Changes for page NDDS75 -- NB-IoT Distance Detect Sensor User Manual
Last modified by Bei Jinggeng on 2024/05/31 09:53
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 17 added, 0 removed)
- 1657271519014-786.png
- 1657327959271-447.png
- 1657328609906-564.png
- 1657328659945-416.png
- 1657328756309-230.png
- 1657328884227-504.png
- 1657329814315-101.png
- 1657330452568-615.png
- 1657330472797-498.png
- 1657330501006-241.png
- 1657330533775-472.png
- image-20220709084038-1.jpeg
- image-20220709084137-2.jpeg
- image-20220709084207-3.jpeg
- image-20220709084458-4.png
- image-20220709085040-1.png
- image-20220709092052-2.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -NS E01-NB-IoTSoil Moisture&ECSensor User Manual1 +NDDS75 NB-IoT Distance Detect Sensor User Manual - Content
-
... ... @@ -1,19 +1,12 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-20220 606151504-2.jpeg||height="554" width="554"]]2 +[[image:image-20220709085040-1.png||height="542" width="524"]] 3 3 4 4 5 5 6 6 7 7 8 - 9 - 10 - 11 - 12 - 13 - 14 14 **Table of Contents:** 15 15 16 -{{toc/}} 17 17 18 18 19 19 ... ... @@ -20,30 +20,22 @@ 20 20 21 21 22 22 23 - 24 24 = 1. Introduction = 25 25 26 -== 1.1 What is LoRaWANoilMoisture&ECSensor ==18 +== 1.1 What is NDDS75 Distance Detection Sensor == 27 27 28 28 ((( 29 29 30 30 31 31 ((( 32 -Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 24 +The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data. 25 +\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network. 26 +\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage. 27 +\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement. 28 +\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method) 29 +\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection. 33 33 ))) 34 34 35 -((( 36 -It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 37 -))) 38 - 39 -((( 40 -The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 41 -))) 42 - 43 -((( 44 -NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years. 45 -))) 46 - 47 47 48 48 ))) 49 49 ... ... @@ -50,22 +50,23 @@ 50 50 [[image:1654503236291-817.png]] 51 51 52 52 53 -[[image:16572 45163077-232.png]]38 +[[image:1657327959271-447.png]] 54 54 55 55 56 56 57 57 == 1.2 Features == 58 58 44 + 59 59 * NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 60 -* Monitor Soil Moisture 61 -* Monitor Soil Temperature 62 -* Monitor Soil Conductivity 46 +* Ultra low power consumption 47 +* Distance Detection by Ultrasonic technology 48 +* Flat object range 280mm - 7500mm 49 +* Accuracy: ±(1cm+S*0.3%) (S: Distance) 50 +* Cable Length: 25cm 63 63 * AT Commands to change parameters 64 64 * Uplink on periodically 65 65 * Downlink to change configure 66 66 * IP66 Waterproof Enclosure 67 -* Ultra-Low Power consumption 68 -* AT Commands to change parameters 69 69 * Micro SIM card slot for NB-IoT SIM 70 70 * 8500mAh Battery for long term use 71 71 ... ... @@ -87,58 +87,73 @@ 87 87 * - B20 @H-FDD: 800MHz 88 88 * - B28 @H-FDD: 700MHz 89 89 90 - Probe(% style="color:#037691" %)**Specification:**76 +(% style="color:#037691" %)**Battery:** 91 91 92 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 78 +* Li/SOCI2 un-chargeable battery 79 +* Capacity: 8500mAh 80 +* Self Discharge: <1% / Year @ 25°C 81 +* Max continuously current: 130mA 82 +* Max boost current: 2A, 1 second 93 93 94 - [[image:image-20220708101224-1.png]]84 +(% style="color:#037691" %)**Power Consumption** 95 95 86 +* STOP Mode: 10uA @ 3.3v 87 +* Max transmit power: 350mA@3.3v 96 96 97 97 90 + 98 98 == 1.4 Applications == 99 99 93 +* Smart Buildings & Home Automation 94 +* Logistics and Supply Chain Management 95 +* Smart Metering 100 100 * Smart Agriculture 97 +* Smart Cities 98 +* Smart Factory 101 101 102 102 (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 103 103 104 104 103 + 104 + 105 105 == 1.5 Pin Definitions == 106 106 107 107 108 -[[image:16572 46476176-652.png]]108 +[[image:1657328609906-564.png]] 109 109 110 110 111 111 112 -= 2. Use NS E01to communicate with IoT Server =112 += 2. Use NDDS75 to communicate with IoT Server = 113 113 114 114 == 2.1 How it works == 115 115 116 - 117 117 ((( 118 -The NS E01is equipped with a NB-IoT module, the pre-loaded firmware in NSE01will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.117 +The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware in NDDS75 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NDDS75. 