Changes for page NDDS75 -- NB-IoT Distance Detect Sensor User Manual
Last modified by Bei Jinggeng on 2024/05/31 09:53
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 19 removed)
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
Details
- Page properties
-
- Content
-
... ... @@ -13,14 +13,11 @@ 13 13 14 14 **Table of Contents:** 15 15 16 -{{toc/}} 17 17 18 18 19 19 20 20 21 21 22 - 23 - 24 24 = 1. Introduction = 25 25 26 26 == 1.1 What is LoRaWAN Soil Moisture & EC Sensor == ... ... @@ -28,21 +28,13 @@ 28 28 ((( 29 29 30 30 31 -((( 32 32 Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 33 -))) 34 34 35 -((( 36 36 It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 37 -))) 38 38 39 -((( 40 40 The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 41 -))) 42 42 43 -((( 44 44 NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years. 45 -))) 46 46 47 47 48 48 ))) ... ... @@ -54,8 +54,9 @@ 54 54 55 55 56 56 57 -== 1.2 46 +== 1.2 Features == 58 58 48 + 59 59 * NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 60 60 * Monitor Soil Moisture 61 61 * Monitor Soil Temperature ... ... @@ -70,6 +70,7 @@ 70 70 * 8500mAh Battery for long term use 71 71 72 72 63 + 73 73 == 1.3 Specification == 74 74 75 75 ... ... @@ -78,6 +78,7 @@ 78 78 * Supply Voltage: 2.1v ~~ 3.6v 79 79 * Operating Temperature: -40 ~~ 85°C 80 80 72 + 81 81 (% style="color:#037691" %)**NB-IoT Spec:** 82 82 83 83 * - B1 @H-FDD: 2100MHz ... ... @@ -87,8 +87,9 @@ 87 87 * - B20 @H-FDD: 800MHz 88 88 * - B28 @H-FDD: 700MHz 89 89 90 -Probe(% style="color:#037691" %)** Specification:** 91 91 83 +(% style="color:#037691" %)**Probe Specification:** 84 + 92 92 Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 93 93 94 94 [[image:image-20220708101224-1.png]] ... ... @@ -109,715 +109,998 @@ 109 109 110 110 111 111 112 -= 2. UseNSE01 to communicatewithIoTServer=105 += 2. Configure LSE01 to connect to LoRaWAN network = 113 113 114 -== 2.1 107 +== 2.1 How it works == 115 115 109 +((( 110 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 111 +))) 116 116 117 117 ((( 118 - TheNSE01 isquippedwitha NB-IoT module,thepre-loadedfirmware inNSE01 will getnvironmentdatafromsensorsandsendthe value tolocal NB-IoT networkviatheNB-IoT module.The NB-IoT network willforwardthis valueto IoTserverviatheprotocol definedby NSE01.114 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 119 119 ))) 120 120 121 121 118 + 119 +== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 120 + 121 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 122 + 123 + 124 +[[image:1654503992078-669.png]] 125 + 126 + 127 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 128 + 129 + 130 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSE01. 131 + 132 +Each LSE01 is shipped with a sticker with the default device EUI as below: 133 + 134 +[[image:image-20220606163732-6.jpeg]] 135 + 136 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 137 + 138 +**Add APP EUI in the application** 139 + 140 + 141 +[[image:1654504596150-405.png]] 142 + 143 + 144 + 145 +**Add APP KEY and DEV EUI** 146 + 147 +[[image:1654504683289-357.png]] 148 + 149 + 150 + 151 +(% style="color:blue" %)**Step 2**(%%): Power on LSE01 152 + 153 + 154 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 155 + 156 +[[image:image-20220606163915-7.png]] 157 + 158 + 159 +(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 160 + 161 +[[image:1654504778294-788.png]] 162 + 163 + 164 + 165 +== 2.3 Uplink Payload == 166 + 167 + 168 +=== 2.3.1 MOD~=0(Default Mode) === 169 + 170 +LSE01 will uplink payload via LoRaWAN with below payload format: 171 + 122 122 ((( 123 - The diagram below shows the workingflowinfaultfirmwareofNSE01:173 +Uplink payload includes in total 11 bytes. 124 124 ))) 125 125 126 -[[image:image-20220708101605-2.png]] 176 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 177 +|((( 178 +**Size** 127 127 180 +**(bytes)** 181 +)))|**2**|**2**|**2**|**2**|**2**|**1** 182 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 183 +Temperature 184 + 185 +(Reserve, Ignore now) 186 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 187 +MOD & Digital Interrupt 188 + 189 +(Optional) 190 +))) 191 + 192 +=== 2.3.2 MOD~=1(Original value) === 193 + 194 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 195 + 196 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 197 +|((( 198 +**Size** 199 + 200 +**(bytes)** 201 +)))|**2**|**2**|**2**|**2**|**2**|**1** 202 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 203 +Temperature 204 + 205 +(Reserve, Ignore now) 206 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 207 +MOD & Digital Interrupt 208 + 209 +(Optional) 210 +))) 211 + 212 +=== 2.3.3 Battery Info === 213 + 128 128 ((( 129 - 215 +Check the battery voltage for LSE01. 130 130 ))) 131 131 218 +((( 219 +Ex1: 0x0B45 = 2885mV 220 +))) 132 132 222 +((( 223 +Ex2: 0x0B49 = 2889mV 224 +))) 133 133 134 -== 2.2 Configure the NSE01 == 135 135 136 136 137 -=== 2. 