Changes for page NDDS75 -- NB-IoT Distance Detect Sensor User Manual
Last modified by Bei Jinggeng on 2024/05/31 09:53
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 23 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - NSE01NB-IoTSoil Moisture & EC Sensor User Manual1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -20,82 +20,65 @@ 20 20 21 21 22 22 23 += 1. Introduction = 23 23 24 -= 1. Introduction =25 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 25 25 26 -== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 27 - 28 28 ((( 29 29 30 30 31 -((( 32 -Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 30 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 33 33 ))) 34 34 35 35 ((( 36 -It candetect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and uploaditsvalueto the serverwirelessly.34 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 37 37 ))) 38 38 39 39 ((( 40 -The wireless technology used in NSE01 allowsthedevice to send data at a low data rate and reachultra-longdistances,providingultra-long-distance spread spectrumCommunication.38 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 41 41 ))) 42 42 43 43 ((( 44 - NSE01arepowered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%)batteries,whichcanbe usedforup to5years.42 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 45 45 ))) 46 46 47 - 45 +((( 46 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 48 48 ))) 49 49 49 + 50 50 [[image:1654503236291-817.png]] 51 51 52 52 53 -[[image:165 7245163077-232.png]]53 +[[image:1654503265560-120.png]] 54 54 55 55 56 56 57 -== 1.2 57 +== 1.2 Features == 58 58 59 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 59 +* LoRaWAN 1.0.3 Class A 60 +* Ultra low power consumption 60 60 * Monitor Soil Moisture 61 61 * Monitor Soil Temperature 62 62 * Monitor Soil Conductivity 64 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 63 63 * AT Commands to change parameters 64 64 * Uplink on periodically 65 65 * Downlink to change configure 66 66 * IP66 Waterproof Enclosure 67 -* Ultra-Low Power consumption 68 -* AT Commands to change parameters 69 -* Micro SIM card slot for NB-IoT SIM 70 -* 8500mAh Battery for long term use 69 +* 4000mAh or 8500mAh Battery for long term use 71 71 72 72 73 -== 1.3 Specification == 74 74 73 +== 1.3 Specification == 75 75 76 -(% style="color:#037691" %)**Common DC Characteristics:** 77 - 78 -* Supply Voltage: 2.1v ~~ 3.6v 79 -* Operating Temperature: -40 ~~ 85°C 80 - 81 -(% style="color:#037691" %)**NB-IoT Spec:** 82 - 83 -* - B1 @H-FDD: 2100MHz 84 -* - B3 @H-FDD: 1800MHz 85 -* - B8 @H-FDD: 900MHz 86 -* - B5 @H-FDD: 850MHz 87 -* - B20 @H-FDD: 800MHz 88 -* - B28 @H-FDD: 700MHz 89 - 90 -Probe(% style="color:#037691" %)** Specification:** 91 - 92 92 Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 93 93 94 -[[image:image-20220 708101224-1.png]]77 +[[image:image-20220606162220-5.png]] 95 95 96 96 97 97 98 -== 1.4 81 +== 1.4 Applications == 99 99 100 100 * Smart Agriculture 101 101 ... ... @@ -102,722 +102,1011 @@ 102 102 (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 103 103 104 104 105 -== 1.5 Pin Definitions==88 +== 1.5 Firmware Change log == 106 106 107 107 108 - [[image:1657246476176-652.png]]91 +**LSE01 v1.0 :** Release 109 109 110 110 111 111 112 -= 2. UseNSE01 to communicatewithIoTServer=95 += 2. Configure LSE01 to connect to LoRaWAN network = 113 113 114 -== 2.1 97 +== 2.1 How it works == 115 115 99 +((( 100 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 101 +))) 116 116 117 117 ((( 118 - TheNSE01 isquippedwitha NB-IoT module,thepre-loadedfirmware inNSE01 will getnvironmentdatafromsensorsandsendthe value tolocal NB-IoT networkviatheNB-IoT module.The NB-IoT network willforwardthis valueto IoTserverviatheprotocol definedby NSE01.104 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 119 119 ))) 120 120 121 121 108 + 109 +== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 110 + 111 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 112 + 113 + 114 +[[image:1654503992078-669.png]] 115 + 116 + 117 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 118 + 119 + 120 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSE01. 121 + 122 +Each LSE01 is shipped with a sticker with the default device EUI as below: 123 + 124 +[[image:image-20220606163732-6.jpeg]] 125 + 126 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 127 + 128 +**Add APP EUI in the application** 129 + 130 + 131 +[[image:1654504596150-405.png]] 132 + 133 + 134 + 135 +**Add APP KEY and DEV EUI** 136 + 137 +[[image:1654504683289-357.png]] 138 + 139 + 140 + 141 +(% style="color:blue" %)**Step 2**(%%): Power on LSE01 142 + 143 + 144 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 145 + 146 +[[image:image-20220606163915-7.png]] 147 + 148 + 149 +(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 150 + 151 +[[image:1654504778294-788.png]] 152 + 153 + 154 + 155 +== 2.3 Uplink Payload == 156 + 157 + 158 +=== 2.3.1 MOD~=0(Default Mode) === 159 + 160 +LSE01 will uplink payload via LoRaWAN with below payload format: 161 + 122 122 ((( 123 - The diagram below shows the workingflowinfaultfirmwareofNSE01:163 +Uplink payload includes in total 11 bytes. 