Changes for page NDDS75 -- NB-IoT Distance Detect Sensor User Manual
Last modified by Bei Jinggeng on 2024/05/31 09:53
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 23 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - NSE01NB-IoTSoil Moisture & EC Sensor User Manual1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -20,638 +20,777 @@ 20 20 21 21 22 22 23 += 1. Introduction = 23 23 24 -= 1. Introduction =25 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 25 25 26 -== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 27 - 28 28 ((( 29 29 30 30 31 -((( 32 -Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 30 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 33 33 ))) 34 34 35 35 ((( 36 -It candetect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and uploaditsvalueto the serverwirelessly.34 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 37 37 ))) 38 38 39 39 ((( 40 -The wireless technology used in NSE01 allowsthedevice to send data at a low data rate and reachultra-longdistances,providingultra-long-distance spread spectrumCommunication.38 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 41 41 ))) 42 42 43 43 ((( 44 - NSE01arepowered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%)batteries,whichcanbe usedforup to5years.42 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 45 45 ))) 46 46 47 - 45 +((( 46 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 48 48 ))) 49 49 49 + 50 50 [[image:1654503236291-817.png]] 51 51 52 52 53 -[[image:165 7245163077-232.png]]53 +[[image:1654503265560-120.png]] 54 54 55 55 56 56 57 -== 1.2 57 +== 1.2 Features == 58 58 59 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 59 +* LoRaWAN 1.0.3 Class A 60 +* Ultra low power consumption 60 60 * Monitor Soil Moisture 61 61 * Monitor Soil Temperature 62 62 * Monitor Soil Conductivity 64 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 63 63 * AT Commands to change parameters 64 64 * Uplink on periodically 65 65 * Downlink to change configure 66 66 * IP66 Waterproof Enclosure 67 -* Ultra-Low Power consumption 68 -* AT Commands to change parameters 69 -* Micro SIM card slot for NB-IoT SIM 70 -* 8500mAh Battery for long term use 69 +* 4000mAh or 8500mAh Battery for long term use 71 71 72 72 73 -== 1.3 Specification == 74 74 73 +== 1.3 Specification == 75 75 76 - (%style="color:#037691"%)**CommonDC Characteristics:**75 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 77 77 78 -* Supply Voltage: 2.1v ~~ 3.6v 79 -* Operating Temperature: -40 ~~ 85°C 77 +[[image:image-20220606162220-5.png]] 80 80 81 -(% style="color:#037691" %)**NB-IoT Spec:** 82 82 83 -* - B1 @H-FDD: 2100MHz 84 -* - B3 @H-FDD: 1800MHz 85 -* - B8 @H-FDD: 900MHz 86 -* - B5 @H-FDD: 850MHz 87 -* - B20 @H-FDD: 800MHz 88 -* - B28 @H-FDD: 700MHz 89 89 90 - Probe(% style="color:#037691"%)** Specification:**81 +== 1.4 Applications == 91 91 92 - MeasureVolume: Base on the centra pin oftheprobe, acylinder with 7cm diameterand 10cm height.83 +* Smart Agriculture 93 93 94 -[[image:image-20220708101224-1.png]] 85 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 86 + 95 95 88 +== 1.5 Firmware Change log == 96 96 97 97 98 - ==1.4Applications==91 +**LSE01 v1.0 :** Release 99 99 100 -* Smart Agriculture 101 101 102 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 103 - 104 104 105 -= =1.5PinDefinitions==95 += 2. Configure LSE01 to connect to LoRaWAN network = 106 106 97 +== 2.1 How it works == 107 107 108 -[[image:1657246476176-652.png]] 99 +((( 100 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 101 +))) 109 109 103 +((( 104 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 105 +))) 110 110 111 111 112 -= 2. Use NSE01 to communicate with IoT Server = 113 113 114 -== 2. 1Howitworks ==109 +== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 115 115 111 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 116 116 113 + 114 +[[image:1654503992078-669.png]] 115 + 116 + 117 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 118 + 119 + 120 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSE01. 121 + 122 +Each LSE01 is shipped with a sticker with the default device EUI as below: 123 + 124 +[[image:image-20220606163732-6.jpeg]] 125 + 126 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 127 + 128 +**Add APP EUI in the application** 129 + 130 + 131 +[[image:1654504596150-405.png]] 132 + 133 + 134 + 135 +**Add APP KEY and DEV EUI** 136 + 137 +[[image:1654504683289-357.png]] 138 + 139 + 140 + 141 +(% style="color:blue" %)**Step 2**(%%): Power on LSE01 142 + 143 + 144 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 145 + 146 +[[image:image-20220606163915-7.png]] 147 + 148 + 149 +(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 150 + 151 +[[image:1654504778294-788.png]] 152 + 153 + 154 + 155 +== 2.3 Uplink Payload == 156 + 157 + 158 +=== 2.3.1 MOD~=0(Default Mode) === 159 + 160 +LSE01 will uplink payload via LoRaWAN with below payload format: 161 + 117 117 ((( 118 - The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware inNSE01 will get environment data from sensors and send the value to local NB-IoT networkviathe NB-IoT module. The NB-IoT network will forwardthis valueto IoTserverviathe protocoldefinedbyNSE01.163 +Uplink payload includes in total 11 bytes. 