Last modified by Bei Jinggeng on 2024/05/31 09:53

From version 65.11
edited by Xiaoling
on 2022/07/08 15:44
Change comment: There is no comment for this version
To version 36.1
edited by Xiaoling
on 2022/06/25 16:28
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
Content
... ... @@ -20,82 +20,67 @@
20 20  
21 21  
22 22  
23 += 1. Introduction =
23 23  
24 -= 1.  Introduction =
25 +== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
25 25  
26 -== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
27 -
28 28  (((
29 29  
30 30  
31 -(((
32 -Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
30 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
33 33  )))
34 34  
35 35  (((
36 -It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
34 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
37 37  )))
38 38  
39 39  (((
40 -The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
38 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
41 41  )))
42 42  
43 43  (((
44 -NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
42 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
45 45  )))
46 46  
47 -
45 +(((
46 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
48 48  )))
49 49  
49 +
50 50  [[image:1654503236291-817.png]]
51 51  
52 52  
53 -[[image:1657245163077-232.png]]
53 +[[image:1654503265560-120.png]]
54 54  
55 55  
56 56  
57 -== 1.2 ​ Features ==
57 +== 1.2 ​Features ==
58 58  
59 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
59 +* LoRaWAN 1.0.3 Class A
60 +* Ultra low power consumption
60 60  * Monitor Soil Moisture
61 61  * Monitor Soil Temperature
62 62  * Monitor Soil Conductivity
64 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
63 63  * AT Commands to change parameters
64 64  * Uplink on periodically
65 65  * Downlink to change configure
66 66  * IP66 Waterproof Enclosure
67 -* Ultra-Low Power consumption
68 -* AT Commands to change parameters
69 -* Micro SIM card slot for NB-IoT SIM
70 -* 8500mAh Battery for long term use
69 +* 4000mAh or 8500mAh Battery for long term use
71 71  
72 72  
73 -== 1.3  Specification ==
74 74  
75 75  
76 -(% style="color:#037691" %)**Common DC Characteristics:**
77 77  
78 -* Supply Voltage: 2.1v ~~ 3.6v
79 -* Operating Temperature: -40 ~~ 85°C
75 +== 1.3 Specification ==
80 80  
81 -(% style="color:#037691" %)**NB-IoT Spec:**
82 -
83 -* - B1 @H-FDD: 2100MHz
84 -* - B3 @H-FDD: 1800MHz
85 -* - B8 @H-FDD: 900MHz
86 -* - B5 @H-FDD: 850MHz
87 -* - B20 @H-FDD: 800MHz
88 -* - B28 @H-FDD: 700MHz
89 -
90 -Probe(% style="color:#037691" %)** Specification:**
91 -
92 92  Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
93 93  
94 -[[image:image-20220708101224-1.png]]
79 +[[image:image-20220606162220-5.png]]
95 95  
96 96  
97 97  
98 -== ​1.4  Applications ==
83 +== ​1.4 Applications ==
99 99  
100 100  * Smart Agriculture
101 101  
... ... @@ -102,722 +102,1013 @@
102 102  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
103 103  ​
104 104  
105 -== 1.5  Pin Definitions ==
90 +== 1.5 Firmware Change log ==
106 106  
107 107  
108 -[[image:1657246476176-652.png]]
93 +**LSE01 v1.0 :**  Release
109 109  
110 110  
111 111  
112 -= 2.  Use NSE01 to communicate with IoT Server =
97 += 2. Configure LSE01 to connect to LoRaWAN network =
113 113  
114 -== 2.1  How it works ==
99 +== 2.1 How it works ==
115 115  
101 +(((
102 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
103 +)))
116 116  
117 117  (((
118 -The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
106 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
119 119  )))
120 120  
121 121  
110 +
111 +== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
112 +
113 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
114 +
115 +
116 +[[image:1654503992078-669.png]]
117 +
118 +
119 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
120 +
121 +
122 +(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
123 +
124 +Each LSE01 is shipped with a sticker with the default device EUI as below:
125 +
126 +[[image:image-20220606163732-6.jpeg]]
127 +
128 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
129 +
130 +**Add APP EUI in the application**
131 +
132 +
133 +[[image:1654504596150-405.png]]
134 +
135 +
136 +
137 +**Add APP KEY and DEV EUI**
138 +
139 +[[image:1654504683289-357.png]]
140 +
141 +
142 +
143 +(% style="color:blue" %)**Step 2**(%%): Power on LSE01
144 +
145 +
146 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
147 +
148 +[[image:image-20220606163915-7.png]]
149 +
150 +
151 +(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
152 +
153 +[[image:1654504778294-788.png]]
154 +
155 +
156 +
157 +== 2.3 Uplink Payload ==
158 +
159 +
160 +=== 2.3.1 MOD~=0(Default Mode) ===
161 +
162 +LSE01 will uplink payload via LoRaWAN with below payload format: 
163 +
122 122  (((
123 -The diagram below shows the working flow in default firmware of NSE01:
165 +Uplink payload includes in total 11 bytes.