124 124 ))) 125 125 126 -[[image:image-20220708101605-2.png]] 166 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 167 +|((( 168 +**Size** 127 127 128 -((( 129 - 170 +**(bytes)** 171 +)))|**2**|**2**|**2**|**2**|**2**|**1** 172 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 173 +Temperature 174 + 175 +(Reserve, Ignore now) 176 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 177 +MOD & Digital Interrupt 178 + 179 +(Optional) 130 130 ))) 131 131 132 132 133 133 134 -== 2.2 Configurethe NSE01==184 +=== 2.3.2 MOD~=1(Original value) === 135 135 186 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 136 136 137 -=== 2.2.1 Test Requirement === 188 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 189 +|((( 190 +**Size** 138 138 192 +**(bytes)** 193 +)))|**2**|**2**|**2**|**2**|**2**|**1** 194 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 195 +Temperature 139 139 140 -((( 141 -To use NSE01 in your city, make sure meet below requirements: 197 +(Reserve, Ignore now) 198 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 199 +MOD & Digital Interrupt 200 + 201 +(Optional) 142 142 ))) 143 143 144 -* Your local operator has already distributed a NB-IoT Network there. 145 -* The local NB-IoT network used the band that NSE01 supports. 146 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 147 147 205 + 206 +=== 2.3.3 Battery Info === 207 + 148 148 ((( 149 - Below figure shows our testing structure. Here we have NB-IoT networkcoverage by China Mobile,the bandthey use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red"%)120.24.4.116:5601)(%%)or MQTT((% style="color:red"%)120.24.4.116:1883)(%%)orTCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server209 +Check the battery voltage for LSE01. 150 150 ))) 151 151 212 +((( 213 +Ex1: 0x0B45 = 2885mV 214 +))) 152 152 153 -[[image:1657249419225-449.png]] 216 +((( 217 +Ex2: 0x0B49 = 2889mV 218 +))) 154 154 155 155 156 156 157 -=== 2. 2.2InsertSIM card===222 +=== 2.3.4 Soil Moisture === 158 158 159 159 ((( 160 - Insert theNB-IoTCardgetfrom yourprovider.225 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 161 161 ))) 162 162 163 163 ((( 164 - UserneedtotakeouttheNB-IoTmoduleandinserttheSIMcardlikebelow:229 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 165 165 ))) 166 166 232 +((( 233 + 234 +))) 167 167 168 -[[image:1657249468462-536.png]] 236 +((( 237 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 238 +))) 169 169 170 170 171 171 172 -=== 2. 2.3ConnectUSB –TTLto NSE01 to configureit===242 +=== 2.3.5 Soil Temperature === 173 173 174 174 ((( 245 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 246 +))) 247 + 175 175 ((( 176 - User need to configure NSE01 viaserialport to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.249 +**Example**: 177 177 ))) 251 + 252 +((( 253 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 178 178 ))) 179 179 256 +((( 257 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 258 +))) 180 180 181 -**Connection:** 182 182 183 - (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 184 184 185 - (%style="background-color:yellow"%)USBTTL TXD <~-~-~-~-> UART_RXD262 +=== 2.3.6 Soil Conductivity (EC) === 186 186 187 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 264 +((( 265 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 266 +))) 188 188 268 +((( 269 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 270 +))) 189 189 190 -In the PC, use below serial tool settings: 272 +((( 273 +Generally, the EC value of irrigation water is less than 800uS / cm. 274 +))) 191 191 192 -* Baud: (% style="color:green" %)**9600** 193 -* Data bits:** (% style="color:green" %)8(%%)** 194 -* Stop bits: (% style="color:green" %)**1** 195 -* Parity: (% style="color:green" %)**None** 196 -* Flow Control: (% style="color:green" %)**None** 276 +((( 277 + 278 +))) 197 197 198 198 ((( 199 - Makesure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.281 + 200 200 ))) 201 201 202 - [[image:image-20220708110657-3.png]]284 +=== 2.3.7 MOD === 203 203 204 - (% style="color:red"%)Note: thevalid AT Commandscanbefoundat:(%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]286 +Firmware version at least v2.1 supports changing mode. 205 205 288 +For example, bytes[10]=90 206 206 290 +mod=(bytes[10]>>7)&0x01=1. 207 207 208 -=== 2.2.4 Use CoAP protocol to uplink data === 209 209 210 - (% style="color:red" %)Note: if you don't have CoAP server, you can refer thislinkto set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]293 +**Downlink Command:** 211 211 295 +If payload = 0x0A00, workmode=0 212 212 213 -** Usebelow commands:**297 +If** **payload =** **0x0A01, workmode=1 214 214 215 -* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 216 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 217 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 218 218 219 -For parameter description, please refer to AT command set 220 220 221 - [[image:1657249793983-486.png]]301 +=== 2.3.8 Decode payload in The Things Network === 222 222 303 +While using TTN network, you can add the payload format to decode the payload. 