2.1TestRequirement===228 +=== 2.3.4 Soil Moisture === 138 138 230 +((( 231 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 232 +))) 139 139 140 140 ((( 141 - TouseNSE01inyourcity,make suremeetbelowrequirements:235 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 142 142 ))) 143 143 144 - * Your local operator has already distributed a NB-IoT Network there.145 - *The local NB-IoT network used the band that NSE01 supports.146 - * Your operator is able to distribute the data received in their NB-IoT network to your IoT server.238 +((( 239 + 240 +))) 147 147 148 148 ((( 149 - Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%)or raw UDP((% style="color:red"%)120.24.4.116:5601)(%%)or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)orTCP((% style="color:red"%)120.24.4.116:5600)(%%)protocol to send data to the test server243 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 150 150 ))) 151 151 152 152 153 -[[image:1657249419225-449.png]] 154 154 248 +=== 2.3.5 Soil Temperature === 155 155 250 +((( 251 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 252 +))) 156 156 157 -=== 2.2.2 Insert SIM card === 254 +((( 255 +**Example**: 256 +))) 158 158 159 159 ((( 160 -I nsertthe NB-IoT Cardgetfromyourprovider.259 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 161 161 ))) 162 162 163 163 ((( 164 - Userneed totakeouttheNB-IoTmoduleandinserttheSIMcardlikebelow:263 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 165 165 ))) 166 166 167 167 168 -[[image:1657249468462-536.png]] 169 169 268 +=== 2.3.6 Soil Conductivity (EC) === 170 170 270 +((( 271 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 272 +))) 171 171 172 -=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 274 +((( 275 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 276 +))) 173 173 174 174 ((( 279 +Generally, the EC value of irrigation water is less than 800uS / cm. 280 +))) 281 + 175 175 ((( 176 - Userneed to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.283 + 177 177 ))) 285 + 286 +((( 287 + 178 178 ))) 179 179 290 +=== 2.3.7 MOD === 180 180 181 - **Connection:**292 +Firmware version at least v2.1 supports changing mode. 182 182 183 - (% style="background-color:yellow"%)USB TTL GND <~-~-~-~-> GND294 +For example, bytes[10]=90 184 184 185 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~->UART_RXD296 +mod=(bytes[10]>>7)&0x01=1. 186 186 187 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 188 188 299 +**Downlink Command:** 189 189 190 -I nthePC,usebelowserial tool settings:301 +If payload = 0x0A00, workmode=0 191 191 192 -* Baud: (% style="color:green" %)**9600** 193 -* Data bits:** (% style="color:green" %)8(%%)** 194 -* Stop bits: (% style="color:green" %)**1** 195 -* Parity: (% style="color:green" %)**None** 196 -* Flow Control: (% style="color:green" %)**None** 303 +If** **payload =** **0x0A01, workmode=1 197 197 198 -((( 199 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 200 -))) 201 201 202 -[[image:image-20220708110657-3.png]] 203 203 204 - (%style="color:red" %)Note:the valid AT Commandscanbefound at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]307 +=== 2.3.8 Decode payload in The Things Network === 205 205 309 +While using TTN network, you can add the payload format to decode the payload. 206 206 207 207 208 - ===2.2.4 Use CoAPprotocol to uplink data ===312 +[[image:1654505570700-128.png]] 209 209 210 -(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 314 +((( 315 +The payload decoder function for TTN is here: 316 +))) 211 211 318 +((( 319 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]] 320 +))) 212 212 213 -**Use below commands:** 214 214 215 -* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 216 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 217 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 323 +== 2.4 Uplink Interval == 218 218 219 - Forparameterdescription,pleasereferto ATcommand325 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 220 220 221 -[[image:1657249793983-486.png]] 222 222 223 223 224 - After configure the server address and (% style="color:green"%)**resetthe device**(%%) (via AT+ATZ ), NSE01will start to uplinksensor values toCoAP server.329 +== 2.5 Downlink Payload == 225 225 226 - [[image:1657249831934-534.png]]331 +By default, LSE50 prints the downlink payload to console port. 227 227 333 +[[image:image-20220606165544-8.png]] 228 228 229 229 230 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 336 +((( 337 +(% style="color:blue" %)**Examples:** 338 +))) 231 231 232 -This feature is supported since firmware version v1.0.1 340 +((( 341 + 342 +))) 233 233 344 +* ((( 345 +(% style="color:blue" %)**Set TDC** 346 +))) 234 234 235 - *(% style="color:blue" %)**AT+PRO=2 **(%%) ~/~/ Set to use UDP protocol to uplink236 - *(% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601** (%%) ~/~/tosetUDPserveraddressand port237 - * (% style="color:blue" %)**AT+CFM=1 ** (%%)~/~/If the server does not respond, this command is unnecessary348 +((( 349 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 350 +))) 238 238 239 -[[image:1657249864775-321.png]] 352 +((( 353 +Payload: 01 00 00 1E TDC=30S 354 +))) 240 240 356 +((( 357 +Payload: 01 00 00 3C TDC=60S 358 +))) 241 241 242 -[[image:1657249930215-289.png]] 360 +((( 361 + 362 +))) 243 243 364 +* ((( 365 +(% style="color:blue" %)**Reset** 366 +))) 244 244 368 +((( 369 +If payload = 0x04FF, it will reset the LSE01 370 +))) 245 245 246 -=== 2.2.6 Use MQTT protocol to uplink data === 247 247 248 - Thisfeatureissupported since firmwareversion v110373 +* (% style="color:blue" %)**CFM** 249 249 375 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 250 250 251 -* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 252 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 253 -* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 254 -* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 255 -* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 256 -* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 257 -* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 258 258 259 -[[image:1657249978444-674.png]] 260 260 379 +== 2.6 Show Data in DataCake IoT Server == 261 261 262 -[[image:1657249990869-686.png]] 381 +((( 382 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 383 +))) 263 263 385 +((( 386 + 387 +))) 264 264 265 265 ((( 266 - MQTTprotocolhasamuchhigherpower consumptioncomparevsUDP / CoAPprotocol. Pleasecheckthepoweranalyzedocument andadjust theuplink periodto asuitableinterval.390 +(% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time. 267 267 ))) 268 268 393 +((( 394 +(% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 395 +))) 269 269 270 270 271 - === 2.2.7 UseTCPprotocol to uplink data ===398 +[[image:1654505857935-743.png]] 272 272 273 -This feature is supported since firmware version v110 274 274 401 +[[image:1654505874829-548.png]] 275 275 276 -* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 277 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 278 278 279 - [[image:1657250217799-140.png]]404 +(% style="color:blue" %)**Step 3**(%%)**:** Create an account or log in Datacake. 280 280 406 +(% style="color:blue" %)**Step 4**(%%)**:** Search the LSE01 and add DevEUI. 281 281 282 -[[image:1657250255956-604.png]] 283 283 409 +[[image:1654505905236-553.png]] 284 284 285 285 286 - ===2.2.8ChangeUpdateInterval===412 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 287 287 288 - User can use below command to changethe (% style="color:green" %)**uplink interval**.414 +[[image:1654505925508-181.png]] 289 289 290 -* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 291 291 292 -((( 293 -(% style="color:red" %)**NOTE:** 294 -))) 295 295 296 -((( 297 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 298 -))) 418 +== 2.7 Frequency Plans == 299 299 420 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 300 300 301 301 302 -== 2.3 plinkPayload==423 +=== 2.7.1 EU863-870 (EU868) === 303 303 304 - Inthismode, uplink payload includes in total8bytes425 +(% style="color:#037691" %)** Uplink:** 305 305 306 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 307 -|=(% style="width: 50px;" %)((( 308 -**Size(bytes)** 309 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1** 310 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 427 +868.1 - SF7BW125 to SF12BW125 311 311 312 - Ifweusethe MQTT client tosubscribeto this MQTT topic, we cansee the following information when the NSE01 uplink data.429 +868.3 - SF7BW125 to SF12BW125 and SF7BW250 313 313 431 +868.5 - SF7BW125 to SF12BW125 314 314 315 - [[image:image-20220708111918-4.png]]433 +867.1 - SF7BW125 to SF12BW125 316 316 435 +867.3 - SF7BW125 to SF12BW125 317 317 318 - Thepayloadis ASCIIstring,representative same HEX:437 +867.5 - SF7BW125 to SF12BW125 319 319 320 - 0x72403155615900640c7817075e0a8c02f900where:439 +867.7 - SF7BW125 to SF12BW125 321 321 322 -* Device ID: 0x 724031556159 = 724031556159 323 -* Version: 0x0064=100=1.0.0 441 +867.9 - SF7BW125 to SF12BW125 324 324 325 -* BAT: 0x0c78 = 3192 mV = 3.192V 326 -* Singal: 0x17 = 23 327 -* Soil Moisture: 0x075e= 1886 = 18.86 % 328 -* Soil Temperature:0x0a8c =2700=27 °C 329 -* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 330 -* Interrupt: 0x00 = 0 443 +868.8 - FSK 331 331 332 332 333 - ==2.4 Payload ExplanationandSensor Interface ==446 +(% style="color:#037691" %)** Downlink:** 334 334 448 +Uplink channels 1-9 (RX1) 335 335 336 - === 2.4.1DeviceID===450 +869.525 - SF9BW125 (RX2 downlink only) 337 337 338 -By default, the Device ID equal to the last 6 bytes of IMEI. 339 339 340 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 341 341 342 - **Example:**454 +=== 2.7.2 US902-928(US915) === 343 343 344 -A T+DEUI=A84041F15612456 +Used in USA, Canada and South America. Default use CHE=2 345 345 346 - TheDevice ID isstored in a none-erasearea,Upgrade the firmware or runAT+FDR won't erase Device ID.458 +(% style="color:#037691" %)**Uplink:** 347 347 460 +903.9 - SF7BW125 to SF10BW125 348 348 462 +904.1 - SF7BW125 to SF10BW125 349 349 350 - === 2.4.2VersionInfo ===464 +904.3 - SF7BW125 to SF10BW125 351 351 352 - Specify the software version:0x64=100,meansfirmwareversion1.00.466 +904.5 - SF7BW125 to SF10BW125 353 353 354 - For example:0x00 64:this device is NSE01with firmware version1.0.0.468 +904.7 - SF7BW125 to SF10BW125 355 355 470 +904.9 - SF7BW125 to SF10BW125 356 356 472 +905.1 - SF7BW125 to SF10BW125 357 357 358 - === 2.4.3atteryInfo===474 +905.3 - SF7BW125 to SF10BW125 359 359 360 -((( 361 -Check the battery voltage for LSE01. 