119 119 ))) 120 120 166 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 167 +|((( 168 +**Size** 121 121 170 +**(bytes)** 171 +)))|**2**|**2**|**2**|**2**|**2**|**1** 172 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 173 +Temperature 174 + 175 +(Reserve, Ignore now) 176 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 177 +MOD & Digital Interrupt 178 + 179 +(Optional) 180 +))) 181 + 182 + 183 + 184 +=== 2.3.2 MOD~=1(Original value) === 185 + 186 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 187 + 188 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 189 +|((( 190 +**Size** 191 + 192 +**(bytes)** 193 +)))|**2**|**2**|**2**|**2**|**2**|**1** 194 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 195 +Temperature 196 + 197 +(Reserve, Ignore now) 198 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 199 +MOD & Digital Interrupt 200 + 201 +(Optional) 202 +))) 203 + 204 + 205 + 206 +=== 2.3.3 Battery Info === 207 + 122 122 ((( 123 - Thediagram below showstheworkingflow in defaultfirmwareofNSE01:209 +Check the battery voltage for LSE01. 124 124 ))) 125 125 126 -[[image:image-20220708101605-2.png]] 212 +((( 213 +Ex1: 0x0B45 = 2885mV 214 +))) 127 127 128 128 ((( 217 +Ex2: 0x0B49 = 2889mV 218 +))) 219 + 220 + 221 + 222 +=== 2.3.4 Soil Moisture === 223 + 224 +((( 225 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 226 +))) 227 + 228 +((( 229 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 230 +))) 231 + 232 +((( 129 129 130 130 ))) 131 131 236 +((( 237 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 238 +))) 132 132 133 133 134 -== 2.2 Configure the NSE01 == 135 135 242 +=== 2.3.5 Soil Temperature === 136 136 137 -=== 2.2.1 Test Requirement === 244 +((( 245 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 246 +))) 138 138 248 +((( 249 +**Example**: 250 +))) 139 139 140 140 ((( 141 - TouseNSE01inyourcity,makesureeetbelowrequirements:253 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 142 142 ))) 143 143 144 - * Your local operator has already distributed a NB-IoT Network there.145 - *ThelocalNB-IoTnetworkusedthebandthatNSE01supports.146 - * Your operator is able to distribute the data received in their NB-IoT network to your IoT server.256 +((( 257 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 258 +))) 147 147 260 + 261 + 262 +=== 2.3.6 Soil Conductivity (EC) === 263 + 148 148 ((( 149 - Below figureshows our testingstructure.Here we have NB-IoTnetwork coverage by ChinaMobile, the bandthey useis B8. The NSE01 willuse CoAP((% style="color:red" %)120.24.4.116:5683)(%%)orrawUDP((%style="color:red" %)120.24.4.116:5601)(%%) orMQTT((% style="color:red" %)120.24.4.116:1883)(%%)orTCP((%style="color:red"%)120.24.4.116:5600)(%%)protocoltosenddatato thetest server265 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 150 150 ))) 151 151 268 +((( 269 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 270 +))) 152 152 153 -[[image:1657249419225-449.png]] 272 +((( 273 +Generally, the EC value of irrigation water is less than 800uS / cm. 274 +))) 154 154 276 +((( 277 + 278 +))) 155 155 280 +((( 281 + 282 +))) 156 156 157 -=== 2. 2.2Insert SIMcard===284 +=== 2.3.7 MOD === 158 158 286 +Firmware version at least v2.1 supports changing mode. 287 + 288 +For example, bytes[10]=90 289 + 290 +mod=(bytes[10]>>7)&0x01=1. 291 + 292 + 293 +**Downlink Command:** 294 + 295 +If payload = 0x0A00, workmode=0 296 + 297 +If** **payload =** **0x0A01, workmode=1 298 + 299 + 300 + 301 +=== 2.3.8 Decode payload in The Things Network === 302 + 303 +While using TTN network, you can add the payload format to decode the payload. 304 + 305 + 306 +[[image:1654505570700-128.png]] 307 + 159 159 ((( 160 - Insert theNB-IoT Cardgetfromyourprovider.309 +The payload decoder function for TTN is here: 161 161 ))) 162 162 163 163 ((( 164 - Userneedtotakeout theNB-IoT moduleandinsertthe SIM cardkebelow:313 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]] 165 165 ))) 166 166 167 167 168 - [[image:1657249468462-536.png]]317 +== 2.4 Uplink Interval == 169 169 319 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 170 170 171 171 172 -=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 173 173 323 +== 2.5 Downlink Payload == 324 + 325 +By default, LSE50 prints the downlink payload to console port. 326 + 327 +[[image:image-20220606165544-8.png]] 328 + 329 + 174 174 ((( 331 +**Examples:** 332 +))) 333 + 175 175 ((( 176 - Userneed to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.335 + 177 177 ))) 337 + 338 +* ((( 339 +**Set TDC** 178 178 ))) 179 179 342 +((( 343 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 344 +))) 180 180 181 -**Connection:** 346 +((( 347 +Payload: 01 00 00 1E TDC=30S 348 +))) 182 182 183 - (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 350 +((( 351 +Payload: 01 00 00 3C TDC=60S 352 +))) 184 184 185 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 354 +((( 355 + 