223 223 224 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 225 225 226 -[[image:16572 49831934-534.png]]306 +[[image:1654505570700-128.png]] 227 227 308 +((( 309 +The payload decoder function for TTN is here: 310 +))) 228 228 312 +((( 313 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]] 314 +))) 229 229 230 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 231 231 232 - Thisfeatureis supported sincefirmwareversionv1.0.1317 +== 2.4 Uplink Interval == 233 233 319 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 234 234 235 -* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 236 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 237 -* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 238 238 239 -[[image:1657249864775-321.png]] 240 240 323 +== 2.5 Downlink Payload == 241 241 242 - [[image:1657249930215-289.png]]325 +By default, LSE50 prints the downlink payload to console port. 243 243 327 +[[image:image-20220606165544-8.png]] 244 244 245 245 246 -=== 2.2.6 Use MQTT protocol to uplink data === 330 +((( 331 +**Examples:** 332 +))) 247 247 248 -This feature is supported since firmware version v110 334 +((( 335 + 336 +))) 249 249 338 +* ((( 339 +**Set TDC** 340 +))) 250 250 251 -* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 252 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 253 -* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 254 -* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 255 -* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 256 -* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 257 -* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 342 +((( 343 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 344 +))) 258 258 259 -[[image:1657249978444-674.png]] 346 +((( 347 +Payload: 01 00 00 1E TDC=30S 348 +))) 260 260 350 +((( 351 +Payload: 01 00 00 3C TDC=60S 352 +))) 261 261 262 -[[image:1657249990869-686.png]] 354 +((( 355 + 356 +))) 263 263 358 +* ((( 359 +**Reset** 360 +))) 264 264 265 265 ((( 266 - MQTTprotocolhasamuchhigherpower consumption compare vs UDP / CoAP protocol. Pleasecheck the poweranalyzedocumentand adjusttheuplink period to a suitable interval.363 +If payload = 0x04FF, it will reset the LSE01 267 267 ))) 268 268 269 269 367 +* **CFM** 270 270 271 - ===2.2.7Use TCPprotocoltouplinkdata===369 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 272 272 273 -This feature is supported since firmware version v110 274 274 275 275 276 -* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 277 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 373 +== 2.6 Show Data in DataCake IoT Server == 278 278 279 -[[image:1657250217799-140.png]] 375 +((( 376 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 377 +))) 280 280 379 +((( 380 + 381 +))) 281 281 282 -[[image:1657250255956-604.png]] 383 +((( 384 +(% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time. 385 +))) 283 283 387 +((( 388 +(% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 389 +))) 284 284 285 285 286 - === 2.2.8 ChangeUpdate Interval ===392 +[[image:1654505857935-743.png]] 287 287 288 -User can use below command to change the (% style="color:green" %)**uplink interval**. 289 289 290 - * (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s395 +[[image:1654505874829-548.png]] 291 291 292 -((( 293 -(% style="color:red" %)**NOTE:** 294 -))) 295 295 296 -((( 297 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 298 -))) 398 +(% style="color:blue" %)**Step 3**(%%)**:** Create an account or log in Datacake. 299 299 400 +(% style="color:blue" %)**Step 4**(%%)**:** Search the LSE01 and add DevEUI. 300 300 301 301 302 - ==2.3Uplink Payload ==403 +[[image:1654505905236-553.png]] 303 303 304 -In this mode, uplink payload includes in total 18 bytes 305 305 306 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 307 -|=(% style="width: 50px;" %)((( 308 -**Size(bytes)** 309 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1** 310 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 406 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 311 311 312 - If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01uplink data.408 +[[image:1654505925508-181.png]] 313 313 314 314 315 -[[image:image-20220708111918-4.png]] 316 316 412 +== 2.7 Frequency Plans == 317 317 318 -The payloadisASCIIstring,representativesameHEX:414 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 319 319 320 -0x72403155615900640c7817075e0a8c02f900 where: 321 321 322 -* Device ID: 0x 724031556159 = 724031556159 323 -* Version: 0x0064=100=1.0.0 417 +=== 2.7.1 EU863-870 (EU868) === 324 324 325 -* BAT: 0x0c78 = 3192 mV = 3.192V 326 -* Singal: 0x17 = 23 327 -* Soil Moisture: 0x075e= 1886 = 18.86 % 328 -* Soil Temperature:0x0a8c =2700=27 °C 329 -* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 330 -* Interrupt: 0x00 = 0 419 +(% style="color:#037691" %)** Uplink:** 331 331 421 +868.1 - SF7BW125 to SF12BW125 332 332 333 - == 2.4PayloadExplanationand Sensor Interface ==423 +868.3 - SF7BW125 to SF12BW125 and SF7BW250 334 334 425 +868.5 - SF7BW125 to SF12BW125 335 335 336 - === 2.4.1DeviceID===427 +867.1 - SF7BW125 to