362 -))) 363 363 364 -((( 365 -Ex1: 0x0B45 = 2885mV 366 -))) 477 +(% style="color:#037691" %)**Downlink:** 367 367 368 -((( 369 -Ex2: 0x0B49 = 2889mV 370 -))) 479 +923.3 - SF7BW500 to SF12BW500 371 371 481 +923.9 - SF7BW500 to SF12BW500 372 372 483 +924.5 - SF7BW500 to SF12BW500 373 373 374 - ===2.4.4SignalStrength===485 +925.1 - SF7BW500 to SF12BW500 375 375 376 - NB-IoTNetworksignalStrength.487 +925.7 - SF7BW500 to SF12BW500 377 377 378 - **Ex1:0x1d=29**489 +926.3 - SF7BW500 to SF12BW500 379 379 380 - (%style="color:blue"%)**0**(%%)-113dBm or less491 +926.9 - SF7BW500 to SF12BW500 381 381 382 - (%style="color:blue"%)**1**(%%) -111dBm493 +927.5 - SF7BW500 to SF12BW500 383 383 384 - (% style="color:blue" %)**2...30**(%%)-109dBm... -53dBm495 +923.3 - SF12BW500(RX2 downlink only) 385 385 386 -(% style="color:blue" %)**31** (%%) -51dBm or greater 387 387 388 -(% style="color:blue" %)**99** (%%) Not known or not detectable 389 389 499 +=== 2.7.3 CN470-510 (CN470) === 390 390 501 +Used in China, Default use CHE=1 391 391 392 - ===2.4.5 SoilMoisture===503 +(% style="color:#037691" %)**Uplink:** 393 393 394 -((( 395 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 396 -))) 505 +486.3 - SF7BW125 to SF12BW125 397 397 398 -((( 399 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 400 -))) 507 +486.5 - SF7BW125 to SF12BW125 401 401 402 -((( 403 - 404 -))) 509 +486.7 - SF7BW125 to SF12BW125 405 405 406 -((( 407 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 408 -))) 511 +486.9 - SF7BW125 to SF12BW125 409 409 513 +487.1 - SF7BW125 to SF12BW125 410 410 515 +487.3 - SF7BW125 to SF12BW125 411 411 412 - === 2.4.6SoilTemperature===517 +487.5 - SF7BW125 to SF12BW125 413 413 414 -((( 415 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 416 -))) 519 +487.7 - SF7BW125 to SF12BW125 417 417 418 -((( 419 -**Example**: 420 -))) 421 421 422 -((( 423 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 424 -))) 522 +(% style="color:#037691" %)**Downlink:** 425 425 426 -((( 427 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 428 -))) 524 +506.7 - SF7BW125 to SF12BW125 429 429 526 +506.9 - SF7BW125 to SF12BW125 430 430 528 +507.1 - SF7BW125 to SF12BW125 431 431 432 - === 2.4.7oilConductivity(EC) ===530 +507.3 - SF7BW125 to SF12BW125 433 433 434 -((( 435 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 436 -))) 532 +507.5 - SF7BW125 to SF12BW125 437 437 438 -((( 439 -For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 440 -))) 534 +507.7 - SF7BW125 to SF12BW125 441 441 442 -((( 443 -Generally, the EC value of irrigation water is less than 800uS / cm. 444 -))) 536 +507.9 - SF7BW125 to SF12BW125 445 445 446 -((( 447 - 448 -))) 538 +508.1 - SF7BW125 to SF12BW125 449 449 450 -((( 451 - 452 -))) 540 +505.3 - SF12BW125 (RX2 downlink only) 453 453 454 -=== 2.4.8 Digital Interrupt === 455 455 456 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 457 457 458 - Thecommandis:544 +=== 2.7.4 AU915-928(AU915) === 459 459 460 - (% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(moreinfoaboutINMOD pleaserefer [[**ATCommand Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**546 +Default use CHE=2 461 461 548 +(% style="color:#037691" %)**Uplink:** 462 462 463 - The lower four bits of this data field shows if this packet is generated by interrupt or not.Clickhereforthe hardware and softwareset up.550 +916.8 - SF7BW125 to SF12BW125 464 464 552 +917.0 - SF7BW125 to SF12BW125 465 465 466 - Example:554 +917.2 - SF7BW125 to SF12BW125 467 467 468 - 0x(00):Normaluplinkpacket.556 +917.4 - SF7BW125 to SF12BW125 469 469 470 - 0x(01):InterruptUplinkPacket.558 +917.6 - SF7BW125 to SF12BW125 471 471 560 +917.8 - SF7BW125 to SF12BW125 472 472 562 +918.0 - SF7BW125 to SF12BW125 473 473 474 - === 2.4.9+5VOutput===564 +918.2 - SF7BW125 to SF12BW125 475 475 476 -NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 477 477 567 +(% style="color:#037691" %)**Downlink:** 478 478 479 - The5Voutput time can be controlledby AT Command.569 +923.3 - SF7BW500 to SF12BW500 480 480 481 - (%style="color:blue"%)**AT+5VT=1000**571 +923.9 - SF7BW500 to SF12BW500 482 482 483 - Means set5Vvalidtime to have 1000ms.Sothe real 5Voutputwill actually have1000ms + sampling time for other