Changes for page NDDS75 -- NB-IoT Distance Detect Sensor User Manual
Last modified by Bei Jinggeng on 2024/05/31 09:53
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 24 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - NSE01NB-IoTSoil Moisture & EC Sensor User Manual1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -3,16 +3,8 @@ 3 3 4 4 5 5 6 +**Contents:** 6 6 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 -**Table of Contents:** 15 - 16 16 {{toc/}} 17 17 18 18 ... ... @@ -20,826 +20,1012 @@ 20 20 21 21 22 22 15 += 1. Introduction = 23 23 24 -= 1. Introduction =17 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 25 25 26 -== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 27 - 28 28 ((( 29 - 20 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 21 +))) 30 30 31 31 ((( 32 - DraginoNSE01 isan(% style="color:blue" %)**NB-IOT soilmoisture& EC sensor**(%%)foragriculturalIoT. Used tomeasure the soilmoisture ofsaline-alkali soiland loam.Thesoil sensor uses the FDRmethod to calculate soil moisture andcompensates it with soiltemperature andelectricalconductivity.It hasalsobeencalibratedfor mineralsoiltypesatthe factory.24 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 33 33 ))) 34 34 35 35 ((( 36 - Itcandetect (%style="color:blue"%)**SoilMoisture,Soil Temperature andSoilConductivity**(%%),anduploaditsvalue totheserver wirelessly.28 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 37 37 ))) 38 38 39 39 ((( 40 - Thewirelesstechnology usedin NSE01allowsthedeviceto senddataata lowdata rateand reachultra-longdistances, providingultra-long-distancespreadspectrum Communication.32 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 41 41 ))) 42 42 43 43 ((( 44 - NSE01arepoweredby(%style="color:blue"%)**8500mAhLi-SOCI2**(%%)batteries,which canbeusedforupto5 years.36 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 45 45 ))) 46 46 47 - 48 -))) 49 49 50 50 [[image:1654503236291-817.png]] 51 51 52 52 53 -[[image:165 7245163077-232.png]]43 +[[image:1654503265560-120.png]] 54 54 55 55 56 56 57 -== 1.2 47 +== 1.2 Features == 58 58 59 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 49 +* LoRaWAN 1.0.3 Class A 50 +* Ultra low power consumption 60 60 * Monitor Soil Moisture 61 61 * Monitor Soil Temperature 62 62 * Monitor Soil Conductivity 54 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 63 63 * AT Commands to change parameters 64 64 * Uplink on periodically 65 65 * Downlink to change configure 66 66 * IP66 Waterproof Enclosure 67 -* Ultra-Low Power consumption 68 -* AT Commands to change parameters 69 -* Micro SIM card slot for NB-IoT SIM 70 -* 8500mAh Battery for long term use 59 +* 4000mAh or 8500mAh Battery for long term use 71 71 61 +== 1.3 Specification == 72 72 73 - ==1.3Specification==63 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 74 74 65 +[[image:image-20220606162220-5.png]] 75 75 76 -(% style="color:#037691" %)**Common DC Characteristics:** 77 77 78 -* Supply Voltage: 2.1v ~~ 3.6v 79 -* Operating Temperature: -40 ~~ 85°C 80 80 81 - (% style="color:#037691"%)**NB-IoT Spec:**69 +== 1.4 Applications == 82 82 83 -* - B1 @H-FDD: 2100MHz 84 -* - B3 @H-FDD: 1800MHz 85 -* - B8 @H-FDD: 900MHz 86 -* - B5 @H-FDD: 850MHz 87 -* - B20 @H-FDD: 800MHz 88 -* - B28 @H-FDD: 700MHz 71 +* Smart Agriculture 89 89 90 -Probe(% style="color:#037691" %)** Specification:** 73 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 74 + 91 91 92 - MeasureVolume:Base on the centrapin of the probe,a cylinder with7cm diameter and 10cm height.76 +== 1.5 Firmware Change log == 93 93 94 -[[image:image-20220708101224-1.png]] 95 95 79 +**LSE01 v1.0 :** Release 96 96 97 97 98 -== 1.4 Applications == 99 99 100 - *SmartAgriculture83 += 2. Configure LSE01 to connect to LoRaWAN network = 101 101 102 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 103 - 85 +== 2.1 How it works == 104 104 105 -== 1.5 Pin Definitions == 87 +((( 88 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 89 +))) 106 106 91 +((( 92 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.UsingtheATCommands"]]. 93 +))) 107 107 108 -[[image:1657246476176-652.png]] 109 109 110 110 97 +== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 111 111 112 - =2. UseNSE01to communicate withIoTServer=99 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 113 113 114 -== 2.1 How it works == 115 115 102 +[[image:1654503992078-669.png]] 116 116 117 -((( 118 -The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 119 -))) 120 120 105 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 121 121 122 -((( 123 -The diagram below shows the working flow in default firmware of NSE01: 124 -))) 125 125 126 - [[image:image-20220708101605-2.png]]108 +**Step 1**: Create a device in TTN with the OTAA keys from LSE01. 