SF12BW125 337 337 338 - Bydefault,theDevice ID equaltothe last 6 bytes of IMEI.429 +867.3 - SF7BW125 to SF12BW125 339 339 340 - Usercanuse(% style="color:blue"%)**AT+DEUI**(%%) to set Device ID431 +867.5 - SF7BW125 to SF12BW125 341 341 342 - **Example:**433 +867.7 - SF7BW125 to SF12BW125 343 343 344 - AT+DEUI=A84041F15612435 +867.9 - SF7BW125 to SF12BW125 345 345 346 - The Device ID is stored in a none-erasearea, Upgrade the firmware or run AT+FDR won't erase Device ID.437 +868.8 - FSK 347 347 348 348 440 +(% style="color:#037691" %)** Downlink:** 349 349 350 - === 2.4.2 VersionInfo===442 +Uplink channels 1-9 (RX1) 351 351 352 -S pecifythesoftware version:0x64=100, means firmware version1.00.444 +869.525 - SF9BW125 (RX2 downlink only) 353 353 354 -For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 355 355 356 356 448 +=== 2.7.2 US902-928(US915) === 357 357 358 - ===2.4.3BatteryInfo===450 +Used in USA, Canada and South America. Default use CHE=2 359 359 360 -((( 361 -Check the battery voltage for LSE01. 362 -))) 452 +(% style="color:#037691" %)**Uplink:** 363 363 364 -((( 365 -Ex1: 0x0B45 = 2885mV 366 -))) 454 +903.9 - SF7BW125 to SF10BW125 367 367 368 -((( 369 -Ex2: 0x0B49 = 2889mV 370 -))) 456 +904.1 - SF7BW125 to SF10BW125 371 371 458 +904.3 - SF7BW125 to SF10BW125 372 372 460 +904.5 - SF7BW125 to SF10BW125 373 373 374 - === 2.4.4SignalStrength===462 +904.7 - SF7BW125 to SF10BW125 375 375 376 - NB-IoTNetworksignalStrength.464 +904.9 - SF7BW125 to SF10BW125 377 377 378 - **Ex1:0x1d=29**466 +905.1 - SF7BW125 to SF10BW125 379 379 380 - (% style="color:blue" %)**0**(%%)113dBmorless468 +905.3 - SF7BW125 to SF10BW125 381 381 382 -(% style="color:blue" %)**1**(%%) -111dBm 383 383 384 -(% style="color: blue" %)**2...30**(%%) -109dBm... -53dBm471 +(% style="color:#037691" %)**Downlink:** 385 385 386 - (% style="color:blue" %)**31**(%%)-51dBmorgreater473 +923.3 - SF7BW500 to SF12BW500 387 387 388 - (% style="color:blue" %)**99**(%%)Notknownor not detectable475 +923.9 - SF7BW500 to SF12BW500 389 389 477 +924.5 - SF7BW500 to SF12BW500 390 390 479 +925.1 - SF7BW500 to SF12BW500 391 391 392 - ===2.4.5oilMoisture===481 +925.7 - SF7BW500 to SF12BW500 393 393 394 -((( 395 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 396 -))) 483 +926.3 - SF7BW500 to SF12BW500 397 397 398 -((( 399 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 400 -))) 485 +926.9 - SF7BW500 to SF12BW500 401 401 402 -((( 403 - 404 -))) 487 +927.5 - SF7BW500 to SF12BW500 405 405 406 -((( 407 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 408 -))) 489 +923.3 - SF12BW500(RX2 downlink only) 409 409 410 410 411 411 412 -=== 2. 4.6SoilTemperature===493 +=== 2.7.3 CN470-510 (CN470) === 413 413 414 -((( 415 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 416 -))) 495 +Used in China, Default use CHE=1 417 417 418 -((( 419 -**Example**: 420 -))) 497 +(% style="color:#037691" %)**Uplink:** 421 421 422 -((( 423 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 424 -))) 499 +486.3 - SF7BW125 to SF12BW125 425 425 426 -((( 427 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 428 -))) 501 +486.5 - SF7BW125 to SF12BW125 429 429 503 +486.7 - SF7BW125 to SF12BW125 430 430 505 +486.9 - SF7BW125 to SF12BW125 431 431 432 - === 2.4.7oilConductivity(EC) ===507 +487.1 - SF7BW125 to SF12BW125 433 433 434 -((( 435 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 436 -))) 509 +487.3 - SF7BW125 to SF12BW125 437 437 438 -((( 439 -For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 440 -))) 511 +487.5 - SF7BW125 to SF12BW125 441 441 442 -((( 443 -Generally, the EC value of irrigation water is less than 800uS / cm. 444 -))) 513 +487.7 - SF7BW125 to SF12BW125 445 445 446 -((( 447 - 448 -))) 449 449 450 -((( 451 - 452 -))) 516 +(% style="color:#037691" %)**Downlink:** 453 453 454 - ===2.4.8DigitalInterrupt ===518 +506.7 - SF7BW125 to SF12BW125 455 455 456 - Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods.Whenthere is a trigger, the NSE01will send a packettothe server.520 +506.9 - SF7BW125 to SF12BW125 457 457 458 - Thecommandis:522 +507.1 - SF7BW125 to SF12BW125 459 459 460 - (% style="color:blue" %)**AT+INTMOD=3**(%%)~/~/(more info aboutINMOD please refer [[**AT CommandManual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**524 +507.3 - SF7BW125 to SF12BW125 461 461 526 +507.5 - SF7BW125 to SF12BW125 462 462 463 - The lower four bits of this data field shows if this packet is generated by interrupt or not.Clickhereforthe hardware and softwareset up.528 +507.7 - SF7BW125 to SF12BW125 464 464 530 +507.9 - SF7BW125 to SF12BW125 465 465 466 - Example:532 +508.1 - SF7BW125 to SF12BW125 467 467 468 -0 x(00):Normaluplinkpacket.534 +505.3 - SF12BW125 (RX2 downlink only) 469 469 470 -0x(01): Interrupt Uplink Packet. 