356 +))) 186 186 187 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 358 +* ((( 359 +**Reset** 360 +))) 188 188 362 +((( 363 +If payload = 0x04FF, it will reset the LSE01 364 +))) 189 189 190 -In the PC, use below serial tool settings: 191 191 192 -* Baud: (% style="color:green" %)**9600** 193 -* Data bits:** (% style="color:green" %)8(%%)** 194 -* Stop bits: (% style="color:green" %)**1** 195 -* Parity: (% style="color:green" %)**None** 196 -* Flow Control: (% style="color:green" %)**None** 367 +* **CFM** 197 197 369 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 370 + 371 + 372 + 373 +== 2.6 Show Data in DataCake IoT Server == 374 + 198 198 ((( 199 - Make sure the switch is in FLASHposition,thenpowern devicebyconnectingthejumper onNSE01. NSE01willoutputsystem info oncepoweronasbelow, we can enterthe (%style="color:green"%)**password:12345678**(%%)toaccessATmmandinput.376 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 200 200 ))) 201 201 202 -[[image:image-20220708110657-3.png]] 379 +((( 380 + 381 +))) 203 203 204 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 383 +((( 384 +(% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time. 385 +))) 205 205 387 +((( 388 +(% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 389 +))) 206 206 207 207 208 - === 2.2.4 UseCoAPprotocol to uplink data ===392 +[[image:1654505857935-743.png]] 209 209 210 -(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 211 211 395 +[[image:1654505874829-548.png]] 212 212 213 -**Use below commands:** 214 214 215 -* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 216 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 217 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 398 +(% style="color:blue" %)**Step 3**(%%)**:** Create an account or log in Datacake. 218 218 219 - Forparameterdescription,pleaserefertoATcommandset400 +(% style="color:blue" %)**Step 4**(%%)**:** Search the LSE01 and add DevEUI. 220 220 221 -[[image:1657249793983-486.png]] 222 222 403 +[[image:1654505905236-553.png]] 223 223 224 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 225 225 226 - [[image:1657249831934-534.png]]406 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 227 227 408 +[[image:1654505925508-181.png]] 228 228 229 229 230 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 231 231 232 - Thisfeatureis supported sincefirmware versionv1.0.1412 +== 2.7 Frequency Plans == 233 233 414 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 234 234 235 -* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 236 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 237 -* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 238 238 239 - [[image:1657249864775-321.png]]417 +=== 2.7.1 EU863-870 (EU868) === 240 240 419 +(% style="color:#037691" %)** Uplink:** 241 241 242 - [[image:1657249930215-289.png]]421 +868.1 - SF7BW125 to SF12BW125 243 243 423 +868.3 - SF7BW125 to SF12BW125 and SF7BW250 244 244 425 +868.5 - SF7BW125 to SF12BW125 245 245 246 - === 2.2.6UseMQTT protocolto uplink data ===427 +867.1 - SF7BW125 to SF12BW125 247 247 248 - Thisfeatureissupported since firmware versionv110429 +867.3 - SF7BW125 to SF12BW125 249 249 431 +867.5 - SF7BW125 to SF12BW125 250 250 251 -* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 252 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 253 -* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 254 -* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 255 -* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 256 -* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 257 -* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 433 +867.7 - SF7BW125 to SF12BW125 258 258 259 - [[image:1657249978444-674.png]]435 +867.9 - SF7BW125 to SF12BW125 260 260 437 +868.8 - FSK 261 261 262 -[[image:1657249990869-686.png]] 263 263 440 +(% style="color:#037691" %)** Downlink:** 264 264 265 -((( 266 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 267 -))) 442 +Uplink channels 1-9 (RX1) 268 268 444 +869.525 - SF9BW125 (RX2 downlink only) 269 269 270 270 271 -=== 2.2.7 Use TCP protocol to uplink data === 272 272 273 - Thisfeatureis supported since firmware version v110448 +=== 2.7.2 US902-928(US915) === 274 274 450 +Used in USA, Canada and South America. Default use CHE=2 275 275 276 -* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 277 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 452 +(% style="color:#037691" %)**Uplink:** 278 278 279 - [[image:1657250217799-140.png]]454 +903.9 - SF7BW125 to SF10BW125 280 280 456 +904.1 - SF7BW125 to SF10BW125 281 281 282 - [[image:1657250255956-604.png]]458 +904.3 - SF7BW125 to SF10BW125 283 283 460 +904.5 - SF7BW125 to SF10BW125 284 284 462 +904.7 - SF7BW125 to SF10BW125 285 285 286 - === 2.2.8ChangeUpdateInterval ===464 +904.9 - SF7BW125 to SF10BW125 287 287 288 - Usercanusebelow commandtochange the (% style="color:green" %)**uplink interval**.466 +905.1 - SF7BW125 to SF10BW125 289 289 290 - * (% style="color:blue" %)**AT+TDC=600**(%%)~/~/SetUpdate Interval to600s468 +905.3 - SF7BW125 to SF10BW125 291 291 292 -((( 293 -(% style="color:red" %)**NOTE:** 294 -))) 295 295 296 -((( 297 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 298 -))) 471 +(% style="color:#037691" %)**Downlink:** 299 299 473 +923.3 - SF7BW500 to SF12BW500 300 300 475 +923.9 - SF7BW500 to SF12BW500 301 301 302 - ==2.3UplinkPayload==477 +924.5 - SF7BW500 to SF12BW500 303 303 304 - Inthismode,uplink payload includes intotal18 bytes479 +925.1 - SF7BW500 to SF12BW500 305 305 306 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 307 -|=(% style="width: 50px;" %)((( 308 -**Size(bytes)** 309 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1** 310 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 481 +925.7 - SF7BW500 to SF12BW500 311 311 312 - Ifweusethe MQTT client tosubscribe to this MQTT topic, we can see the following information when the NSE01uplink data.483 +926.3 - SF7BW500 to SF12BW500 313 313 485 +926.9 - SF7BW500 to SF12BW500 314 314 315 - [[image:image-20220708111918-4.png]]487 +927.5 - SF7BW500 to SF12BW500 316 316 489 +923.3 - SF12BW500(RX2 downlink only) 317 317 318 -The payload is ASCII string, representative same HEX: 319 319 320 -0x72403155615900640c7817075e0a8c02f900 where: 321 321 322 -* Device ID: 0x 724031556159 = 724031556159 323 -* Version: 0x0064=100=1.0.0 493 +=== 2.7.3 CN470-510 (CN470) === 324 324 325 -* BAT: 0x0c78 = 3192 mV = 3.192V 326 -* Singal: 0x17 = 23 327 -* Soil Moisture: 0x075e= 1886 = 18.86 % 328 -* Soil Temperature:0x0a8c =2700=27 °C 329 -* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 330 -* Interrupt: 0x00 = 0 495 +Used in China, Default use CHE=1 331 331 497 +(% style="color:#037691" %)**Uplink:** 332 332 333 - == 2.4PayloadExplanation andSensorInterface==499 +486.3 - SF7BW125 to SF12BW125 334 334 501 +486.5 - SF7BW125 to SF12BW125 335 335 336 - === 2.4.1DeviceID===503 +486.7 - SF7BW125 to SF12BW125 337 337 338 - Bydefault,theDevice ID equaltothe last 6 bytes of IMEI.505 +486.9 - SF7BW125 to SF12BW125 339 339 340 - Usercanuse(% style="color:blue"%)**AT+DEUI**(%%) to set Device ID507 +487.1 - SF7BW125 to SF12BW125 341 341 342 - **Example:**509 +487.3 - SF7BW125 to SF12BW125 343 343 344 - AT+DEUI=A84041F15612511 +487.5 - SF7BW125 to SF12BW125 345 345 346 - TheDevice ID is stored in a none-erasearea,Upgradethe firmwareorrun AT+FDR won't erase Device ID.513 +487.7 - SF7BW125 to SF12BW125 347 347 348 348 516 +(% style="color:#037691" %)**Downlink:** 349 349 350 - ===2.4.2VersionInfo ===518 +506.7 - SF7BW125 to SF12BW125 351 351 352 - Specify the software version:0x64=100,meansfirmwareversion1.00.520 +506.9 - SF7BW125 to SF12BW125 353 353 354 - For example:0x0064: this device is NSE01with firmware version1.0.0.522 +507.1 - SF7BW125 to SF12BW125 355 355 524 +507.3 - SF7BW125 to SF12BW125 356 356 526 +507.5 - SF7BW125 to SF12BW125 357 357 358 - === 2.4.3BatteryInfo===528 +507.7 - SF7BW125 to SF12BW125 359 359 360 -((( 361 -Check the battery voltage for LSE01. 362 -))) 530 +507.9 - SF7BW125 to SF12BW125 363 363 364 -((( 365 -Ex1: 0x0B45 = 2885mV 366 -))) 532 +508.1 - SF7BW125 to SF12BW125 367 367 368 -((( 369 -Ex2: 0x0B49 = 2889mV 370 -))) 534 +505.3 - SF12BW125 (RX2 downlink only) 371 371 372 372 373 373 374 -=== 2. 4.4SignalStrength===538 +=== 2.7.4 AU915-928(AU915) === 375 375 376 - NB-IoT Network signalStrength.540 +Default use CHE=2 377 377 378 - **Ex1:0x1d= 29**542 +(% style="color:#037691" %)**Uplink:** 379 379 380 - (%style="color:blue" %)**0**(%%)-113dBmorless544 +916.8 - SF7BW125 to SF12BW125 381 381 382 - (%style="color:blue"%)**1**(%%)-111dBm546 +917.0 - SF7BW125 to SF12BW125 383 383 384 - (%style="color:blue"%)**2...30**(%%)-109dBm... -53dBm548 +917.2 - SF7BW125 to SF12BW125 385 385 386 - (% style="color:blue" %)**31**(%%)-51dBmorgreater550 +917.4 - SF7BW125 to SF12BW125 387 387 388 - (% style="color:blue" %)**99**(%%)Notknownor not detectable552 +917.6 - SF7BW125 to SF12BW125 389 389 554 +917.8 - SF7BW125 to SF12BW125 390 390 556 +918.0 - SF7BW125 to SF12BW125 391 391 392 - ===2.4.5SoilMoisture ===558 +918.2 - SF7BW125 to SF12BW125 393 393 394 -((( 395 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 396 -))) 397 397 398 -((( 399 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 400 -))) 561 +(% style="color:#037691" %)**Downlink:** 401 401 402 -((( 403 - 404 -))) 563 +923.3 - SF7BW500 to SF12BW500 405 405 406 -((( 407 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 408 -))) 565 +923.9 - SF7BW500 to SF12BW500 409 409 567 +924.5 - SF7BW500 to SF12BW500 410 410 569 +925.1 - SF7BW500 to SF12BW500 411 411 412 - ===2.4.6SoilTemperature===571 +925.7 - SF7BW500 to SF12BW500 413 413 414 -((( 415 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 416 -))) 573 +926.3 - SF7BW500 to SF12BW500 417 417 418 -((( 419 -**Example**: 420 -))) 575 +926.9 - SF7BW500 to SF12BW500 421 421 422 -((( 423 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 424 -))) 577 +927.5 - SF7BW500 to SF12BW500 425 425 426 -((( 427 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 428 -))) 579 +923.3 - SF12BW500(RX2 downlink only) 429 429 430 430 431 431 432 -=== 2. 