sensors.573 +924.5 - SF7BW500 to SF12BW500 484 484 575 +925.1 - SF7BW500 to SF12BW500 485 485 577 +925.7 - SF7BW500 to SF12BW500 486 486 487 - ==2.5DownlinkPayload ==579 +926.3 - SF7BW500 to SF12BW500 488 488 489 - Bydefault,NSE01prints the downlinkpayload to console port.581 +926.9 - SF7BW500 to SF12BW500 490 490 491 - [[image:image-20220708133731-5.png]]583 +927.5 - SF7BW500 to SF12BW500 492 492 585 +923.3 - SF12BW500(RX2 downlink only) 493 493 494 -((( 495 -(% style="color:blue" %)**Examples:** 496 -))) 497 497 498 -((( 499 - 500 -))) 501 501 502 -* ((( 503 -(% style="color:blue" %)**Set TDC** 504 -))) 589 +=== 2.7.5 AS920-923 & AS923-925 (AS923) === 505 505 506 -((( 507 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 508 -))) 591 +(% style="color:#037691" %)**Default Uplink channel:** 509 509 510 -((( 511 -Payload: 01 00 00 1E TDC=30S 512 -))) 593 +923.2 - SF7BW125 to SF10BW125 513 513 514 -((( 515 -Payload: 01 00 00 3C TDC=60S 516 -))) 595 +923.4 - SF7BW125 to SF10BW125 517 517 518 -((( 519 - 520 -))) 521 521 522 -* ((( 523 -(% style="color:blue" %)**Reset** 524 -))) 598 +(% style="color:#037691" %)**Additional Uplink Channel**: 525 525 526 -((( 527 -If payload = 0x04FF, it will reset the NSE01 528 -))) 600 +(OTAA mode, channel added by JoinAccept message) 529 529 602 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 530 530 531 - *(%style="color:blue"%)**INTMOD**604 +922.2 - SF7BW125 to SF10BW125 532 532 533 - DownlinkPayload:06000003,SetAT+INTMOD=3606 +922.4 - SF7BW125 to SF10BW125 534 534 608 +922.6 - SF7BW125 to SF10BW125 535 535 610 +922.8 - SF7BW125 to SF10BW125 536 536 537 - ==2.6LEDIndicator==612 +923.0 - SF7BW125 to SF10BW125 538 538 539 -((( 540 -The NSE01 has an internal LED which is to show the status of different state. 614 +922.0 - SF7BW125 to SF10BW125 541 541 542 542 543 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 544 -* Then the LED will be on for 1 second means device is boot normally. 545 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 546 -* For each uplink probe, LED will be on for 500ms. 547 -))) 617 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 548 548 619 +923.6 - SF7BW125 to SF10BW125 549 549 621 +923.8 - SF7BW125 to SF10BW125 550 550 623 +924.0 - SF7BW125 to SF10BW125 551 551 552 - ==2.7InstallationinSoil ==625 +924.2 - SF7BW125 to SF10BW125 553 553 554 - __**Measurementthesoilsurface**__627 +924.4 - SF7BW125 to SF10BW125 555 555 556 - Choose the proper measuring position.Avoidthe probe to touch rocks or hard things.Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]629 +924.6 - SF7BW125 to SF10BW125 557 557 558 -[[image:1657259653666-883.png]] 559 559 632 +(% style="color:#037691" %)** Downlink:** 560 560 561 -((( 562 - 634 +Uplink channels 1-8 (RX1) 563 563 564 -((( 565 -Dig a hole with diameter > 20CM. 566 -))) 636 +923.2 - SF10BW125 (RX2) 567 567 568 -((( 569 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 570 -))) 571 -))) 572 572 573 -[[image:1654506665940-119.png]] 574 574 575 -((( 576 - 577 -))) 640 +=== 2.7.6 KR920-923 (KR920) === 578 578 642 +Default channel: 579 579 580 - ==2.8FirmwareChange Log==644 +922.1 - SF7BW125 to SF12BW125 581 581 646 +922.3 - SF7BW125 to SF12BW125 582 582 583 - DownloadURL&FirmwareChange log648 +922.5 - SF7BW125 to SF12BW125 584 584 585 -[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 586 586 651 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 587 587 588 - UpgradeInstruction:[[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]653 +922.1 - SF7BW125 to SF12BW125 589 589 655 +922.3 - SF7BW125 to SF12BW125 590 590 657 +922.5 - SF7BW125 to SF12BW125 591 591 592 - ==2.9BatteryAnalysis ==659 +922.7 - SF7BW125 to SF12BW125 593 593 594 - ===2.9.1BatteryType ===661 +922.9 - SF7BW125 to SF12BW125 595 595 663 +923.1 - SF7BW125 to SF12BW125 596 596 597 - TheNSE01battery is a combinationof an 8500mAh Li/SOCI2attery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.665 +923.3 - SF7BW125 to SF12BW125 598 598 599 599 600 - Thebatteryis designed toast forseveral years dependsonthe actually use environment and update interval.668 +(% style="color:#037691" %)**Downlink:** 601 601 670 +Uplink channels 1-7(RX1) 602 602 603 - Thebatteryrelateddocumentsasbelow:672 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 604 604 605 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 606 -* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 607 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 608 608 675 + 676 +=== 2.7.7 IN865-867 (IN865) === 677 + 678 +(% style="color:#037691" %)** Uplink:** 679 + 680 +865.0625 - SF7BW125 to SF12BW125 681 + 682 +865.4025 - SF7BW125 to SF12BW125 683 + 684 +865.9850 - SF7BW125 to SF12BW125 685 + 686 + 687 +(% style="color:#037691" %) **Downlink:** 688 + 689 +Uplink channels 1-3 (RX1) 690 + 691 +866.550 - SF10BW125 (RX2) 692 + 693 + 694 + 695 + 696 +== 2.8 LED Indicator == 697 + 698 +The LSE01 has an internal LED which is to show the status of different state. 