471 471 472 472 538 +=== 2.7.4 AU915-928(AU915) === 473 473 474 - === 2.4.9 +5V Output===540 +Default use CHE=2 475 475 476 - NSE01willenable +5Voutput beforeall sampling and disable the +5v after all sampling.542 +(% style="color:#037691" %)**Uplink:** 477 477 544 +916.8 - SF7BW125 to SF12BW125 478 478 479 - The5Voutput time can be controlledby AT Command.546 +917.0 - SF7BW125 to SF12BW125 480 480 481 - (%style="color:blue"%)**AT+5VT=1000**548 +917.2 - SF7BW125 to SF12BW125 482 482 483 - Means set 5V valid time to have1000ms.Sothe real5Voutput will actually have 1000ms + sampling time forother sensors.550 +917.4 - SF7BW125 to SF12BW125 484 484 552 +917.6 - SF7BW125 to SF12BW125 485 485 554 +917.8 - SF7BW125 to SF12BW125 486 486 487 - ==2.5DownlinkPayload ==556 +918.0 - SF7BW125 to SF12BW125 488 488 489 - Bydefault,NSE01prints the downlinkpayload to console port.558 +918.2 - SF7BW125 to SF12BW125 490 490 491 -[[image:image-20220708133731-5.png]] 492 492 561 +(% style="color:#037691" %)**Downlink:** 493 493 494 -((( 495 -(% style="color:blue" %)**Examples:** 496 -))) 563 +923.3 - SF7BW500 to SF12BW500 497 497 498 -((( 499 - 500 -))) 565 +923.9 - SF7BW500 to SF12BW500 501 501 502 -* ((( 503 -(% style="color:blue" %)**Set TDC** 504 -))) 567 +924.5 - SF7BW500 to SF12BW500 505 505 506 -((( 507 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 508 -))) 569 +925.1 - SF7BW500 to SF12BW500 509 509 510 -((( 511 -Payload: 01 00 00 1E TDC=30S 512 -))) 571 +925.7 - SF7BW500 to SF12BW500 513 513 514 -((( 515 -Payload: 01 00 00 3C TDC=60S 516 -))) 573 +926.3 - SF7BW500 to SF12BW500 517 517 518 -((( 519 - 520 -))) 575 +926.9 - SF7BW500 to SF12BW500 521 521 522 -* ((( 523 -(% style="color:blue" %)**Reset** 524 -))) 577 +927.5 - SF7BW500 to SF12BW500 525 525 526 -((( 527 -If payload = 0x04FF, it will reset the NSE01 528 -))) 579 +923.3 - SF12BW500(RX2 downlink only) 529 529 530 530 531 -* (% style="color:blue" %)**INTMOD** 532 532 533 - DownlinkPayload:06000003,SetAT+INTMOD=3583 +=== 2.7.5 AS920-923 & AS923-925 (AS923) === 534 534 585 +(% style="color:#037691" %)**Default Uplink channel:** 535 535 587 +923.2 - SF7BW125 to SF10BW125 536 536 537 - ==2.6LEDIndicator==589 +923.4 - SF7BW125 to SF10BW125 538 538 539 -((( 540 -The NSE01 has an internal LED which is to show the status of different state. 541 541 592 +(% style="color:#037691" %)**Additional Uplink Channel**: 542 542 543 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 544 -* Then the LED will be on for 1 second means device is boot normally. 545 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 546 -* For each uplink probe, LED will be on for 500ms. 547 -))) 594 +(OTAA mode, channel added by JoinAccept message) 548 548 596 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 549 549 598 +922.2 - SF7BW125 to SF10BW125 550 550 600 +922.4 - SF7BW125 to SF10BW125 551 551 552 - ==2.7InstallationinSoil ==602 +922.6 - SF7BW125 to SF10BW125 553 553 554 - __**Measurementthesoilsurface**__604 +922.8 - SF7BW125 to SF10BW125 555 555 556 - Choose the proper measuring position.Avoidthe probe to touch rocks or hard things.Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]606 +923.0 - SF7BW125 to SF10BW125 557 557 558 - [[image:1657259653666-883.png]]608 +922.0 - SF7BW125 to SF10BW125 559 559 560 560 561 -((( 562 - 611 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 563 563 564 -((( 565 -Dig a hole with diameter > 20CM. 566 -))) 613 +923.6 - SF7BW125 to SF10BW125 567 567 568 -((( 569 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 570 -))) 571 -))) 615 +923.8 - SF7BW125 to SF10BW125 572 572 573 - [[image:1654506665940-119.png]]617 +924.0 - SF7BW125 to SF10BW125 574 574 575 -((( 576 - 577 -))) 619 +924.2 - SF7BW125 to SF10BW125 578 578 621 +924.4 - SF7BW125 to SF10BW125 579 579 580 - ==2.8FirmwareChange Log==623 +924.6 - SF7BW125 to SF10BW125 581 581 582 582 583 - DownloadURL& Firmware Changelog626 +(% style="color:#037691" %)** Downlink:** 584 584 585 - [[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]628 +Uplink channels 1-8 (RX1) 586 586 630 +923.2 - SF10BW125 (RX2) 587 587 588 -Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]] 589 589 590 590 634 +=== 2.7.6 KR920-923 (KR920) === 591 591 592 - == 2.9 BatteryAnalysis ==636 +Default channel: 593 593 594 - ===2.9.1BatteryType ===638 +922.1 - SF7BW125 to SF12BW125 595 595 640 +922.3 - SF7BW125 to SF12BW125 596 596 597 - TheNSE01battery is a combinationof an 8500mAh Li/SOCI2attery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.642 +922.5 - SF7BW125 to SF12BW125 598 598 599 599 600 - Thebatteryis designed toast forseveralyearsdependson theactually use environmentandupdate interval.645 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 601 601 647 +922.1 - SF7BW125 to SF12BW125 602 602 603 - Thebatteryrelateddocuments as below:649 +922.3 - SF7BW125 to SF12BW125 604 604 605 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 606 -* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 607 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 651 +922.5 - SF7BW125 to SF12BW125 608 608 653 +922.7 - SF7BW125 to SF12BW125 654 + 655 +922.9 - SF7BW125 to SF12BW125 656 + 657 +923.1 - SF7BW125 to SF12BW125 658 + 659 +923.3 - SF7BW125 to SF12BW125 660 + 661 + 662 +(% style="color:#037691" %)**Downlink:** 663 + 664 +Uplink channels 1-7(RX1) 665 + 666 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 667 + 668 + 669 + 670 +=== 2.7.7 IN865-867 (IN865) === 671 + 672 +(% style="color:#037691" %)** Uplink:** 673 + 674 +865.0625 - SF7BW125 to SF12BW125 675 + 676 +865.4025 - SF7BW125 to SF12BW125 677 + 678 +865.9850 - SF7BW125 to SF12BW125 679 + 680 + 681 +(% style="color:#037691" %) **Downlink:** 682 + 683 +Uplink channels 1-3 (RX1) 684 + 685 +866.550 - SF10BW125 (RX2) 686 + 687 + 688 + 689 + 690 +== 2.8 LED Indicator == 691 + 692 +The LSE01 has an internal LED which is to show the status of different state. 