-20220606171726-9.png]] 664 664 735 + 736 + 737 +=== 2.11.2 Battery Note === 738 + 665 665 ((( 666 -The defaultbatterypackofNSE01includesaER26500 plussupercapacitor. Ifusercan'tfind this pack locally,theycanfindER26500 orquivalence withoutthe SPC1520 capacitor, which will alsowork inmostcase. TheSPCcanlarge thebatterylifeforhigh frequency use(update periodbelow5minutes).740 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 667 667 ))) 668 668 669 669 670 670 671 -= 3. AccessNB-IoTModule =745 +=== 2.11.3 Replace the battery === 672 672 673 673 ((( 674 - Userscan directlyaccesstheAT command setoftheNB-IoTmodule.748 +If Battery is lower than 2.7v, user should replace the battery of LSE01. 675 675 ))) 676 676 677 677 ((( 678 - The AT Commandsetcanrefer theBC35-G NB-IoTModuleATCommand: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]]752 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 679 679 ))) 680 680 681 -[[image:1657261278785-153.png]] 755 +((( 756 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 757 +))) 682 682 683 683 684 684 685 -= 4.761 += 3. Using the AT Commands = 686 686 687 -== 4.1763 +== 3.1 Access AT Commands == 688 688 689 -See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 690 690 766 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 691 691 692 - AT+<CMD>? : Helpon<CMD>768 +[[image:1654501986557-872.png||height="391" width="800"]] 693 693 694 -AT+<CMD> : Run <CMD> 695 695 696 - AT+<CMD>=<value>: Setthevalue771 +Or if you have below board, use below connection: 697 697 698 -AT+<CMD>=? : Get the value 699 699 774 +[[image:1654502005655-729.png||height="503" width="801"]] 700 700 776 + 777 + 778 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 779 + 780 + 781 + [[image:1654502050864-459.png||height="564" width="806"]] 782 + 783 + 784 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]] 785 + 786 + 787 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 788 + 789 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 790 + 791 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 792 + 793 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 794 + 795 + 701 701 (% style="color:#037691" %)**General Commands**(%%) 702 702 703 -AT 798 +(% style="background-color:#dcdcdc" %)**AT**(%%) : Attention 704 704 705 -AT? 800 +(% style="background-color:#dcdcdc" %)**AT?**(%%) : Short Help 706 706 707 -ATZ 802 +(% style="background-color:#dcdcdc" %)**ATZ**(%%) : MCU Reset 708 708 709 -AT+TDC 804 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%) : Application Data Transmission Interval 710 710 711 -AT+CFG : Print all configurations 712 712 713 - AT+CFGMOD: Workingmode selection807 +(% style="color:#037691" %)**Keys, IDs and EUIs management** 714 714 715 -AT+I NTMOD:Setthe trigger interruptmode809 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%) : Application EUI 716 716 717 -AT+ 5VTSetextend the timeof5V power811 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%) : Application Key 718 718 719 -AT+P ROChooseagreement813 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%) : Application Session Key 720 720 721 -AT+ WEIGREGet weightorsetweight to 0815 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%) : Device Address 722 722 723 -AT+ WEIGAPGet or SettheGapValue of weight817 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%) : Device EUI 724 724 725 -AT+ RXDL: Extendthe sendingandreceivingtime819 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%) : Network ID (You can enter this command change only after successful network connection) 726 726 727 -AT+ CNTFACGettcountingparameters821 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%) : Network Session Key Joining and sending date on LoRa network 728 728 729 -AT+ SERVADDR:ServerAddress823 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%) : Confirm Mode 730 730 825 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 731 731 732 -(% style="color:# 037691" %)**COAPManagement**827 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%) : Join LoRa? Network 733 733 734 -AT+ URIsourceparameters829 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%) : LoRa? Network Join Mode 735 735 831 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 736 736 737 -(% style="color:# 037691" %)**UDPManagement**833 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%) : Print Last Received Data in Raw Format 738 738 739 -AT+C FM:Uploadconfirmationmode (onlyvalid forUDP)835 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%) : Print Last Received Data in Binary Format 740 740 837 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 741 741 742 -(% style="color:# 037691" %)**MQTTManagement**839 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%) : Send Hexadecimal Data 743 743 744 -AT+CLIENT : Get or Set MQTT client 745 745 746 - AT+UNAMEGetSetMQTT Username842 +(% style="color:#037691" %)**LoRa Network Management** 747 747 748 -AT+ PWDGetor SetMQTT password844 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%) : Adaptive Rate 749 749 750 -AT+ PUBTOPICGetorSetMQTTpublishtopic846 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%) : LoRa Class(Currently only support class A 751 751 752 -AT+ SUBTOPIC :GetorSetMQTT subscriptiontopic848 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%) : Duty Cycle Setting 753 753 850 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 754 754 755 -(% style="color:# 037691" %)**Information**852 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink 756 756 757 -AT+F DRctoryDataReset854 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%) : Frame Counter Uplink 758 758 759 -AT+ PWORDSerialAccessPassword856 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%) : Join Accept Delay1 760 760 858 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 761 761 860 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 762 762 763 -= 5.FAQ=862 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%) : Receive Delay1 764 764 765 -= =5.1HowtoUpgradeFirmware==864 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%) : Receive Delay2 766 766 866 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 767 767 868 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 869 + 870 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 871 + 872 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 873 + 874 + 875 +(% style="color:#037691" %)**Information** 876 + 877 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 878 + 879 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 880 + 881 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 882 + 883 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 884 + 885 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 886 + 887 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 888 + 889 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 890 + 891 + 892 += 4. FAQ = 893 + 894 +== 4.1 How to change the LoRa Frequency Bands/Region? == 895 + 768 768 ((( 769 -User can upgrade the firmware for 1) bug fix, 2) new feature release. 897 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 898 +When downloading the images, choose the required image file for download. 770 770 ))) 771 771 772 772 ((( 773 - Pleasesee this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]902 + 774 774 ))) 775 775 776 776 ((( 777 - (%style="color:red"%)Notice,NSE01andLSE01share thememotherboard.Theyuse thesameconnection andmethodto update.906 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 778 778 ))) 779 779 909 +((( 910 + 911 +))) 780 780 913 +((( 914 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 915 +))) 781 781 782 -= 6. Trouble Shooting = 917 +((( 918 + 919 +))) 783 783 784 -== 6.1 Connection problem when uploading firmware == 921 +((( 922 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 923 +))) 785 785 925 +[[image:image-20220606154726-3.png]] 786 786 787 -(% class="wikigeneratedid" %) 927 + 928 +When you use the TTN network, the US915 frequency bands use are: 929 + 930 +* 903.9 - SF7BW125 to SF10BW125 931 +* 904.1 - SF7BW125 to SF10BW125 932 +* 904.3 - SF7BW125 to SF10BW125 933 +* 904.5 - SF7BW125 to SF10BW125 934 +* 904.7 - SF7BW125 to SF10BW125 935 +* 904.9 - SF7BW125 to SF10BW125 936 +* 905.1 - SF7BW125 to SF10BW125 937 +* 905.3 - SF7BW125 to SF10BW125 938 +* 904.6 - SF8BW500 939 + 788 788 ((( 789 - (%style="font-size:14px"%)**Pleasesee:**(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color:rgb(255,255,255);font-size:14px;"]]941 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 790 790 ))) 791 791 944 +(% class="box infomessage" %) 945 +((( 946 +**AT+CHE=2** 947 +))) 792 792 949 +(% class="box infomessage" %) 950 +((( 951 +**ATZ** 952 +))) 793 793 794 -== 6.2 AT Command input doesn't work == 954 +((( 955 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 956 +))) 795 795 796 796 ((( 797 - Inthe case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.959 + 798 798 ))) 799 799 962 +((( 963 +The **AU915** band is similar. Below are the AU915 Uplink Channels. 964 +))) 800 800 966 +[[image:image-20220606154825-4.png]] 801 801 802 -= 7. Order Info = 803 803 804 804 805 - PartNumber**:** (% style="color:#4f81bd"%)**NSE01**970 += 5. Trouble Shooting = 806 806 972 +== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 807 807 974 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 975 + 976 + 977 +== 5.2 AT Command input doesn’t work == 978 + 979 +((( 980 +In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 981 +))) 982 + 983 + 984 +== 5.3 Device rejoin in at the second uplink packet == 985 + 986 +(% style="color:#4f81bd" %)**Issue describe as below:** 987 + 988 +[[image:1654500909990-784.png]] 989 + 990 + 991 +(% style="color:#4f81bd" %)**Cause for this issue:** 992 + 993 +((( 994 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 995 +))) 996 + 997 + 998 +(% style="color:#4f81bd" %)**Solution: ** 999 + 1000 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 1001 + 1002 +[[image:1654500929571-736.png||height="458" width="832"]] 1003 + 1004 + 1005 += 6. Order Info = 1006 + 1007 + 1008 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 1009 + 1010 + 1011 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 1012 + 1013 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 1014 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 1015 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 1016 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 1017 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1018 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1019 +* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1020 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1021 + 1022 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1023 + 1024 +* (% style="color:red" %)**4**(%%): 4000mAh battery 1025 +* (% style="color:red" %)**8**(%%): 8500mAh battery 1026 + 808 808 (% class="wikigeneratedid" %) 809 809 ((( 810 810 811 811 ))) 812 812 813 -= 8.1032 += 7. Packing Info = 814 814 815 815 ((( 816 816 817 817 818 818 (% style="color:#037691" %)**Package Includes**: 1038 +))) 819 819 820 - 821 -* NSE01 NB-IoT Soil Moisture & EC Sensor x 1 822 -* External antenna x 1 1040 +* ((( 1041 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 823 823 ))) 824 824 825 825 ((( ... ... @@ -826,20 +826,30 @@ 826 826 827 827 828 828 (% style="color:#037691" %)**Dimension and weight**: 1048 +))) 829 829 830 - 831 -* Size: 195 x 125 x 55 mm 832 -* Weight: 420g 1050 +* ((( 1051 +Device Size: cm 833 833 ))) 1053 +* ((( 1054 +Device Weight: g 1055 +))) 1056 +* ((( 1057 +Package Size / pcs : cm 1058 +))) 1059 +* ((( 1060 +Weight / pcs : g 834 834 835 -((( 836 - 837 837 838 - 839 839 840 840 ))) 841 841 842 -= 9.1066 += 8. Support = 843 843 844 844 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 845 845 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1070 + 1071 + 1072 +~)~)~) 1073 +~)~)~) 1074 +~)~)~)
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -102.7 KB - Content