4.7oilConductivity(EC) ===583 +=== 2.7.5 AS920-923 & AS923-925 (AS923) === 433 433 434 -((( 435 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 436 -))) 585 +(% style="color:#037691" %)**Default Uplink channel:** 437 437 438 -((( 439 -For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 440 -))) 587 +923.2 - SF7BW125 to SF10BW125 441 441 442 -((( 443 -Generally, the EC value of irrigation water is less than 800uS / cm. 444 -))) 589 +923.4 - SF7BW125 to SF10BW125 445 445 446 -((( 447 - 448 -))) 449 449 450 -((( 451 - 452 -))) 592 +(% style="color:#037691" %)**Additional Uplink Channel**: 453 453 454 - ===2.4.8DigitalInterrupt===594 +(OTAA mode, channel added by JoinAccept message) 455 455 456 - Digital Interrupt refers to pin(% style="color:blue" %)**GPIO_EXTI**(%%),and thereare differenttrigger methods. When thereisatrigger,the NSE01 will sendaacket tothe server.596 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 457 457 458 - Thecommandis:598 +922.2 - SF7BW125 to SF10BW125 459 459 460 - (%style="color:blue"%)**AT+INTMOD=3**(%%) ~/~/(more info aboutINMOD please refer [[**AT CommandManual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**600 +922.4 - SF7BW125 to SF10BW125 461 461 602 +922.6 - SF7BW125 to SF10BW125 462 462 463 - The lower four bits of this data field shows if this packet is generated by interrupt or not.Clickhereforthe hardware and softwareset up.604 +922.8 - SF7BW125 to SF10BW125 464 464 606 +923.0 - SF7BW125 to SF10BW125 465 465 466 - Example:608 +922.0 - SF7BW125 to SF10BW125 467 467 468 -0x(00): Normal uplink packet. 469 469 470 - 0x(01):InterruptUplinkPacket.611 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 471 471 613 +923.6 - SF7BW125 to SF10BW125 472 472 615 +923.8 - SF7BW125 to SF10BW125 473 473 474 - ===2.4.9+5VOutput===617 +924.0 - SF7BW125 to SF10BW125 475 475 476 - NSE01willenable +5Voutput beforeall sampling and disable the +5v after all sampling.619 +924.2 - SF7BW125 to SF10BW125 477 477 621 +924.4 - SF7BW125 to SF10BW125 478 478 479 - The5Voutput time can be controlledby AT Command.623 +924.6 - SF7BW125 to SF10BW125 480 480 481 -(% style="color:blue" %)**AT+5VT=1000** 482 482 483 - Meansset5V valid timetohave 1000ms. Sothereal5Voutputwill actually have 1000ms + sampling time for other sensors.626 +(% style="color:#037691" %)** Downlink:** 484 484 628 +Uplink channels 1-8 (RX1) 485 485 630 +923.2 - SF10BW125 (RX2) 486 486 487 -== 2.5 Downlink Payload == 488 488 489 -By default, NSE01 prints the downlink payload to console port. 490 490 491 - [[image:image-20220708133731-5.png]]634 +=== 2.7.6 KR920-923 (KR920) === 492 492 636 +Default channel: 493 493 494 -((( 495 -(% style="color:blue" %)**Examples:** 496 -))) 638 +922.1 - SF7BW125 to SF12BW125 497 497 498 -((( 499 - 500 -))) 640 +922.3 - SF7BW125 to SF12BW125 501 501 502 -* ((( 503 -(% style="color:blue" %)**Set TDC** 504 -))) 642 +922.5 - SF7BW125 to SF12BW125 505 505 506 -((( 507 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 508 -))) 509 509 510 -((( 511 -Payload: 01 00 00 1E TDC=30S 512 -))) 645 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 513 513 514 -((( 515 -Payload: 01 00 00 3C TDC=60S 516 -))) 647 +922.1 - SF7BW125 to SF12BW125 517 517 518 -((( 519 - 520 -))) 649 +922.3 - SF7BW125 to SF12BW125 521 521 522 -* ((( 523 -(% style="color:blue" %)**Reset** 524 -))) 651 +922.5 - SF7BW125 to SF12BW125 525 525 526 -((( 527 -If payload = 0x04FF, it will reset the NSE01 528 -))) 653 +922.7 - SF7BW125 to SF12BW125 529 529 655 +922.9 - SF7BW125 to SF12BW125 530 530 531 - *(%style="color:blue"%)**INTMOD**657 +923.1 - SF7BW125 to SF12BW125 532 532 533 - Downlink Payload: 06000003,SetAT+INTMOD=3659 +923.3 - SF7BW125 to SF12BW125 534 534 535 535 662 +(% style="color:#037691" %)**Downlink:** 536 536 537 - == 2.6 LED Indicator==664 +Uplink channels 1-7(RX1) 538 538 539 -((( 540 -The NSE01 has an internal LED which is to show the status of different state. 666 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 541 541 542 542 543 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 544 -* Then the LED will be on for 1 second means device is boot normally. 545 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 546 -* For each uplink probe, LED will be on for 500ms. 547 -))) 548 548 670 +=== 2.7.7 IN865-867 (IN865) === 549 549 672 +(% style="color:#037691" %)** Uplink:** 550 550 674 +865.0625 - SF7BW125 to SF12BW125 551 551 552 - == 2.7InstallationinSoil ==676 +865.4025 - SF7BW125 to SF12BW125 553 553 554 - __**Measurementthesoilsurface**__678 +865.9850 - SF7BW125 to SF12BW125 555 555 556 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 557 557 558 - [[image:1657259653666-883.png]]681 +(% style="color:#037691" %) **Downlink:** 559 559 683 +Uplink channels 1-3 (RX1) 560 560 561 -((( 562 - 685 +866.550 - SF10BW125 (RX2) 563 563 564 -((( 565 -Dig a hole with diameter > 20CM. 566 -))) 567 567 568 -((( 569 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 570 -))) 571 -))) 572 572 573 -[[image:1654506665940-119.png]] 574 574 575 -((( 576 - 577 -))) 690 +== 2.8 LED Indicator == 578 578 692 +The LSE01 has an internal LED which is to show the status of different state. 