124 124  )))
125 125  
126 -[[image:image-20220708101605-2.png]]
168 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
169 +|(((
170 +**Size**
127 127  
128 -(((
129 -
172 +**(bytes)**
173 +)))|**2**|**2**|**2**|**2**|**2**|**1**
174 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
175 +Temperature
176 +
177 +(Reserve, Ignore now)
178 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
179 +MOD & Digital Interrupt
180 +
181 +(Optional)
130 130  )))
131 131  
132 132  
133 133  
134 -== 2.2 ​ Configure the NSE01 ==
135 135  
136 136  
137 -=== 2.2.1 Test Requirement ===
138 138  
139 139  
140 -(((
141 -To use NSE01 in your city, make sure meet below requirements:
142 -)))
190 +=== 2.3.2 MOD~=1(Original value) ===
143 143  
144 -* Your local operator has already distributed a NB-IoT Network there.
145 -* The local NB-IoT network used the band that NSE01 supports.
146 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
192 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
147 147  
148 -(((
149 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
194 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
195 +|(((
196 +**Size**
197 +
198 +**(bytes)**
199 +)))|**2**|**2**|**2**|**2**|**2**|**1**
200 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
201 +Temperature
202 +
203 +(Reserve, Ignore now)
204 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
205 +MOD & Digital Interrupt
206 +
207 +(Optional)
150 150  )))
151 151  
152 152  
153 -[[image:1657249419225-449.png]]
154 154  
155 155  
156 156  
157 -=== 2.2.2 Insert SIM card ===
158 158  
215 +
216 +=== 2.3.3 Battery Info ===
217 +
159 159  (((
160 -Insert the NB-IoT Card get from your provider.
219 +Check the battery voltage for LSE01.
161 161  )))
162 162  
163 163  (((
164 -User need to take out the NB-IoT module and insert the SIM card like below:
223 +Ex1: 0x0B45 = 2885mV
165 165  )))
166 166  
226 +(((
227 +Ex2: 0x0B49 = 2889mV
228 +)))
167 167  
168 -[[image:1657249468462-536.png]]
169 169  
170 170  
232 +=== 2.3.4 Soil Moisture ===
171 171  
172 -=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
234 +(((
235 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
236 +)))
173 173  
174 174  (((
239 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
240 +)))
241 +
175 175  (((
176 -User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
243 +
177 177  )))
245 +
246 +(((
247 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
178 178  )))
179 179  
180 180  
181 -**Connection:**
182 182  
183 - (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
252 +=== 2.3.5 Soil Temperature ===
184 184  
185 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
254 +(((
255 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
256 +)))
186 186  
187 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
258 +(((
259 +**Example**:
260 +)))
188 188  
262 +(((
263 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
264 +)))
189 189  
190 -In the PC, use below serial tool settings:
191 -
192 -* Baud:  (% style="color:green" %)**9600**
193 -* Data bits:** (% style="color:green" %)8(%%)**
194 -* Stop bits: (% style="color:green" %)**1**
195 -* Parity:  (% style="color:green" %)**None**
196 -* Flow Control: (% style="color:green" %)**None**
197 -
198 198  (((
199 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
267 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
200 200  )))
201 201  
202 -[[image:image-20220708110657-3.png]]
203 203  
204 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
205 205  
272 +=== 2.3.6 Soil Conductivity (EC) ===
206 206  
274 +(((
275 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
276 +)))
207 207  
208 -=== 2.2.4 Use CoAP protocol to uplink data ===
278 +(((
279 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
280 +)))
209 209  
210 -(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
282 +(((
283 +Generally, the EC value of irrigation water is less than 800uS / cm.