119 119 ))) 120 120 121 121 122 122 ((( 123 -The diagram below shows the working flow in default firmware of NS E01:122 +The diagram below shows the working flow in default firmware of NDDS75: 124 124 ))) 125 125 126 -[[image:image-20220708101605-2.png]] 127 - 128 128 ((( 129 129 130 130 ))) 131 131 129 +[[image:1657328659945-416.png]] 132 132 131 +((( 132 + 133 +))) 133 133 134 -== 2.2 Configure the NSE01 == 135 135 136 +== 2.2 Configure the NDDS75 == 136 136 138 + 137 137 === 2.2.1 Test Requirement === 138 138 139 - 140 140 ((( 141 -To use NS E01in your city, make sure meet below requirements:142 +To use NDDS75 in your city, make sure meet below requirements: 142 142 ))) 143 143 144 144 * Your local operator has already distributed a NB-IoT Network there. ... ... @@ -146,11 +146,11 @@ 146 146 * Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 147 147 148 148 ((( 149 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The E01will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server150 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NDDS75 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 150 150 ))) 151 151 152 152 153 -[[image:16572 49419225-449.png]]154 +[[image:1657328756309-230.png]] 154 154 155 155 156 156 ... ... @@ -165,18 +165,19 @@ 165 165 ))) 166 166 167 167 168 -[[image:16572 49468462-536.png]]169 +[[image:1657328884227-504.png]] 169 169 170 170 171 171 172 -=== 2.2.3 Connect USB – TTL to NS E01to configure it ===173 +=== 2.2.3 Connect USB – TTL to NDDS75 to configure it === 173 173 174 174 ((( 175 175 ((( 176 -User need to configure NS E01via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01support AT Commands, user can use a USB to TTL adapter to connect to NSE01and use AT Commands to configure it, as below.177 +User need to configure NDDS75 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NDDS75 support AT Commands, user can use a USB to TTL adapter to connect to NDDS75 and use AT Commands to configure it, as below. 177 177 ))) 178 178 ))) 179 179 181 +[[image:image-20220709092052-2.png]] 180 180 181 181 **Connection:** 182 182 ... ... @@ -196,12 +196,14 @@ 196 196 * Flow Control: (% style="color:green" %)**None** 197 197 198 198 ((( 199 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NS E01. NSE01will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.201 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NDDS75. NDDS75 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 200 200 ))) 201 201 202 -[[image: image-20220708110657-3.png]]204 +[[image:1657329814315-101.png]] 203 203 204 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 206 +((( 207 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/>>url:https://www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/]] 208 +))) 205 205 206 206 207 207 ... ... @@ -218,31 +218,30 @@ 218 218 219 219 For parameter description, please refer to AT command set 220 220 221 -[[image:1657 249793983-486.png]]225 +[[image:1657330452568-615.png]] 222 222 223 223 224 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NS E01will start to uplink sensor values to CoAP server.228 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NDDS75 will start to uplink sensor values to CoAP server. 