579 579 580 -== 2.8 Firmware Change Log == 694 +* Blink once when device power on. 695 +* Solid ON for 5 seconds once device successful Join the network. 696 +* Blink once when device transmit a packet. 581 581 582 582 583 -Download URL & Firmware Change log 584 584 585 -[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 586 586 587 587 588 -Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]] 589 589 703 +== 2.9 Installation in Soil == 590 590 705 +**Measurement the soil surface** 591 591 592 -== 2.9 Battery Analysis == 593 593 594 - === 2.9.1 Battery Type===708 +[[image:1654506634463-199.png]] 595 595 710 +((( 711 +((( 712 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 713 +))) 714 +))) 596 596 597 -The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 598 598 599 599 600 - The batteryis designed to last for several years depends on the actually use environmentand updateinterval.718 +[[image:1654506665940-119.png]] 601 601 720 +((( 721 +Dig a hole with diameter > 20CM. 722 +))) 602 602 603 -The battery related documents as below: 724 +((( 725 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 726 +))) 604 604 605 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 606 -* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 607 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 608 608 729 +== 2.10 Firmware Change Log == 730 + 609 609 ((( 610 - [[image:image-20220708140453-6.png]]732 +**Firmware download link:** 611 611 ))) 612 612 735 +((( 736 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 737 +))) 613 613 739 +((( 740 + 741 +))) 614 614 615 -=== 2.9.2 Power consumption Analyze === 743 +((( 744 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 745 +))) 616 616 617 617 ((( 618 - Draginobattery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.748 + 619 619 ))) 620 620 751 +((( 752 +**V1.0.** 753 +))) 621 621 622 622 ((( 623 - Instruction to usebelow:756 +Release 624 624 ))) 625 625 759 + 760 +== 2.11 Battery Analysis == 761 + 762 +=== 2.11.1 Battery Type === 763 + 626 626 ((( 627 - (% style="color:blue"%)**Step1:**(%%)Downlinkthe up-to-dateDRAGINO_Battery_Life_Prediction_Table.xlsxfrom: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]765 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 628 628 ))) 629 629 768 +((( 769 +The battery is designed to last for more than 5 years for the LSN50. 770 +))) 630 630 631 631 ((( 632 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose 773 +((( 774 +The battery-related documents are as below: 633 633 ))) 776 +))) 634 634 635 635 * ((( 636 - ProductModel779 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 637 637 ))) 638 638 * ((( 639 - UplinkInterval782 +[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 640 640 ))) 641 641 * ((( 642 - WorkingMode785 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 643 643 ))) 644 644 645 -((( 646 -And the Life expectation in difference case will be shown on the right. 647 -))) 788 + [[image:image-20220610172436-1.png]] 648 648 649 -[[image:image-20220708141352-7.jpeg]] 650 650 651 651 792 +=== 2.11.2 Battery Note === 652 652 653 -=== 2.9.3 Battery Note === 654 - 655 655 ((( 656 656 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 657 657 ))) ... ... @@ -658,166 +658,298 @@ 658 658 659 659 660 660 661 -=== 2. 9.4Replace the battery ===800 +=== 2.11.3 Replace the battery === 662 662 663 663 ((( 664 - The defaultbatterypack of NSE01includesa ER26500 plus super capacitor. If usercan'tfind this pack locally, they canfind ER26500or equivalencewithouttheSPC1520 capacitor, which willalso work in mostcase.The SPC can enlargethe batterylife for highfrequencyuse (update period below 5 minutes).803 +If Battery is lower than 2.7v, user should replace the battery of LSE01. 665 665 ))) 666 666 667 - 668 - 669 -= 3. Access NB-IoT Module = 670 - 671 671 ((( 672 - Userscan directly accesstheATcommand set of theNB-IoTmodule.807 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 673 673 ))) 674 674 675 675 ((( 676 -The ATCommand setcanrefer theBC35-GNB-IoTModuleATCommand: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]]811 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 677 677 ))) 678 678 679 -[[image:1657261278785-153.png]] 680 680 681 681 816 += 3. Using the AT Commands = 682 682 683 -= 4.UsingtheAT Commands =818 +== 3.1 Access AT Commands == 684 684 685 -== 4.1 Access AT Commands == 686 686 687 -S eethislinkfordetail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]821 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 688 688 823 +[[image:1654501986557-872.png||height="391" width="800"]] 689 689 690 -AT+<CMD>? : Help on <CMD> 691 691 692 - AT+<CMD>: Run<CMD>826 +Or if you have below board, use below connection: 693 693 694 -AT+<CMD>=<value> : Set the value 695 695 696 - AT+<CMD>=?:Get the value829 +[[image:1654502005655-729.png||height="503" width="801"]] 697 697 698 698 832 + 833 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 834 + 835 + 836 + [[image:1654502050864-459.png||height="564" width="806"]] 837 + 838 + 839 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]] 840 + 841 + 842 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 843 + 844 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 845 + 846 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 847 + 848 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 849 + 850 + 699 699 (% style="color:#037691" %)**General Commands**(%%) 700 700 701 -AT 853 +(% style="background-color:#dcdcdc" %)**AT**(%%) : Attention 702 702 703 -AT? 855 +(% style="background-color:#dcdcdc" %)**AT?