699 + 700 +* Blink once when device power on. 701 +* Solid ON for 5 seconds once device successful Join the network. 702 +* Blink once when device transmit a packet. 703 + 704 +== 2.9 Installation in Soil == 705 + 706 +**Measurement the soil surface** 707 + 708 + 709 +[[image:1654506634463-199.png]] 710 + 609 609 ((( 610 -[[image:image-20220708140453-6.png]] 712 +((( 713 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 611 611 ))) 715 +))) 612 612 613 613 614 614 615 - === 2.9.2 Power consumptionAnalyze ===719 +[[image:1654506665940-119.png]] 616 616 617 617 ((( 618 -D raginobatterypowered product are all runs in Low Powermode. We have an update battery calculatorwhich base onthemeasurement of the realdevice. User can usehis calculator to check the batterylifeand calculate the battery life if want to use different transmit interval.722 +Dig a hole with diameter > 20CM. 619 619 ))) 620 620 725 +((( 726 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 727 +))) 621 621 729 + 730 +== 2.10 Firmware Change Log == 731 + 622 622 ((( 623 - Instructiontouseasbelow:733 +**Firmware download link:** 624 624 ))) 625 625 626 626 ((( 627 - (% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:[[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]737 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 628 628 ))) 629 629 740 +((( 741 + 742 +))) 630 630 631 631 ((( 632 - (% style="color:blue" %)**Step2: **(%%)Openithoose745 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 633 633 ))) 634 634 635 - *(((636 - ProductModel748 +((( 749 + 637 637 ))) 638 -* ((( 639 -Uplink Interval 751 + 752 +((( 753 +**V1.0.** 640 640 ))) 641 -* ((( 642 -Working Mode 643 -))) 644 644 645 645 ((( 646 - And theLifeexpectation in difference casewill be shown on the right.757 +Release 647 647 ))) 648 648 649 -[[image:image-20220708141352-7.jpeg]] 650 650 761 +== 2.11 Battery Analysis == 651 651 763 +=== 2.11.1 Battery Type === 652 652 653 -=== 2.9.3 Battery Note === 765 +((( 766 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 767 +))) 654 654 655 655 ((( 656 -The Li-SICObattery is designedfor small current/ longperiod application. It isnotgood to use a high current,short period transmit method. Therecommendedminimum period for use ofthis batteryis5minutes. Ifyou useshorterperiod time to transmitLoRa,thenthe battery life may be decreased.770 +The battery is designed to last for more than 5 years for the LSN50. 657 657 ))) 658 658 773 +((( 774 +((( 775 +The battery-related documents are as below: 776 +))) 777 +))) 659 659 779 +* ((( 780 +[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], 781 +))) 782 +* ((( 783 +[[Lithium-Thionyl Chloride Battery datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], 784 +))) 785 +* ((( 786 +[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]] 787 +))) 660 660 661 - ===2.9.4 Replacethe battery ===789 + [[image:image-20220610172436-1.png]] 662 662 791 + 792 + 793 +=== 2.11.2 Battery Note === 794 + 663 663 ((( 664 -The defaultbatterypackofNSE01includesaER26500 plussupercapacitor. Ifusercan'tfind this pack locally,theycanfindER26500 orquivalence withoutthe SPC1520 capacitor, which will alsowork inmostcase. TheSPCcanlarge thebatterylifeforhigh frequency use(update periodbelow5minutes).796 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 665 665 ))) 666 666 667 667 668 668 669 -= 3. AccessNB-IoTModule =801 +=== 2.11.3 Replace the battery === 670 670 671 671 ((( 672 - Userscan directlyaccesstheAT command setoftheNB-IoTmodule.804 +If Battery is lower than 2.7v, user should replace the battery of LSE01. 673 673 ))) 674 674 675 675 ((( 676 - The AT Commandsetcanrefer theBC35-G NB-IoTModuleATCommand: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]]808 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 677 677 ))) 678 678 679 -[[image:1657261278785-153.png]] 811 +((( 812 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 813 +))) 680 680 681 681 682 682 683 -= 4.817 += 3. Using the AT Commands = 684 684 685 -== 4.1819 +== 3.1 Access AT Commands == 686 686 687 -See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 688 688 822 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 689 689 690 - AT+<CMD>? : Helpon<CMD>824 +[[image:1654501986557-872.png||height="391" width="800"]] 691 691 692 -AT+<CMD> : Run <CMD> 693 693 694 - AT+<CMD>=<value>: Setthevalue827 +Or if you have below board, use below connection: 695 695 696 -AT+<CMD>=? : Get the value 697 697 830 +[[image:1654502005655-729.png||height="503" width="801"]] 698 698 832 + 833 + 834 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 835 + 836 + 837 + [[image:1654502050864-459.png||height="564" width="806"]] 838 + 839 + 840 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]] 841 + 842 + 843 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 844 + 845 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 846 + 847 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 848 + 849 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 850 + 851 + 699 699 (% style="color:#037691" %)**General Commands**(%%) 700 700 701 -AT 854 +(% style="background-color:#dcdcdc" %)**AT**(%%) : Attention 702 702 703 -AT? 856 +(% style="background-color:#dcdcdc" %)**AT?