693 + 694 +* Blink once when device power on. 695 +* Solid ON for 5 seconds once device successful Join the network. 696 +* Blink once when device transmit a packet. 697 + 698 + 699 + 700 +== 2.9 Installation in Soil == 701 + 702 +**Measurement the soil surface** 703 + 704 + 705 +[[image:1654506634463-199.png]] 706 + 609 609 ((( 610 -[[image:image-20220708140453-6.png]] 708 +((( 709 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 611 611 ))) 711 +))) 612 612 613 613 614 614 615 - === 2.9.2 Power consumptionAnalyze ===715 +[[image:1654506665940-119.png]] 616 616 617 617 ((( 618 -D raginobatterypowered product are all runs in Low Powermode. We have an update battery calculatorwhich base onthemeasurement of the realdevice. User can usehis calculator to check the batterylifeand calculate the battery life if want to use different transmit interval.718 +Dig a hole with diameter > 20CM. 619 619 ))) 620 620 721 +((( 722 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 723 +))) 621 621 725 + 726 +== 2.10 Firmware Change Log == 727 + 622 622 ((( 623 - Instructiontouseasbelow:729 +**Firmware download link:** 624 624 ))) 625 625 626 626 ((( 627 - (% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:[[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]733 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 628 628 ))) 629 629 736 +((( 737 + 738 +))) 630 630 631 631 ((( 632 - (% style="color:blue" %)**Step2: **(%%)Openithoose741 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 633 633 ))) 634 634 635 - *(((636 - ProductModel744 +((( 745 + 637 637 ))) 638 -* ((( 639 -Uplink Interval 747 + 748 +((( 749 +**V1.0.** 640 640 ))) 641 -* ((( 642 -Working Mode 643 -))) 644 644 645 645 ((( 646 - And theLifeexpectation in difference casewill be shown on the right.753 +Release 647 647 ))) 648 648 649 -[[image:image-20220708141352-7.jpeg]] 650 650 757 +== 2.11 Battery Analysis == 651 651 759 +=== 2.11.1 Battery Type === 652 652 653 -=== 2.9.3 Battery Note === 761 +((( 762 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 763 +))) 654 654 655 655 ((( 656 -The Li-SICObattery is designedfor small current/ longperiod application. It isnotgood to use a high current,short period transmit method. Therecommendedminimum period for use ofthis batteryis5minutes. Ifyou useshorterperiod time to transmitLoRa,thenthe battery life may be decreased.766 +The battery is designed to last for more than 5 years for the LSN50. 657 657 ))) 658 658 769 +((( 770 +((( 771 +The battery-related documents are as below: 772 +))) 773 +))) 659 659 775 +* ((( 776 +[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], 777 +))) 778 +* ((( 779 +[[Lithium-Thionyl Chloride Battery datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], 780 +))) 781 +* ((( 782 +[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]] 783 +))) 660 660 661 - ===2.9.4 Replacethe battery ===785 + [[image:image-20220610172436-1.png]] 662 662 787 + 788 + 789 +=== 2.11.2 Battery Note === 790 + 663 663 ((( 664 -The defaultbatterypackofNSE01includesaER26500 plussupercapacitor. Ifusercan'tfind this pack locally,theycanfindER26500 orquivalence withoutthe SPC1520 capacitor, which will alsowork inmostcase. TheSPCcanlarge thebatterylifeforhigh frequency use(update periodbelow5minutes).792 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 665 665 ))) 666 666 667 667 668 668 669 -= 3. AccessNB-IoTModule =797 +=== 2.11.3 Replace the battery === 670 670 671 671 ((( 672 - Userscan directlyaccesstheAT command setoftheNB-IoTmodule.800 +If Battery is lower than 2.7v, user should replace the battery of LSE01. 673 673 ))) 674 674 675 675 ((( 676 - The AT Commandsetcanrefer theBC35-G NB-IoTModuleATCommand: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]]804 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 677 677 ))) 678 678 679 -[[image:1657261278785-153.png]] 807 +((( 808 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 809 +))) 680 680 681 681 682 682 683 -= 4.813 += 3. Using the AT Commands = 684 684 685 -== 4.1815 +== 3.1 Access AT Commands == 686 686 687 -See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 688 688 818 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 689 689 690 - AT+<CMD>? : Helpon<CMD>820 +[[image:1654501986557-872.png||height="391" width="800"]] 691 691 692 -AT+<CMD> : Run <CMD> 693 693 694 - AT+<CMD>=<value>: Setthevalue823 +Or if you have below board, use below connection: 695 695 696 -AT+<CMD>=? : Get the value 697 697 826 +[[image:1654502005655-729.png||height="503" width="801"]] 698 698 828 + 829 + 830 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 831 + 832 + 833 + [[image:1654502050864-459.png||height="564" width="806"]] 834 + 835 + 836 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]] 837 + 838 + 839 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 840 + 841 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 842 + 843 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 844 + 845 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 846 + 847 + 699 699 (% style="color:#037691" %)**General Commands**(%%) 700 700 701 -AT 850 +(% style="background-color:#dcdcdc" %)**AT**(%%) : Attention 702 702 703 -AT? 852 +(% style="background-color:#dcdcdc" %)**AT?