127 127 128 -((( 110 +Each LSE01 is shipped with a sticker with the default device EUI as below: 111 + 112 +[[image:image-20220606163732-6.jpeg]] 113 + 114 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 115 + 116 +**Add APP EUI in the application** 117 + 118 + 119 +[[image:1654504596150-405.png]] 120 + 121 + 122 + 123 +**Add APP KEY and DEV EUI** 124 + 125 +[[image:1654504683289-357.png]] 126 + 127 + 128 + 129 +**Step 2**: Power on LSE01 130 + 131 + 132 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 133 + 134 +[[image:image-20220606163915-7.png]] 135 + 136 + 137 +**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 138 + 139 +[[image:1654504778294-788.png]] 140 + 141 + 142 + 143 +== 2.3 Uplink Payload == 144 + 145 +=== 2.3.1 MOD~=0(Default Mode) === 146 + 147 +LSE01 will uplink payload via LoRaWAN with below payload format: 148 + 149 + 150 +Uplink payload includes in total 11 bytes. 129 129 152 + 153 +(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %) 154 +|=((( 155 +**Size** 156 + 157 +**(bytes)** 158 +)))|=(% style="width: 46px;" %)**2**|=(% style="width: 160px;" %)**2**|=(% style="width: 104px;" %)**2**|=(% style="width: 126px;" %)**2**|=(% style="width: 159px;" %)**2**|=(% style="width: 114px;" %)**1** 159 +|**Value**|(% style="width:46px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:160px" %)((( 160 +Temperature 161 + 162 +(Reserve, Ignore now) 163 +)))|(% style="width:104px" %)[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|(% style="width:126px" %)[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(% style="width:114px" %)((( 164 +MOD & Digital Interrupt 165 + 166 +(Optional) 130 130 ))) 131 131 169 +[[image:1654504881641-514.png]] 132 132 133 133 134 -== 2.2 Configure the NSE01 == 135 135 173 +=== 2.3.2 MOD~=1(Original value) === 136 136 137 - ===2.2.1TestRequirement===175 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 138 138 177 +(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %) 178 +|=((( 179 +**Size** 139 139 140 -((( 141 -To use NSE01 in your city, make sure meet below requirements: 142 -))) 181 +**(bytes)** 182 +)))|=**2**|=**2**|=**2**|=**2**|=**2**|=**1** 183 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 184 +Temperature 143 143 144 - * Your local operator hasalready distributeda NB-IoT Network there.145 - *ThecalNB-IoTnetwork usedthebandhatNSE01 supports.146 - *Youroperatoris able to distribute the datareceived in their NB-IoTnetwork to your IoT server.186 +(Reserve, Ignore now) 187 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 188 +MOD & Digital Interrupt 147 147 148 -((( 149 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 190 +(Optional) 150 150 ))) 151 151 193 +[[image:1654504907647-967.png]] 152 152 153 -[[image:1657249419225-449.png]] 154 154 155 155 197 +=== 2.3.3 Battery Info === 156 156 157 - ===2.2.2InsertSIM card===199 +Check the battery voltage for LSE01. 158 158 159 -((( 160 -Insert the NB-IoT Card get from your provider. 161 -))) 201 +Ex1: 0x0B45 = 2885mV 162 162 163 -((( 164 -User need to take out the NB-IoT module and insert the SIM card like below: 165 -))) 203 +Ex2: 0x0B49 = 2889mV 166 166 167 167 168 -[[image:1657249468462-536.png]] 169 169 207 +=== 2.3.4 Soil Moisture === 170 170 209 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 171 171 172 - ===2.2.3ConnectUSB–TTLtoNSE01toconfigure it===211 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 173 173 174 -((( 175 -((( 176 -User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 177 -))) 178 -))) 179 179 214 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 180 180 181 -**Connection:** 182 182 183 - (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 184 184 185 - (%style="background-color:yellow"%)USB TTL TXD <~-~-~-~-> UART_RXD218 +=== 2.3.5 Soil Temperature === 186 186 187 - (%style="background-color:yellow"%)USBTTLRXD<~-~-~-~->UART_TXD220 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 188 188 222 +**Example**: 189 189 190 -I nthe PC, use below serialtool settings:224 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 191 191 192 -* Baud: (% style="color:green" %)**9600** 193 -* Data bits:** (% style="color:green" %)8(%%)** 194 -* Stop bits: (% style="color:green" %)**1** 195 -* Parity: (% style="color:green" %)**None** 196 -* Flow Control: (% style="color:green" %)**None** 226 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 197 197 228 + 229 + 230 +=== 2.3.6 Soil Conductivity (EC) === 231 + 198 198 ((( 199 - Make surethe switch is inFLASHposition, then power on devicebyconnectingthe jumperNSE01.NSE01 willoutputsysteminfo oncepowerasbelow,wecan enterthe(% style="color:green" %)**password:12345678**(%%)toaccessATCommandinput.233 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 200 200 ))) 201 201 202 -[[image:image-20220708110657-3.png]] 236 +((( 237 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 238 +))) 203 203 204 204 ((( 205 - (% style="color:red"%)Note: the validAT Commandscan be foundat: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]241 +Generally, the EC value of irrigation water is less than 800uS / cm. 206 206 ))) 207 207 244 +((( 245 + 246 +))) 208 208 248 +((( 249 + 250 +))) 209 209 210 -=== 2. 2.4Use CoAP protocol to uplink data===252 +=== 2.3.7 MOD === 211 211 212 - (% style="color:red"%)Note:if you don'thaveCoAP server, you can refer thislinktosetupne:(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]254 +Firmware version at least v2.1 supports changing mode. 213 213 256 +For example, bytes[10]=90 214 214 215 - **Use below commands:**258 +mod=(bytes[10]>>7)&0x01=1. 