**(%%) : Short Help 704 704 705 -ATZ 858 +(% style="background-color:#dcdcdc" %)**ATZ**(%%) : MCU Reset 706 706 707 -AT+TDC 860 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%) : Application Data Transmission Interval 708 708 709 -AT+CFG : Print all configurations 710 710 711 - AT+CFGMOD: Workingmode selection863 +(% style="color:#037691" %)**Keys, IDs and EUIs management** 712 712 713 -AT+I NTMOD:Setthe trigger interruptmode865 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%) : Application EUI 714 714 715 -AT+ 5VTSetextend the timeof5V power867 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%) : Application Key 716 716 717 -AT+P ROChooseagreement869 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%) : Application Session Key 718 718 719 -AT+ WEIGREGet weightorsetweight to 0871 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%) : Device Address 720 720 721 -AT+ WEIGAPGet or SettheGapValue of weight873 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%) : Device EUI 722 722 723 -AT+ RXDL: Extendthe sendingandreceivingtime875 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%) : Network ID (You can enter this command change only after successful network connection) 724 724 725 -AT+ CNTFACGettcountingparameters877 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%) : Network Session Key Joining and sending date on LoRa network 726 726 727 -AT+ SERVADDR:ServerAddress879 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%) : Confirm Mode 728 728 881 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 729 729 730 -(% style="color:# 037691" %)**COAPManagement**883 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%) : Join LoRa? Network 731 731 732 -AT+ URIsourceparameters885 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%) : LoRa? Network Join Mode 733 733 887 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 734 734 735 -(% style="color:# 037691" %)**UDPManagement**889 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%) : Print Last Received Data in Raw Format 736 736 737 -AT+C FM:Uploadconfirmationmode (onlyvalid forUDP)891 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%) : Print Last Received Data in Binary Format 738 738 893 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 739 739 740 -(% style="color:# 037691" %)**MQTTManagement**895 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%) : Send Hexadecimal Data 741 741 742 -AT+CLIENT : Get or Set MQTT client 743 743 744 - AT+UNAMEGetSetMQTT Username898 +(% style="color:#037691" %)**LoRa Network Management** 745 745 746 -AT+ PWDGetor SetMQTT password900 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%) : Adaptive Rate 747 747 748 -AT+ PUBTOPICGetorSetMQTTpublishtopic902 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%) : LoRa Class(Currently only support class A 749 749 750 -AT+ SUBTOPIC :GetorSetMQTT subscriptiontopic904 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%) : Duty Cycle Setting 751 751 906 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 752 752 753 -(% style="color:# 037691" %)**Information**908 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink 754 754 755 -AT+F DRctoryDataReset910 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%) : Frame Counter Uplink 756 756 757 -AT+ PWORDSerialAccessPassword912 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%) : Join Accept Delay1 758 758 914 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 759 759 916 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 760 760 761 -= 5.FAQ=918 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%) : Receive Delay1 762 762 763 -= =5.1HowtoUpgradeFirmware==920 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%) : Receive Delay2 764 764 922 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 765 765 924 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 925 + 926 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 927 + 928 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 929 + 930 + 931 +(% style="color:#037691" %)**Information** 932 + 933 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 934 + 935 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 936 + 937 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 938 + 939 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 940 + 941 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 942 + 943 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 944 + 945 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 946 + 947 + 948 += 4. FAQ = 949 + 950 +== 4.1 How to change the LoRa Frequency Bands/Region? == 951 + 766 766 ((( 767 -User can upgrade the firmware for 1) bug fix, 2) new feature release. 