284 +)))
211 211  
286 +(((
287 +
288 +)))
212 212  
213 -**Use below commands:**
290 +(((
291 +
292 +)))
214 214  
215 -* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
216 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
217 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
294 +=== 2.3.7 MOD ===
218 218  
219 -For parameter description, please refer to AT command set
296 +Firmware version at least v2.1 supports changing mode.
220 220  
221 -[[image:1657249793983-486.png]]
298 +For example, bytes[10]=90
222 222  
300 +mod=(bytes[10]>>7)&0x01=1.
223 223  
224 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
225 225  
226 -[[image:1657249831934-534.png]]
303 +**Downlink Command:**
227 227  
305 +If payload = 0x0A00, workmode=0
228 228  
307 +If** **payload =** **0x0A01, workmode=1
229 229  
230 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
231 231  
232 -This feature is supported since firmware version v1.0.1
233 233  
311 +=== 2.3.8 ​Decode payload in The Things Network ===
234 234  
235 -* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
236 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
237 -* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
313 +While using TTN network, you can add the payload format to decode the payload.
238 238  
239 -[[image:1657249864775-321.png]]
240 240  
316 +[[image:1654505570700-128.png]]
241 241  
242 -[[image:1657249930215-289.png]]
318 +(((
319 +The payload decoder function for TTN is here:
320 +)))
243 243  
322 +(((
323 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
324 +)))
244 244  
245 245  
246 -=== 2.2.6 Use MQTT protocol to uplink data ===
327 +== 2.4 Uplink Interval ==
247 247  
248 -This feature is supported since firmware version v110
329 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
249 249  
250 250  
251 -* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
252 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
253 -* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
254 -* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
255 -* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
256 -* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
257 -* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
258 258  
259 -[[image:1657249978444-674.png]]
333 +== 2.5 Downlink Payload ==
260 260  
335 +By default, LSE50 prints the downlink payload to console port.
261 261  
262 -[[image:1657249990869-686.png]]
337 +[[image:image-20220606165544-8.png]]
263 263  
264 264  
265 265  (((
266 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
341 +**Examples:**
267 267  )))
268 268  
344 +(((
345 +
346 +)))
269 269  
348 +* (((
349 +**Set TDC**
350 +)))
270 270  
271 -=== 2.2.7 Use TCP protocol to uplink data ===
352 +(((
353 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
354 +)))
272 272  
273 -This feature is supported since firmware version v110
356 +(((
357 +Payload:    01 00 00 1E    TDC=30S
358 +)))
274 274  
360 +(((
361 +Payload:    01 00 00 3C    TDC=60S
362 +)))
275 275  
276 -* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
277 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
364 +(((
365 +
366 +)))
278 278  
279 -[[image:1657250217799-140.png]]
368 +* (((
369 +**Reset**
370 +)))
280 280  
372 +(((
373 +If payload = 0x04FF, it will reset the LSE01
374 +)))
281 281  
282 -[[image:1657250255956-604.png]]
283 283  
377 +* **CFM**
284 284  
379 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
285 285  
286 -=== 2.2.8 Change Update Interval ===
287 287  
288 -User can use below command to change the (% style="color:green" %)**uplink interval**.