216 216 217 -* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 218 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 219 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 220 220 221 - For parameter description,please refer toAT commandset261 +**Downlink Command:** 222 222 223 - [[image:1657249793983-486.png]]263 +If payload = 0x0A00, workmode=0 224 224 265 +If** **payload =** **0x0A01, workmode=1 225 225 226 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 227 227 228 -[[image:1657249831934-534.png]] 229 229 269 +=== 2.3.8 Decode payload in The Things Network === 230 230 271 +While using TTN network, you can add the payload format to decode the payload. 231 231 232 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 233 233 234 - This feature is supported since firmwareversion v1.0.1274 +[[image:1654505570700-128.png]] 235 235 276 +The payload decoder function for TTN is here: 236 236 237 -* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 238 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 239 -* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 278 +LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 240 240 241 -[[image:1657249864775-321.png]] 242 242 281 +== 2.4 Uplink Interval == 243 243 244 - [[image:1657249930215-289.png]]283 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 245 245 246 246 247 247 248 -== =2.2.6Use MQTT protocolto uplinkdata ===287 +== 2.5 Downlink Payload == 249 249 250 - Thisfeatureissupportedsincefirmwareversionv110289 +By default, LSE50 prints the downlink payload to console port. 251 251 291 +[[image:image-20220606165544-8.png]] 252 252 253 -* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 254 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 255 -* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 256 -* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 257 -* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 258 -* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 259 -* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 260 260 261 - [[image:1657249978444-674.png]]294 +**Examples:** 262 262 263 263 264 - [[image:1657249990869-686.png]]297 +* **Set TDC** 265 265 299 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 266 266 267 -((( 268 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 269 -))) 301 +Payload: 01 00 00 1E TDC=30S 270 270 303 +Payload: 01 00 00 3C TDC=60S 271 271 272 272 273 - ===2.2.7 UseTCP protocol to uplink data ===306 +* **Reset** 274 274 275 - Thisfeatureis supportedsincefirmwareversionv110308 +If payload = 0x04FF, it will reset the LSE01 276 276 277 277 278 -* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 279 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 311 +* **CFM** 280 280 281 - [[image:1657250217799-140.png]]313 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 282 282 283 283 284 -[[image:1657250255956-604.png]] 285 285 317 +== 2.6 Show Data in DataCake IoT Server == 286 286 319 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 287 287 288 -=== 2.2.8 Change Update Interval === 289 289 290 - Usercanusebelowcommandto changehe(%style="color:green"%)**uplink interval**.322 +**Step 1**: Be sure that your device is programmed and properly connected to the network at this time. 291 291 292 -* (%style="color:blue"%)**AT+TDC=600**(%%)~/~/ SetUpdateIntervalto600s324 +**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 293 293 294 -((( 295 -(% style="color:red" %)**NOTE:** 296 -))) 297 297 298 -((( 299 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 300 -))) 327 +[[image:1654505857935-743.png]] 301 301 302 302 330 +[[image:1654505874829-548.png]] 303 303 304 - ==2.3UplinkPayload==332 +Step 3: Create an account or log in Datacake. 305 305 306 - Inthismode,uplinkpayload includesin total18 bytes334 +Step 4: Search the LSE01 and add DevEUI. 307 307 308 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 309 -|=(% style="width: 60px;" %)((( 310 -**Size(bytes)** 311 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1** 312 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 313 313 314 - If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01uplink data.337 +[[image:1654505905236-553.png]] 315 315 316 316 317 - [[image:image-20220708111918-4.png]]340 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 318 318 342 +[[image:1654505925508-181.png]] 319 319 320 -The payload is ASCII string, representative same HEX: 321 321 322 -0x72403155615900640c7817075e0a8c02f900 where: 323 323 324 -* Device ID: 0x 724031556159 = 724031556159 325 -* Version: 0x0064=100=1.0.0 346 +== 2.7 Frequency Plans == 326 326 327 -* BAT: 0x0c78 = 3192 mV = 3.192V 328 -* Singal: 0x17 = 23 329 -* Soil Moisture: 0x075e= 1886 = 18.86 % 330 -* Soil Temperature:0x0a8c =2700=27 °C 331 -* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 332 -* Interrupt: 0x00 = 0 348 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 333 333 334 334 335 -== 2. 