**(%%) : Short Help 704 704 705 -ATZ 857 +(% style="background-color:#dcdcdc" %)**ATZ**(%%) : MCU Reset 706 706 707 -AT+TDC 859 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%) : Application Data Transmission Interval 708 708 709 -AT+CFG : Print all configurations 710 710 711 - AT+CFGMOD: Workingmode selection862 +(% style="color:#037691" %)**Keys, IDs and EUIs management** 712 712 713 -AT+I NTMOD:Setthe trigger interruptmode864 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%) : Application EUI 714 714 715 -AT+ 5VTSetextend the timeof5V power866 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%) : Application Key 716 716 717 -AT+P ROChooseagreement868 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%) : Application Session Key 718 718 719 -AT+ WEIGREGet weightorsetweight to 0870 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%) : Device Address 720 720 721 -AT+ WEIGAPGet or SettheGapValue of weight872 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%) : Device EUI 722 722 723 -AT+ RXDL: Extendthe sendingandreceivingtime874 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%) : Network ID (You can enter this command change only after successful network connection) 724 724 725 -AT+ CNTFACGettcountingparameters876 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%) : Network Session Key Joining and sending date on LoRa network 726 726 727 -AT+ SERVADDR:ServerAddress878 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%) : Confirm Mode 728 728 880 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 729 729 730 -(% style="color:# 037691" %)**COAPManagement**882 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%) : Join LoRa? Network 731 731 732 -AT+ URIsourceparameters884 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%) : LoRa? Network Join Mode 733 733 886 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 734 734 735 -(% style="color:# 037691" %)**UDPManagement**888 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%) : Print Last Received Data in Raw Format 736 736 737 -AT+C FM:Uploadconfirmationmode (onlyvalid forUDP)890 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%) : Print Last Received Data in Binary Format 738 738 892 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 739 739 740 -(% style="color:# 037691" %)**MQTTManagement**894 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%) : Send Hexadecimal Data 741 741 742 -AT+CLIENT : Get or Set MQTT client 743 743 744 - AT+UNAMEGetSetMQTT Username897 +(% style="color:#037691" %)**LoRa Network Management** 745 745 746 -AT+ PWDGetor SetMQTT password899 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%) : Adaptive Rate 747 747 748 -AT+ PUBTOPICGetorSetMQTTpublishtopic901 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%) : LoRa Class(Currently only support class A 749 749 750 -AT+ SUBTOPIC :GetorSetMQTT subscriptiontopic903 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%) : Duty Cycle Setting 751 751 905 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 752 752 753 -(% style="color:# 037691" %)**Information**907 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink 754 754 755 -AT+F DRctoryDataReset909 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%) : Frame Counter Uplink 756 756 757 -AT+ PWORDSerialAccessPassword911 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%) : Join Accept Delay1 758 758 913 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 759 759 915 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 760 760 761 -= 5.FAQ=917 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%) : Receive Delay1 762 762 763 -= =5.1HowtoUpgradeFirmware==919 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%) : Receive Delay2 764 764 921 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 765 765 923 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 924 + 925 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 926 + 927 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 928 + 929 + 930 +(% style="color:#037691" %)**Information** 931 + 932 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 933 + 934 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 935 + 936 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 937 + 938 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 939 + 940 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 941 + 942 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 943 + 944 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 945 + 946 + 947 += 4. FAQ = 948 + 949 +== 4.1 How to change the LoRa Frequency Bands/Region? == 950 + 766 766 ((( 767 -User can upgrade the firmware for 1) bug fix, 2) new feature release. 