289 289  
290 -* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
383 +== 2.6 Show Data in DataCake IoT Server ==
291 291  
292 292  (((
293 -(% style="color:red" %)**NOTE:**
386 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
294 294  )))
295 295  
296 296  (((
297 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
390 +
298 298  )))
299 299  
393 +(((
394 +(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
395 +)))
300 300  
397 +(((
398 +(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
399 +)))
301 301  
302 -== 2.3  Uplink Payload ==
303 303  
304 -In this mode, uplink payload includes in total 18 bytes
402 +[[image:1654505857935-743.png]]
305 305  
306 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
307 -|=(% style="width: 50px;" %)(((
308 -**Size(bytes)**
309 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
310 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
311 311  
312 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
405 +[[image:1654505874829-548.png]]
313 313  
314 314  
315 -[[image:image-20220708111918-4.png]]
408 +(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
316 316  
410 +(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
317 317  
318 -The payload is ASCII string, representative same HEX:
319 319  
320 -0x72403155615900640c7817075e0a8c02f900 where:
413 +[[image:1654505905236-553.png]]
321 321  
322 -* Device ID: 0x 724031556159 = 724031556159
323 -* Version: 0x0064=100=1.0.0
324 324  
325 -* BAT: 0x0c78 = 3192 mV = 3.192V
326 -* Singal: 0x17 = 23
327 -* Soil Moisture: 0x075e= 1886 = 18.86  %
328 -* Soil Temperature:0x0a8c =2700=27 °C
329 -* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
330 -* Interrupt: 0x00 = 0
416 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
331 331  
418 +[[image:1654505925508-181.png]]
332 332  
333 -== 2.4  Payload Explanation and Sensor Interface ==
334 334  
335 335  
336 -=== 2.4.1  Device ID ===
422 +== 2.7 Frequency Plans ==
337 337  
338 -By default, the Device ID equal to the last 6 bytes of IMEI.
424 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
339 339  
340 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
341 341  
342 -**Example:**
427 +=== 2.7.1 EU863-870 (EU868) ===
343 343  
344 -AT+DEUI=A84041F15612
429 +(% style="color:#037691" %)** Uplink:**
345 345  
346 -The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
431 +868.1 - SF7BW125 to SF12BW125
347 347  
433 +868.3 - SF7BW125 to SF12BW125 and SF7BW250
348 348  
435 +868.5 - SF7BW125 to SF12BW125
349 349  
350 -=== 2.4.2  Version Info ===
437 +867.1 - SF7BW125 to SF12BW125
351 351  
352 -Specify the software version: 0x64=100, means firmware version 1.00.
439 +867.3 - SF7BW125 to SF12BW125
353 353  
354 -For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
441 +867.5 - SF7BW125 to SF12BW125
355 355  
443 +867.7 - SF7BW125 to SF12BW125
356 356  
445 +867.9 - SF7BW125 to SF12BW125
357 357  
358 -=== 2.4.3  Battery Info ===
447 +868.8 - FSK
359 359  
360 -(((
361 -Check the battery voltage for LSE01.
362 -)))
363 363  
364 -(((
365 -Ex1: 0x0B45 = 2885mV
366 -)))
450 +(% style="color:#037691" %)** Downlink:**
367 367  
368 -(((
369 -Ex2: 0x0B49 = 2889mV
370 -)))
452 +Uplink channels 1-9 (RX1)
371 371  
454 +869.525 - SF9BW125 (RX2 downlink only)
372 372  
373 373  
374 -=== 2.4.4  Signal Strength ===
375 375  
376 -NB-IoT Network signal Strength.