4PayloadExplanationand Sensor Interface==351 +=== 2.7.1 EU863-870 (EU868) === 336 336 353 +(% style="color:#037691" %)** Uplink:** 337 337 338 - === 2.4.1DeviceID===355 +868.1 - SF7BW125 to SF12BW125 339 339 340 - Bydefault,theDevice ID equaltothelast6 bytes of IMEI.357 +868.3 - SF7BW125 to SF12BW125 and SF7BW250 341 341 342 - Usercanuse(% style="color:blue"%)**AT+DEUI**(%%) to set Device ID359 +868.5 - SF7BW125 to SF12BW125 343 343 344 - **Example:**361 +867.1 - SF7BW125 to SF12BW125 345 345 346 - AT+DEUI=A84041F15612363 +867.3 - SF7BW125 to SF12BW125 347 347 348 - TheDevice ID is stored in a none-erasearea,Upgradethe firmwareorrun AT+FDR won't erase Device ID.365 +867.5 - SF7BW125 to SF12BW125 349 349 367 +867.7 - SF7BW125 to SF12BW125 350 350 369 +867.9 - SF7BW125 to SF12BW125 351 351 352 - === 2.4.2Version Info ===371 +868.8 - FSK 353 353 354 -Specify the software version: 0x64=100, means firmware version 1.00. 355 355 356 - Forexample:x0064 : this device is NSE01withfirmware version1.0.0.374 +(% style="color:#037691" %)** Downlink:** 357 357 376 +Uplink channels 1-9 (RX1) 358 358 378 +869.525 - SF9BW125 (RX2 downlink only) 359 359 360 -=== 2.4.3 Battery Info === 361 361 362 -((( 363 -Check the battery voltage for LSE01. 364 -))) 365 365 366 -((( 367 -Ex1: 0x0B45 = 2885mV 368 -))) 382 +=== 2.7.2 US902-928(US915) === 369 369 370 -((( 371 -Ex2: 0x0B49 = 2889mV 372 -))) 384 +Used in USA, Canada and South America. Default use CHE=2 373 373 386 +(% style="color:#037691" %)**Uplink:** 374 374 388 +903.9 - SF7BW125 to SF10BW125 375 375 376 - === 2.4.4SignalStrength===390 +904.1 - SF7BW125 to SF10BW125 377 377 378 - NB-IoTNetworksignalStrength.392 +904.3 - SF7BW125 to SF10BW125 379 379 380 - **Ex1:0x1d=29**394 +904.5 - SF7BW125 to SF10BW125 381 381 382 - (% style="color:blue" %)**0**(%%)113dBmorless396 +904.7 - SF7BW125 to SF10BW125 383 383 384 - (%style="color:blue"%)**1**(%%)-111dBm398 +904.9 - SF7BW125 to SF10BW125 385 385 386 - (%style="color:blue"%)**2...30**(%%)-109dBm... -53dBm400 +905.1 - SF7BW125 to SF10BW125 387 387 388 - (% style="color:blue" %)**31**(%%)-51dBmorgreater402 +905.3 - SF7BW125 to SF10BW125 389 389 390 -(% style="color:blue" %)**99** (%%) Not known or not detectable 391 391 405 +(% style="color:#037691" %)**Downlink:** 392 392 407 +923.3 - SF7BW500 to SF12BW500 393 393 394 - ===2.4.5SoilMoisture===409 +923.9 - SF7BW500 to SF12BW500 395 395 396 -((( 397 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 398 -))) 411 +924.5 - SF7BW500 to SF12BW500 399 399 400 -((( 401 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 402 -))) 413 +925.1 - SF7BW500 to SF12BW500 403 403 404 -((( 405 - 406 -))) 415 +925.7 - SF7BW500 to SF12BW500 407 407 408 -((( 409 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 410 -))) 417 +926.3 - SF7BW500 to SF12BW500 411 411 419 +926.9 - SF7BW500 to SF12BW500 412 412 421 +927.5 - SF7BW500 to SF12BW500 413 413 414 - ===2.4.6SoilTemperature ===423 +923.3 - SF12BW500(RX2 downlink only) 415 415 416 -((( 417 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 418 -))) 419 419 420 -((( 421 -**Example**: 422 -))) 423 423 424 -((( 425 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 426 -))) 427 +=== 2.7.3 CN470-510 (CN470) === 427 427 428 -((( 429 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 430 -))) 429 +Used in China, Default use CHE=1 431 431 431 +(% style="color:#037691" %)**Uplink:** 432 432 433 +486.3 - SF7BW125 to SF12BW125 433 433 434 - === 2.4.7SoilConductivity(EC) ===435 +486.5 - SF7BW125 to SF12BW125 435 435 436 -((( 437 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 438 -))) 437 +486.7 - SF7BW125 to SF12BW125 439 439 440 -((( 441 -For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 442 -))) 439 +486.9 - SF7BW125 to SF12BW125 443 443 444 -((( 445 -Generally, the EC value of irrigation water is less than 800uS / cm. 446 -))) 441 +487.1 - SF7BW125 to SF12BW125 447 447 448 -((( 449 - 450 -))) 443 +487.3 - SF7BW125 to SF12BW125 451 451 452 -((( 453 - 454 -))) 445 +487.5 - SF7BW125 to SF12BW125 455 455 456 - === 2.4.8DigitalInterrupt===447 +487.7 - SF7BW125 to SF12BW125 457 457 458 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 459 459 460 - Thecommandis:450 +(% style="color:#037691" %)**Downlink:** 461 461 462 - (%style="color:blue"%)**AT+INTMOD=3**(%%) ~/~/(more info aboutINMOD please refer [[**AT CommandManual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**452 +506.7 - SF7BW125 to SF12BW125 463 463 454 +506.9 - SF7BW125 to SF12BW125 464 464 465 - The lower four bits of this data field shows if this packet is generated by interrupt or not.Clickhereforthe hardware and softwareset up.456 +507.1 - SF7BW125 to SF12BW125 466 466 458 +507.3 - SF7BW125 to SF12BW125 467 467 468 - Example:460 +507.5 - SF7BW125 to SF12BW125 469 469 470 -0 x(00):Normaluplinkpacket.462 +507.7 - SF7BW125 to SF12BW125 471 471 472 -0 x(01):InterruptUplinkPacket.464 +507.9 - SF7BW125 to SF12BW125 473 473 466 +508.1 - SF7BW125 to SF12BW125 474 474 468 +505.3 - SF12BW125 (RX2 downlink only) 475 475 476 -=== 2.4.9 +5V Output === 477 477 