**(%%) : Short Help 704 704 705 -ATZ 854 +(% style="background-color:#dcdcdc" %)**ATZ**(%%) : MCU Reset 706 706 707 -AT+TDC 856 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%) : Application Data Transmission Interval 708 708 709 -AT+CFG : Print all configurations 710 710 711 - AT+CFGMOD: Workingmode selection859 +(% style="color:#037691" %)**Keys, IDs and EUIs management** 712 712 713 -AT+I NTMOD:Setthe trigger interruptmode861 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%) : Application EUI 714 714 715 -AT+ 5VTSetextend the timeof5V power863 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%) : Application Key 716 716 717 -AT+P ROChooseagreement865 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%) : Application Session Key 718 718 719 -AT+ WEIGREGet weightorsetweight to 0867 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%) : Device Address 720 720 721 -AT+ WEIGAPGet or SettheGapValue of weight869 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%) : Device EUI 722 722 723 -AT+ RXDL: Extendthe sendingandreceivingtime871 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%) : Network ID (You can enter this command change only after successful network connection) 724 724 725 -AT+ CNTFACGettcountingparameters873 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%) : Network Session Key Joining and sending date on LoRa network 726 726 727 -AT+ SERVADDR:ServerAddress875 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%) : Confirm Mode 728 728 877 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 729 729 730 -(% style="color:# 037691" %)**COAPManagement**879 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%) : Join LoRa? Network 731 731 732 -AT+ URIsourceparameters881 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%) : LoRa? Network Join Mode 733 733 883 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 734 734 735 -(% style="color:# 037691" %)**UDPManagement**885 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%) : Print Last Received Data in Raw Format 736 736 737 -AT+C FM:Uploadconfirmationmode (onlyvalid forUDP)887 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%) : Print Last Received Data in Binary Format 738 738 889 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 739 739 740 -(% style="color:# 037691" %)**MQTTManagement**891 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%) : Send Hexadecimal Data 741 741 742 -AT+CLIENT : Get or Set MQTT client 743 743 744 - AT+UNAMEGetSetMQTT Username894 +(% style="color:#037691" %)**LoRa Network Management** 745 745 746 -AT+ PWDGetor SetMQTT password896 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%) : Adaptive Rate 747 747 748 -AT+ PUBTOPICGetorSetMQTTpublishtopic898 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%) : LoRa Class(Currently only support class A 749 749 750 -AT+ SUBTOPIC :GetorSetMQTT subscriptiontopic900 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%) : Duty Cycle Setting 751 751 902 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 752 752 753 -(% style="color:# 037691" %)**Information**904 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink 754 754 755 -AT+F DRctoryDataReset906 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%) : Frame Counter Uplink 756 756 757 -AT+ PWORDSerialAccessPassword908 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%) : Join Accept Delay1 758 758 910 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 759 759 912 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 760 760 761 -= 5.FAQ=914 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%) : Receive Delay1 762 762 763 -= =5.1HowtoUpgradeFirmware==916 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%) : Receive Delay2 764 764 918 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 765 765 920 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 921 + 922 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 923 + 924 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 925 + 926 + 927 +(% style="color:#037691" %)**Information** 928 + 929 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 930 + 931 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 932 + 933 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 934 + 935 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 936 + 937 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 938 + 939 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 940 + 941 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 942 + 943 + 944 += 4. FAQ = 945 + 946 +== 4.1 How to change the LoRa Frequency Bands/Region? == 947 + 766 766 ((( 767 -User can upgrade the firmware for 1) bug fix, 2) new feature release. 