225 225 226 -[[image:1657 249831934-534.png]]230 +[[image:1657330472797-498.png]] 227 227 228 228 229 229 230 230 === 2.2.5 Use UDP protocol to uplink data(Default protocol) === 231 231 232 -This feature is supported since firmware version v1.0.1 233 233 234 - 235 235 * (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 236 236 * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 237 237 * (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 238 238 239 -[[image:1657249864775-321.png]] 240 240 242 +[[image:1657330501006-241.png]] 241 241 242 -[[image:1657249930215-289.png]] 243 243 245 +[[image:1657330533775-472.png]] 244 244 245 245 248 + 246 246 === 2.2.6 Use MQTT protocol to uplink data === 247 247 248 248 This feature is supported since firmware version v110 ... ... @@ -304,12 +304,14 @@ 304 304 In this mode, uplink payload includes in total 18 bytes 305 305 306 306 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 307 -|=(% style="width: 50px;" %)(((310 +|=(% style="width: 60px;" %)((( 308 308 **Size(bytes)** 309 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width:80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width:80px;" %)**2**|=(% style="width:40px;" %)**1**312 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1** 310 310 |(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 311 311 315 +((( 312 312 If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 317 +))) 313 313 314 314 315 315 [[image:image-20220708111918-4.png]] ... ... @@ -329,29 +329,42 @@ 329 329 * Soil Conductivity(EC) = 0x02f9 =761 uS /cm 330 330 * Interrupt: 0x00 = 0 331 331 332 - 333 333 == 2.4 Payload Explanation and Sensor Interface == 334 334 335 335 336 336 === 2.4.1 Device ID === 337 337 342 +((( 338 338 By default, the Device ID equal to the last 6 bytes of IMEI. 344 +))) 339 339 346 +((( 340 340 User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 348 +))) 341 341 350 +((( 342 342 **Example:** 352 +))) 343 343 354 +((( 344 344 AT+DEUI=A84041F15612 356 +))) 345 345 358 +((( 346 346 The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 360 +))) 347 347 348 348 349 349 350 350 === 2.4.2 Version Info === 351 351 366 +((( 352 352 Specify the software version: 0x64=100, means firmware version 1.00. 368 +))) 353 353 370 +((( 354 354 For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 372 +))) 355 355 356 356 357 357 ... ... @@ -373,19 +373,33 @@ 373 373 374 374 === 2.4.4 Signal Strength === 375 375 394 +((( 376 376 NB-IoT Network signal Strength. 396 +))) 377 377 398 +((( 378 378 **Ex1: 0x1d = 29** 400 +))) 379 379 402 +((( 380 380 (% style="color:blue" %)**0**(%%) -113dBm or less 404 +))) 381 381 406 +((( 382 382 (% style="color:blue" %)**1**(%%) -111dBm 408 +))) 383 383 410 +((( 384 384 (% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 412 +))) 385 385 414 +((( 386 386 (% style="color:blue" %)**31** (%%) -51dBm or greater 416 +))) 387 387 418 +((( 388 388 (% style="color:blue" %)**99** (%%) Not known or not detectable 420 +))) 389 389 390 390 391 391 ... ... @@ -392,12 +392,16 @@ 392 392 === 2.4.5 Soil Moisture === 393 393 394 394 ((( 427 +((( 395 395 Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 396 396 ))) 430 +))) 397 397 398 398 ((( 433 +((( 399 399 For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 400 400 ))) 436 +))) 401 401 402 402 ((( 403 403 ... ... @@ -412,7 +412,7 @@ 412 412 === 2.4.6 Soil Temperature === 413 413 414 414 ((( 415 - 451 +Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 416 416 ))) 417 417 418 418 ((( ... ... @@ -453,34 +453,56 @@ 453 453 454 454 === 2.4.8 Digital Interrupt === 455 455 492 +((( 456 456 Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 494 +))) 457 457 496 +((( 458 458 The command is: 498 +))) 459 459 500 +((( 460 460 (% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 502 +))) 461 461 462 462 505 +((( 463 463 The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up. 507 +))) 464 464 465 465 510 +((( 466 466 Example: 512 +))) 467 467 514 +((( 468 468 0x(00): Normal uplink packet. 516 +))) 469 469 518 +((( 470 470 0x(01): Interrupt Uplink Packet. 