478 -NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 479 479 472 +=== 2.7.4 AU915-928(AU915) === 480 480 481 - The5V outputtimecan be controlled by ATCommand.474 +Default use CHE=2 482 482 483 -(% style="color: blue" %)**AT+5VT=1000**476 +(% style="color:#037691" %)**Uplink:** 484 484 485 - Means set 5V valid time to have1000ms.Sothe real5Voutput will actually have 1000ms + sampling time forother sensors.478 +916.8 - SF7BW125 to SF12BW125 486 486 480 +917.0 - SF7BW125 to SF12BW125 487 487 482 +917.2 - SF7BW125 to SF12BW125 488 488 489 - ==2.5DownlinkPayload ==484 +917.4 - SF7BW125 to SF12BW125 490 490 491 - Bydefault,NSE01prints the downlinkpayload to console port.486 +917.6 - SF7BW125 to SF12BW125 492 492 493 - [[image:image-20220708133731-5.png]]488 +917.8 - SF7BW125 to SF12BW125 494 494 490 +918.0 - SF7BW125 to SF12BW125 495 495 496 -((( 497 -(% style="color:blue" %)**Examples:** 498 -))) 492 +918.2 - SF7BW125 to SF12BW125 499 499 500 -((( 501 - 502 -))) 503 503 504 -* ((( 505 -(% style="color:blue" %)**Set TDC** 506 -))) 495 +(% style="color:#037691" %)**Downlink:** 507 507 508 -((( 509 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 510 -))) 497 +923.3 - SF7BW500 to SF12BW500 511 511 512 -((( 513 -Payload: 01 00 00 1E TDC=30S 514 -))) 499 +923.9 - SF7BW500 to SF12BW500 515 515 516 -((( 517 -Payload: 01 00 00 3C TDC=60S 518 -))) 501 +924.5 - SF7BW500 to SF12BW500 519 519 520 -((( 521 - 522 -))) 503 +925.1 - SF7BW500 to SF12BW500 523 523 524 -* ((( 525 -(% style="color:blue" %)**Reset** 526 -))) 505 +925.7 - SF7BW500 to SF12BW500 527 527 528 -((( 529 -If payload = 0x04FF, it will reset the NSE01 530 -))) 507 +926.3 - SF7BW500 to SF12BW500 531 531 509 +926.9 - SF7BW500 to SF12BW500 532 532 533 - *(%style="color:blue"%)**INTMOD**511 +927.5 - SF7BW500 to SF12BW500 534 534 535 - DownlinkPayload: 06000003, Set AT+INTMOD=3513 +923.3 - SF12BW500(RX2 downlink only) 536 536 537 537 538 538 539 -== 2. 6LEDIndicator==517 +=== 2.7.5 AS920-923 & AS923-925 (AS923) === 540 540 541 -((( 542 -The NSE01 has an internal LED which is to show the status of different state. 519 +(% style="color:#037691" %)**Default Uplink channel:** 543 543 521 +923.2 - SF7BW125 to SF10BW125 544 544 545 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 546 -* Then the LED will be on for 1 second means device is boot normally. 547 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 548 -* For each uplink probe, LED will be on for 500ms. 549 -))) 523 +923.4 - SF7BW125 to SF10BW125 550 550 551 551 526 +(% style="color:#037691" %)**Additional Uplink Channel**: 552 552 528 +(OTAA mode, channel added by JoinAccept message) 553 553 554 -= =2.7InstallationinSoil ==530 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 555 555 556 - __**Measurementthesoilsurface**__532 +922.2 - SF7BW125 to SF10BW125 557 557 558 - Choose the proper measuring position.Avoidthe probe to touch rocks or hard things.Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]534 +922.4 - SF7BW125 to SF10BW125 559 559 560 - [[image:1657259653666-883.png]]536 +922.6 - SF7BW125 to SF10BW125 561 561 538 +922.8 - SF7BW125 to SF10BW125 562 562 563 -((( 564 - 540 +923.0 - SF7BW125 to SF10BW125 565 565 566 -((( 567 -Dig a hole with diameter > 20CM. 568 -))) 542 +922.0 - SF7BW125 to SF10BW125 569 569 570 -((( 571 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 572 -))) 573 -))) 574 574 575 - [[image:1654506665940-119.png]]545 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 576 576 577 -((( 578 - 579 -))) 547 +923.6 - SF7BW125 to SF10BW125 580 580 549 +923.8 - SF7BW125 to SF10BW125 581 581 582 - ==2.8FirmwareChange Log==551 +924.0 - SF7BW125 to SF10BW125 583 583 553 +924.2 - SF7BW125 to SF10BW125 584 584 585 - DownloadURL&FirmwareChange log555 +924.4 - SF7BW125 to SF10BW125 586 586 587 - [[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]557 +924.6 - SF7BW125 to SF10BW125 588 588 589 589 590 - UpgradeInstruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]560 +(% style="color:#037691" %)** Downlink:** 591 591 562 +Uplink channels 1-8 (RX1) 592 592 564 +923.2 - SF10BW125 (RX2) 593 593 594 -== 2.9 Battery Analysis == 595 595 596 -=== 2.9.1 Battery Type === 597 597 568 +=== 2.7.6 KR920-923 (KR920) === 598 598 599 - TheNSE01 battery is a combination ofn 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable batterytype with a low discharge rate (<2% per year). This type of battery is commonly used inIoT devices such as water meter.570 +Default channel: 600 600 572 +922.1 - SF7BW125 to SF12BW125 601 601 602 - Thebatteryisdesignedtolast for several years depends on the actually use environment and update interval.574 +922.3 - SF7BW125 to SF12BW125 603 603 576 +922.5 - SF7BW125 to SF12BW125 604 604 605 -The battery related documents as below: 606 606 607 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 608 -* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 609 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 579 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 610 610 581 +922.1 - SF7BW125 to SF12BW125 582 + 583 +922.3 - SF7BW125 to SF12BW125 