953 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 954 +When downloading the images, choose the required image file for download. 768 768 ))) 769 769 770 770 ((( 771 - Pleasesee this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]958 + 772 772 ))) 773 773 774 774 ((( 775 - (%style="color:red"%)Notice,NSE01andLSE01share thememotherboard.Theyuse thesameconnection andmethodto update.962 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 776 776 ))) 777 777 965 +((( 966 + 967 +))) 778 778 969 +((( 970 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 971 +))) 779 779 780 -= 6. Trouble Shooting = 973 +((( 974 + 975 +))) 781 781 782 -== 6.1 Connection problem when uploading firmware == 977 +((( 978 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 979 +))) 783 783 981 +[[image:image-20220606154726-3.png]] 784 784 785 -(% class="wikigeneratedid" %) 983 + 984 +When you use the TTN network, the US915 frequency bands use are: 985 + 986 +* 903.9 - SF7BW125 to SF10BW125 987 +* 904.1 - SF7BW125 to SF10BW125 988 +* 904.3 - SF7BW125 to SF10BW125 989 +* 904.5 - SF7BW125 to SF10BW125 990 +* 904.7 - SF7BW125 to SF10BW125 991 +* 904.9 - SF7BW125 to SF10BW125 992 +* 905.1 - SF7BW125 to SF10BW125 993 +* 905.3 - SF7BW125 to SF10BW125 994 +* 904.6 - SF8BW500 995 + 786 786 ((( 787 -(% style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]] 997 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 998 + 999 +* (% style="color:#037691" %)**AT+CHE=2** 1000 +* (% style="color:#037691" %)**ATZ** 788 788 ))) 789 789 1003 +((( 1004 + 790 790 1006 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 1007 +))) 791 791 792 -== 6.2 AT Command input doesn't work == 1009 +((( 1010 + 1011 +))) 793 793 794 794 ((( 1014 +The **AU915** band is similar. Below are the AU915 Uplink Channels. 1015 +))) 1016 + 1017 +[[image:image-20220606154825-4.png]] 1018 + 1019 + 1020 +== 4.2 Can I calibrate LSE01 to different soil types? == 1021 + 1022 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]]. 1023 + 1024 + 1025 += 5. Trouble Shooting = 1026 + 1027 +== 5.1 Why I can't join TTN in US915 / AU915 bands? == 1028 + 1029 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details. 1030 + 1031 + 1032 +== 5.2 AT Command input doesn't work == 1033 + 1034 +((( 795 795 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 796 796 ))) 797 797 798 798 1039 +== 5.3 Device rejoin in at the second uplink packet == 799 799 800 -= 7. OrderInfo=1041 +(% style="color:#4f81bd" %)**Issue describe as below:** 801 801 1043 +[[image:1654500909990-784.png]] 802 802 803 -Part Number**:** (% style="color:#4f81bd" %)**NSE01** 804 804 1046 +(% style="color:#4f81bd" %)**Cause for this issue:** 805 805 1048 +((( 1049 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 1050 +))) 1051 + 1052 + 1053 +(% style="color:#4f81bd" %)**Solution: ** 1054 + 1055 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 1056 + 1057 +[[image:1654500929571-736.png||height="458" width="832"]] 1058 + 1059 + 1060 += 6. Order Info = 1061 + 1062 + 1063 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 1064 + 1065 + 1066 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 1067 + 1068 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 1069 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 1070 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 1071 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 1072 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1073 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1074 +* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1075 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1076 + 1077 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1078 + 1079 +* (% style="color:red" %)**4**(%%): 4000mAh battery 1080 +* (% style="color:red" %)**8**(%%): 8500mAh battery 1081 + 806 806 (% class="wikigeneratedid" %) 807 807 ((( 808 808 809 809 ))) 810 810 811 -= 8.1087 += 7. Packing Info = 812 812 813 813 ((( 814 814 815 815 816 816 (% style="color:#037691" %)**Package Includes**: 1093 +))) 817 817 818 - 819 -* NSE01 NB-IoT Soil Moisture & EC Sensor x 1 820 -* External antenna x 1 1095 +* ((( 1096 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 821 821 ))) 822 822 823 823 ((( ... ... @@ -824,20 +824,24 @@ 824 824 825 825 826 826 (% style="color:#037691" %)**Dimension and weight**: 1103 +))) 827 827 828 - 829 -* Size: 195 x 125 x 55 mm 830 -* Weight: 420g 1105 +* ((( 1106 +Device Size: cm 831 831 ))) 1108 +* ((( 1109 +Device Weight: g 1110 +))) 1111 +* ((( 1112 +Package Size / pcs : cm 1113 +))) 1114 +* ((( 1115 +Weight / pcs : g 832 832 833 -((( 834 834 835 - 836 - 837 - 838 838 ))) 839 839 840 -= 9.1120 += 8. Support = 841 841 842 842 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 843 843 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -102.7 KB - Content