949 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 950 +When downloading the images, choose the required image file for download. 768 768 ))) 769 769 770 770 ((( 771 - Pleasesee this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]954 + 772 772 ))) 773 773 774 774 ((( 775 - (%style="color:red"%)Notice,NSE01andLSE01share thememotherboard.Theyuse thesameconnection andmethodto update.958 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 776 776 ))) 777 777 961 +((( 962 + 963 +))) 778 778 965 +((( 966 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 967 +))) 779 779 780 -= 6. Trouble Shooting = 969 +((( 970 + 971 +))) 781 781 782 -== 6.1 Connection problem when uploading firmware == 973 +((( 974 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 975 +))) 783 783 977 +[[image:image-20220606154726-3.png]] 784 784 785 -(% class="wikigeneratedid" %) 979 + 980 +When you use the TTN network, the US915 frequency bands use are: 981 + 982 +* 903.9 - SF7BW125 to SF10BW125 983 +* 904.1 - SF7BW125 to SF10BW125 984 +* 904.3 - SF7BW125 to SF10BW125 985 +* 904.5 - SF7BW125 to SF10BW125 986 +* 904.7 - SF7BW125 to SF10BW125 987 +* 904.9 - SF7BW125 to SF10BW125 988 +* 905.1 - SF7BW125 to SF10BW125 989 +* 905.3 - SF7BW125 to SF10BW125 990 +* 904.6 - SF8BW500 991 + 786 786 ((( 787 -(% style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]] 993 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 994 + 995 +* (% style="color:#037691" %)**AT+CHE=2** 996 +* (% style="color:#037691" %)**ATZ** 788 788 ))) 789 789 999 +((( 1000 + 790 790 1002 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 1003 +))) 791 791 792 -== 6.2 AT Command input doesn't work == 1005 +((( 1006 + 1007 +))) 793 793 794 794 ((( 795 - In thecaseif user can seethe console output but can't typeinput to the device. Pleasecheck if youalreadyincludethe(%style="color:green" %)**ENTER**(%%) while sendingout the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.1010 +The **AU915** band is similar. Below are the AU915 Uplink Channels. 796 796 ))) 797 797 1013 +[[image:image-20220606154825-4.png]] 798 798 799 799 800 -= 7.OrderInfo =1016 +== 4.2 Can I calibrate LSE01 to different soil types? == 801 801 1018 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]]. 802 802 803 -Part Number**:** (% style="color:#4f81bd" %)**NSE01** 804 804 1021 += 5. Trouble Shooting = 805 805 1023 +== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 1024 + 1025 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 1026 + 1027 + 1028 +== 5.2 AT Command input doesn’t work == 1029 + 1030 +((( 1031 +In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1032 +))) 1033 + 1034 + 1035 +== 5.3 Device rejoin in at the second uplink packet == 1036 + 1037 +(% style="color:#4f81bd" %)**Issue describe as below:** 1038 + 1039 +[[image:1654500909990-784.png]] 1040 + 1041 + 1042 +(% style="color:#4f81bd" %)**Cause for this issue:** 1043 + 1044 +((( 1045 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 1046 +))) 1047 + 1048 + 1049 +(% style="color:#4f81bd" %)**Solution: ** 1050 + 1051 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 1052 + 1053 +[[image:1654500929571-736.png||height="458" width="832"]] 1054 + 1055 + 1056 += 6. Order Info = 1057 + 1058 + 1059 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 1060 + 1061 + 1062 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 1063 + 1064 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 1065 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 1066 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 1067 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 1068 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1069 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1070 +* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1071 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1072 + 1073 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1074 + 1075 +* (% style="color:red" %)**4**(%%): 4000mAh battery 1076 +* (% style="color:red" %)**8**(%%): 8500mAh battery 1077 + 806 806 (% class="wikigeneratedid" %) 807 807 ((( 808 808 809 809 ))) 810 810 811 -= 8.1083 += 7. Packing Info = 812 812 813 813 ((( 814 814 815 815 816 816 (% style="color:#037691" %)**Package Includes**: 1089 +))) 817 817 818 - 819 -* NSE01 NB-IoT Soil Moisture & EC Sensor x 1 820 -* External antenna x 1 1091 +* ((( 1092 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 821 821 ))) 822 822 823 823 ((( ... ... @@ -824,20 +824,24 @@ 824 824 825 825 826 826 (% style="color:#037691" %)**Dimension and weight**: 1099 +))) 827 827 828 - 829 -* Size: 195 x 125 x 55 mm 830 -* Weight: 420g 1101 +* ((( 1102 +Device Size: cm 831 831 ))) 1104 +* ((( 1105 +Device Weight: g 1106 +))) 1107 +* ((( 1108 +Package Size / pcs : cm 1109 +))) 1110 +* ((( 1111 +Weight / pcs : g 832 832 833 -((( 834 834 835 - 836 - 837 - 838 838 ))) 839 839 840 -= 9.1116 += 8. Support = 841 841 842 842 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 843 843 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -102.7 KB - Content