584 + 585 +922.5 - SF7BW125 to SF12BW125 586 + 587 +922.7 - SF7BW125 to SF12BW125 588 + 589 +922.9 - SF7BW125 to SF12BW125 590 + 591 +923.1 - SF7BW125 to SF12BW125 592 + 593 +923.3 - SF7BW125 to SF12BW125 594 + 595 + 596 +(% style="color:#037691" %)**Downlink:** 597 + 598 +Uplink channels 1-7(RX1) 599 + 600 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 601 + 602 + 603 + 604 +=== 2.7.7 IN865-867 (IN865) === 605 + 606 +(% style="color:#037691" %)** Uplink:** 607 + 608 +865.0625 - SF7BW125 to SF12BW125 609 + 610 +865.4025 - SF7BW125 to SF12BW125 611 + 612 +865.9850 - SF7BW125 to SF12BW125 613 + 614 + 615 +(% style="color:#037691" %) **Downlink:** 616 + 617 +Uplink channels 1-3 (RX1) 618 + 619 +866.550 - SF10BW125 (RX2) 620 + 621 + 622 + 623 + 624 +== 2.8 LED Indicator == 625 + 626 +The LSE01 has an internal LED which is to show the status of different state. 627 + 628 +* Blink once when device power on. 629 +* Solid ON for 5 seconds once device successful Join the network. 630 +* Blink once when device transmit a packet. 631 + 632 +== 2.9 Installation in Soil == 633 + 634 +**Measurement the soil surface** 635 + 636 + 637 +[[image:1654506634463-199.png]] 638 + 611 611 ((( 612 -[[image:image-20220708140453-6.png]] 640 +((( 641 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 613 613 ))) 643 +))) 614 614 615 615 646 +[[image:1654506665940-119.png]] 616 616 617 -=== 2.9.2 Power consumption Analyze === 648 +((( 649 +Dig a hole with diameter > 20CM. 650 +))) 618 618 619 619 ((( 620 - Draginobattery powered productare allrunsinLow Powermode. Wehavean update battery calculator whichbase onthemeasurementof the realdevice. User canuse this calculatorto checkthebatterylife andcalculatethe batterylifeif want to use different transmit interval.653 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 621 621 ))) 622 622 623 623 657 +== 2.10 Firmware Change Log == 658 + 624 624 ((( 625 - Instructiontouseasbelow:660 +**Firmware download link:** 626 626 ))) 627 627 628 628 ((( 629 - (% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:[[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]664 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 630 630 ))) 631 631 667 +((( 668 + 669 +))) 632 632 633 633 ((( 634 - (% style="color:blue" %)**Step2: **(%%)Openithoose672 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 635 635 ))) 636 636 637 - *(((638 - ProductModel675 +((( 676 + 639 639 ))) 640 -* ((( 641 -Uplink Interval 678 + 679 +((( 680 +**V1.0.** 642 642 ))) 643 -* ((( 644 -Working Mode 645 -))) 646 646 647 647 ((( 648 - And theLifeexpectation in difference casewill be shown on the right.684 +Release 649 649 ))) 650 650 651 -[[image:image-20220708141352-7.jpeg]] 652 652 688 +== 2.11 Battery Analysis == 653 653 690 +=== 2.11.1 Battery Type === 654 654 655 -=== 2.9.3 Battery Note === 692 +((( 693 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 694 +))) 656 656 657 657 ((( 658 -The Li-SICObattery is designedfor small current/ longperiod application. It isnotgood to use a high current,short period transmit method. Therecommendedminimum period for use ofthis batteryis5minutes. Ifyou useshorterperiod time to transmitLoRa,thenthe battery life may be decreased.697 +The battery is designed to last for more than 5 years for the LSN50. 659 659 ))) 660 660 700 +((( 701 +((( 702 +The battery-related documents are as below: 703 +))) 704 +))) 661 661 706 +* ((( 707 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 708 +))) 709 +* ((( 710 +[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 711 +))) 712 +* ((( 713 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 714 +))) 662 662 663 - ===2.9.4 Replacethe battery ===716 + [[image:image-20220606171726-9.png]] 664 664 718 + 719 + 720 +=== 2.11.2 Battery Note === 721 + 665 665 ((( 666 -The defaultbatterypackofNSE01includesaER26500 plussupercapacitor. Ifusercan'tfind this pack locally,theycanfindER26500 orquivalence withoutthe SPC1520 capacitor, which will alsowork inmostcase. TheSPCcanlarge thebatterylifeforhigh frequency use(update periodbelow5minutes).723 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 667 667 ))) 668 668 669 669 670 670 671 -= 3. AccessNB-IoTModule =728 +=== 2.11.3 Replace the battery === 672 672 673 673 ((( 674 - Userscan directlyaccesstheAT command setoftheNB-IoTmodule.731 +If Battery is lower than 2.7v, user should replace the battery of LSE01. 