520 +))) 471 471 472 472 473 473 474 474 === 2.4.9 +5V Output === 475 475 526 +((( 476 476 NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 528 +))) 477 477 478 478 531 +((( 479 479 The 5V output time can be controlled by AT Command. 533 +))) 480 480 535 +((( 481 481 (% style="color:blue" %)**AT+5VT=1000** 537 +))) 482 482 539 +((( 483 483 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 541 +))) 484 484 485 485 486 486 ... ... @@ -530,7 +530,9 @@ 530 530 531 531 * (% style="color:blue" %)**INTMOD** 532 532 591 +((( 533 533 Downlink Payload: 06000003, Set AT+INTMOD=3 593 +))) 534 534 535 535 536 536 ... ... @@ -553,7 +553,9 @@ 553 553 554 554 __**Measurement the soil surface**__ 555 555 616 +((( 556 556 Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 618 +))) 557 557 558 558 [[image:1657259653666-883.png]] 559 559 ... ... @@ -594,13 +594,19 @@ 594 594 === 2.9.1 Battery Type === 595 595 596 596 659 +((( 597 597 The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 661 +))) 598 598 599 599 664 +((( 600 600 The battery is designed to last for several years depends on the actually use environment and update interval. 666 +))) 601 601 602 602 669 +((( 603 603 The battery related documents as below: 671 +))) 604 604 605 605 * [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 606 606 * [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] ... ... @@ -777,26 +777,37 @@ 777 777 778 778 779 779 848 +== 5.2 Can I calibrate NSE01 to different soil types? == 849 + 850 +((( 851 +NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]]. 852 +))) 853 + 854 + 780 780 = 6. Trouble Shooting = 781 781 782 782 == 6.1 Connection problem when uploading firmware == 783 783 784 784 860 +((( 861 +**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]] 862 +))) 863 + 785 785 (% class="wikigeneratedid" %) 786 786 ((( 787 - (%style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]]866 + 788 788 ))) 789 789 790 790 791 - 792 792 == 6.2 AT Command input doesn't work == 793 793 794 794 ((( 795 795 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 874 + 875 + 796 796 ))) 797 797 798 798 799 - 800 800 = 7. Order Info = 801 801 802 802 ... ... @@ -815,7 +815,6 @@ 815 815 816 816 (% style="color:#037691" %)**Package Includes**: 817 817 818 - 819 819 * NSE01 NB-IoT Soil Moisture & EC Sensor x 1 820 820 * External antenna x 1 821 821 ))) ... ... @@ -825,7 +825,6 @@ 825 825 826 826 (% style="color:#037691" %)**Dimension and weight**: 827 827 828 - 829 829 * Size: 195 x 125 x 55 mm 830 830 * Weight: 420g 831 831 )))
- 1657271519014-786.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +71.5 KB - Content
- 1657327959271-447.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +78.3 KB - Content
- 1657328609906-564.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657328659945-416.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +78.8 KB - Content
- 1657328756309-230.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +78.5 KB - Content
- 1657328884227-504.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657329814315-101.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.3 KB - Content
- 1657330452568-615.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +71.3 KB - Content
- 1657330472797-498.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +68.9 KB - Content
- 1657330501006-241.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +119.2 KB - Content
- 1657330533775-472.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +74.9 KB - Content
- image-20220709084038-1.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.0 KB - Content
- image-20220709084137-2.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.0 KB - Content
- image-20220709084207-3.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.0 KB - Content
- image-20220709084458-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +199.5 KB - Content
- image-20220709085040-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +200.4 KB - Content
- image-20220709092052-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +247.3 KB - Content