952 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 953 +When downloading the images, choose the required image file for download. 768 768 ))) 769 769 770 770 ((( 771 - Pleasesee this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]957 + 772 772 ))) 773 773 774 774 ((( 775 - (%style="color:red"%)Notice,NSE01andLSE01share thememotherboard.Theyuse thesameconnection andmethodto update.961 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 776 776 ))) 777 777 964 +((( 965 + 966 +))) 778 778 968 +((( 969 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 970 +))) 779 779 780 -= 6. Trouble Shooting = 972 +((( 973 + 974 +))) 781 781 782 -== 6.1 Connection problem when uploading firmware == 976 +((( 977 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 978 +))) 783 783 980 +[[image:image-20220606154726-3.png]] 784 784 785 -(% class="wikigeneratedid" %) 982 + 983 +When you use the TTN network, the US915 frequency bands use are: 984 + 985 +* 903.9 - SF7BW125 to SF10BW125 986 +* 904.1 - SF7BW125 to SF10BW125 987 +* 904.3 - SF7BW125 to SF10BW125 988 +* 904.5 - SF7BW125 to SF10BW125 989 +* 904.7 - SF7BW125 to SF10BW125 990 +* 904.9 - SF7BW125 to SF10BW125 991 +* 905.1 - SF7BW125 to SF10BW125 992 +* 905.3 - SF7BW125 to SF10BW125 993 +* 904.6 - SF8BW500 994 + 786 786 ((( 787 -(% style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]] 996 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 997 + 998 +* (% style="color:#037691" %)**AT+CHE=2** 999 +* (% style="color:#037691" %)**ATZ** 788 788 ))) 789 789 1002 +((( 1003 + 790 790 1005 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 1006 +))) 791 791 792 -== 6.2 AT Command input doesn't work == 1008 +((( 1009 + 1010 +))) 793 793 794 794 ((( 795 - In thecaseif user can seethe console output but can't typeinput to the device. Pleasecheck if youalreadyincludethe(%style="color:green" %)**ENTER**(%%) while sendingout the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.1013 +The **AU915** band is similar. Below are the AU915 Uplink Channels. 796 796 ))) 797 797 1016 +[[image:image-20220606154825-4.png]] 798 798 799 799 800 -= 7. Order Info = 801 801 1020 += 5. Trouble Shooting = 802 802 803 - PartNumber**:** (%style="color:#4f81bd"%)**NSE01**1022 +== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 804 804 1024 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 805 805 1026 + 1027 +== 5.2 AT Command input doesn’t work == 1028 + 1029 +((( 1030 +In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1031 +))) 1032 + 1033 + 1034 +== 5.3 Device rejoin in at the second uplink packet == 1035 + 1036 +(% style="color:#4f81bd" %)**Issue describe as below:** 1037 + 1038 +[[image:1654500909990-784.png]] 1039 + 1040 + 1041 +(% style="color:#4f81bd" %)**Cause for this issue:** 1042 + 1043 +((( 1044 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 1045 +))) 1046 + 1047 + 1048 +(% style="color:#4f81bd" %)**Solution: ** 1049 + 1050 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 1051 + 1052 +[[image:1654500929571-736.png||height="458" width="832"]] 1053 + 1054 + 1055 += 6. Order Info = 1056 + 1057 + 1058 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 1059 + 1060 + 1061 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 1062 + 1063 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 1064 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 1065 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 1066 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 1067 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1068 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1069 +* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1070 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1071 + 1072 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1073 + 1074 +* (% style="color:red" %)**4**(%%): 4000mAh battery 1075 +* (% style="color:red" %)**8**(%%): 8500mAh battery 1076 + 806 806 (% class="wikigeneratedid" %) 807 807 ((( 808 808 809 809 ))) 810 810 811 -= 8.1082 += 7. Packing Info = 812 812 813 813 ((( 814 814 815 815 816 816 (% style="color:#037691" %)**Package Includes**: 1088 +))) 817 817 818 - 819 -* NSE01 NB-IoT Soil Moisture & EC Sensor x 1 820 -* External antenna x 1 1090 +* ((( 1091 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 821 821 ))) 822 822 823 823 ((( ... ... @@ -824,20 +824,24 @@ 824 824 825 825 826 826 (% style="color:#037691" %)**Dimension and weight**: 1098 +))) 827 827 828 - 829 -* Size: 195 x 125 x 55 mm 830 -* Weight: 420g 1100 +* ((( 1101 +Device Size: cm 831 831 ))) 1103 +* ((( 1104 +Device Weight: g 1105 +))) 1106 +* ((( 1107 +Package Size / pcs : cm 1108 +))) 1109 +* ((( 1110 +Weight / pcs : g 832 832 833 -((( 834 834 835 - 836 - 837 - 838 838 ))) 839 839 840 -= 9.1115 += 8. Support = 841 841 842 842 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 843 843 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -102.7 KB - Content