675 675 ))) 676 676 677 677 ((( 678 - The AT Commandsetcanrefer theBC35-G NB-IoTModuleATCommand: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]]735 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 679 679 ))) 680 680 681 -[[image:1657261278785-153.png]] 738 +((( 739 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 740 +))) 682 682 683 683 684 684 685 -= 4.744 += 3. Using the AT Commands = 686 686 687 -== 4.1746 +== 3.1 Access AT Commands == 688 688 689 -See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 690 690 749 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 691 691 692 - AT+<CMD>? : Helpon<CMD>751 +[[image:1654501986557-872.png]] 693 693 694 -AT+<CMD> : Run <CMD> 695 695 696 - AT+<CMD>=<value>: Setthevalue754 +Or if you have below board, use below connection: 697 697 698 -AT+<CMD>=? : Get the value 699 699 757 +[[image:1654502005655-729.png]] 700 700 759 + 760 + 761 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 762 + 763 + 764 + [[image:1654502050864-459.png]] 765 + 766 + 767 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]] 768 + 769 + 770 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 771 + 772 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 773 + 774 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 775 + 776 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 777 + 778 + 701 701 (% style="color:#037691" %)**General Commands**(%%) 702 702 703 -AT 781 +(% style="background-color:#dcdcdc" %)**AT**(%%) : Attention 704 704 705 -AT? 783 +(% style="background-color:#dcdcdc" %)**AT?**(%%) : Short Help 706 706 707 -ATZ 785 +(% style="background-color:#dcdcdc" %)**ATZ**(%%) : MCU Reset 708 708 709 -AT+TDC 787 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%) : Application Data Transmission Interval 710 710 711 -AT+CFG : Print all configurations 712 712 713 - AT+CFGMOD: Workingmode selection790 +(% style="color:#037691" %)**Keys, IDs and EUIs management** 714 714 715 -AT+I NTMOD:Setthe trigger interruptmode792 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%) : Application EUI 716 716 717 -AT+ 5VTSetextend the timeof5V power794 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%) : Application Key 718 718 719 -AT+P ROChooseagreement796 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%) : Application Session Key 720 720 721 -AT+ WEIGREGet weightorsetweight to 0798 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%) : Device Address 722 722 723 -AT+ WEIGAPGet or SettheGapValue of weight800 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%) : Device EUI 724 724 725 -AT+ RXDL: Extendthe sendingandreceivingtime802 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%) : Network ID (You can enter this command change only after successful network connection) 726 726 727 -AT+ CNTFACGettcountingparameters804 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%) : Network Session Key Joining and sending date on LoRa network 728 728 729 -AT+ SERVADDR:ServerAddress806 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%) : Confirm Mode 730 730 808 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 731 731 732 -(% style="color:# 037691" %)**COAPManagement**810 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%) : Join LoRa? Network 733 733 734 -AT+ URIsourceparameters812 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%) : LoRa? Network Join Mode 735 735 814 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 736 736 737 -(% style="color:# 037691" %)**UDPManagement**816 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%) : Print Last Received Data in Raw Format 738 738 739 -AT+C FM:Uploadconfirmationmode (onlyvalid forUDP)818 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%) : Print Last Received Data in Binary Format 740 740 820 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 741 741 742 -(% style="color:# 037691" %)**MQTTManagement**822 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%) : Send Hexadecimal Data 743 743 744 -AT+CLIENT : Get or Set MQTT client 745 745 746 - AT+UNAMEGetSetMQTT Username825 +(% style="color:#037691" %)**LoRa Network Management** 747 747 748 -AT+ PWDGetor SetMQTT password827 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%) : Adaptive Rate 749 749 750 -AT+ PUBTOPICGetorSetMQTTpublishtopic829 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%) : LoRa Class(Currently only support class A 751 751 752 -AT+ SUBTOPIC :GetorSetMQTT subscriptiontopic831 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%) : Duty Cycle Setting 753 753 833 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 754 754 755 -(% style="color:# 037691" %)**Information**835 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink 756 756 757 -AT+F DRctoryDataReset837 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%) : Frame Counter Uplink 758 758 759 -AT+ PWORDSerialAccessPassword839 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%) : Join Accept Delay1 760 760 841 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 761 761 843 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 762 762 763 -= 5.FAQ=845 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%) : Receive Delay1 764 764 765 -= =5.1HowtoUpgradeFirmware==847 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%) : Receive Delay2 766 766 849 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 767 767 768 -((( 769 -User can upgrade the firmware for 1) bug fix, 2) new feature release. 770 -))) 851 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 771 771 853 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 854 + 855 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 856 + 857 + 858 +(% style="color:#037691" %)**Information** 859 + 860 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 861 + 862 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 863 + 864 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 865 + 866 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 867 + 868 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 869 + 870 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 871 + 872 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 873 + 874 + 875 += 4. FAQ = 876 + 877 +== 4.1 How to change the LoRa Frequency Bands/Region? == 878 + 879 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 880 +When downloading the images, choose the required image file for download. 881 + 882 + 883 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 884 + 885 + 886 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 887 + 888 + 889 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 890 + 891 +[[image:image-20220606154726-3.png]] 892 + 893 +When you use the TTN network, the US915 frequency bands use are: 894 + 895 +* 903.9 - SF7BW125 to SF10BW125 896 +* 904.1 - SF7BW125 to SF10BW125 897 +* 904.3 - SF7BW125 to SF10BW125 898 +* 904.5 - SF7BW125 to SF10BW125 899 +* 904.7 - SF7BW125 to SF10BW125 900 +* 904.9 - SF7BW125 to SF10BW125 901 +* 905.1 - SF7BW125 to SF10BW125 902 +* 905.3 - SF7BW125 to SF10BW125 903 +* 904.6 - SF8BW500 904 + 905 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 906 + 907 +(% class="box infomessage" %) 772 772 ((( 773 - Please see this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]909 +**AT+CHE=2** 774 774 ))) 775 775 912 +(% class="box infomessage" %) 776 776 ((( 777 - (% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board.They use the same connection and method to update.914 +**ATZ** 778 778 ))) 779 779 917 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 780 780 781 781 782 - =6.TroubleShooting=920 +The **AU915** band is similar. Below are the AU915 Uplink Channels. 783 783 784 - == 6.1 Connection problemwhen uploadingfirmware==922 +[[image:image-20220606154825-4.png]] 785 785 786 786 787 -(% class="wikigeneratedid" %) 788 -((( 789 -(% style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]] 790 -))) 791 791 926 += 5. Trouble Shooting = 792 792 928 +== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 793 793 794 - ==6.2ATCommandinputdoesn'twork==930 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 795 795 796 -((( 797 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 798 -))) 799 799 933 +== 5.2 AT Command input doesn’t work == 800 800 935 +In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 801 801 802 -= 7. Order Info = 803 803 938 +== 5.3 Device rejoin in at the second uplink packet == 804 804 805 - Part Number**:**(% style="color:#4f81bd" %)**NSE01**940 +(% style="color:#4f81bd" %)**Issue describe as below:** 806 806 942 +[[image:1654500909990-784.png]] 807 807 808 -(% class="wikigeneratedid" %) 809 -((( 810 - 811 -))) 812 812 813 - =8.PackingInfo=945 +(% style="color:#4f81bd" %)**Cause for this issue:** 814 814 815 -((( 816 - 947 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 817 817 818 -(% style="color:#037691" %)**Package Includes**: 819 819 950 +(% style="color:#4f81bd" %)**Solution: ** 820 820 821 -* NSE01 NB-IoT Soil Moisture & EC Sensor x 1 822 -* External antenna x 1 823 -))) 952 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 824 824 954 +[[image:1654500929571-736.png]] 955 + 956 + 957 += 6. Order Info = 958 + 959 + 960 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 961 + 962 + 963 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 964 + 965 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 966 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 967 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 968 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 969 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 970 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 971 +* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 972 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 973 + 974 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 975 + 976 +* (% style="color:red" %)**4**(%%): 4000mAh battery 977 +* (% style="color:red" %)**8**(%%): 8500mAh battery 978 + 979 +(% class="wikigeneratedid" %) 825 825 ((( 826 826 982 +))) 827 827 828 - (% style="color:#037691"%)**Dimensionandweight**:984 += 7. Packing Info = 829 829 986 +((( 987 +**Package Includes**: 988 +))) 830 830 831 -* Size: 195 x 125 x 55 mm832 - *Weight:420g990 +* ((( 991 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 833 833 ))) 834 834 835 835 ((( 836 836 996 +))) 837 837 998 +((( 999 +**Dimension and weight**: 1000 +))) 838 838 1002 +* ((( 1003 +Device Size: cm 1004 +))) 1005 +* ((( 1006 +Device Weight: g 1007 +))) 1008 +* ((( 1009 +Package Size / pcs : cm 1010 +))) 1011 +* ((( 1012 +Weight / pcs : g 1013 + 1014 + 839 839 840 840 ))) 841 841 842 -= 9.1018 += 8. Support = 843 843 844 844 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 845 845 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1022 + 1023 +
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -102.7 KB - Content