458 +=== 2.7.2 US902-928(US915) ===
377 377  
378 -**Ex1: 0x1d = 29**
460 +Used in USA, Canada and South America. Default use CHE=2
379 379  
380 -(% style="color:blue" %)**0**(%%)  -113dBm or less
462 +(% style="color:#037691" %)**Uplink:**
381 381  
382 -(% style="color:blue" %)**1**(%%)  -111dBm
464 +903.9 - SF7BW125 to SF10BW125
383 383  
384 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
466 +904.1 - SF7BW125 to SF10BW125
385 385  
386 -(% style="color:blue" %)**31**  (%%) -51dBm or greater
468 +904.3 - SF7BW125 to SF10BW125
387 387  
388 -(% style="color:blue" %)**99**   (%%) Not known or not detectable
470 +904.5 - SF7BW125 to SF10BW125
389 389  
472 +904.7 - SF7BW125 to SF10BW125
390 390  
474 +904.9 - SF7BW125 to SF10BW125
391 391  
392 -=== 2.4.5  Soil Moisture ===
476 +905.1 - SF7BW125 to SF10BW125
393 393  
394 -(((
395 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
396 -)))
478 +905.3 - SF7BW125 to SF10BW125
397 397  
398 -(((
399 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
400 -)))
401 401  
402 -(((
403 -
404 -)))
481 +(% style="color:#037691" %)**Downlink:**
405 405  
406 -(((
407 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
408 -)))
483 +923.3 - SF7BW500 to SF12BW500
409 409  
485 +923.9 - SF7BW500 to SF12BW500
410 410  
487 +924.5 - SF7BW500 to SF12BW500
411 411  
412 -=== 2.4.6  Soil Temperature ===
489 +925.1 - SF7BW500 to SF12BW500
413 413  
414 -(((
415 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
416 -)))
491 +925.7 - SF7BW500 to SF12BW500
417 417  
418 -(((
419 -**Example**:
420 -)))
493 +926.3 - SF7BW500 to SF12BW500
421 421  
422 -(((
423 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
424 -)))
495 +926.9 - SF7BW500 to SF12BW500
425 425  
426 -(((
427 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
428 -)))
497 +927.5 - SF7BW500 to SF12BW500
429 429  
499 +923.3 - SF12BW500(RX2 downlink only)
430 430  
431 431  
432 -=== 2.4.7  Soil Conductivity (EC) ===
433 433  
434 -(((
435 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
436 -)))
503 +=== 2.7.3 CN470-510 (CN470) ===
437 437  
438 -(((
439 -For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
440 -)))
505 +Used in China, Default use CHE=1
441 441  
442 -(((
443 -Generally, the EC value of irrigation water is less than 800uS / cm.
444 -)))
507 +(% style="color:#037691" %)**Uplink:**
445 445  
446 -(((
447 -
448 -)))
509 +486.3 - SF7BW125 to SF12BW125
449 449  
450 -(((
451 -
452 -)))
511 +486.5 - SF7BW125 to SF12BW125
453 453  
454 -=== 2.4.8  Digital Interrupt ===
513 +486.7 - SF7BW125 to SF12BW125
455 455  
456 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
515 +486.9 - SF7BW125 to SF12BW125
457 457  
458 -The command is:
517 +487.1 - SF7BW125 to SF12BW125
459 459  
460 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
519 +487.3 - SF7BW125 to SF12BW125
461 461  
521 +487.5 - SF7BW125 to SF12BW125
462 462  
463 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
523 +487.7 - SF7BW125 to SF12BW125
464 464  
465 465  
466 -Example:
526 +(% style="color:#037691" %)**Downlink:**
467 467  
468 -0x(00): Normal uplink packet.
528 +506.7 - SF7BW125 to SF12BW125
469 469  
470 -0x(01): Interrupt Uplink Packet.
530 +506.9 - SF7BW125 to SF12BW125
471 471  
532 +507.1 - SF7BW125 to SF12BW125
472 472  
534 +507.3 - SF7BW125 to SF12BW125
473 473  
474 -=== 2.4.9  ​+5V Output ===
536 +507.5 - SF7BW125 to SF12BW125
475 475  
476 -NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
538 +507.7 - SF7BW125 to SF12BW125
477 477  
540 +507.9 - SF7BW125 to SF12BW125
478 478  
479 -The 5V output time can be controlled by AT Command.
542 +508.1 - SF7BW125 to SF12BW125
480 480  
481 -(% style="color:blue" %)**AT+5VT=1000**
544 +505.3 - SF12BW125 (RX2 downlink only)
482 482  
483 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
484 484  
485 485  
548 +=== 2.7.4 AU915-928(AU915) ===
486 486  
487 -== 2.5  Downlink Payload ==
550 +Default use CHE=2
488 488  
489 -By default, NSE01 prints the downlink payload to console port.
552 +(% style="color:#037691" %)**Uplink:**
490 490  
491 -[[image:image-20220708133731-5.png]]
554 +916.8 - SF7BW125 to SF12BW125
492 492  
556 +917.0 - SF7BW125 to SF12BW125
493 493  
494 -(((
495 -(% style="color:blue" %)**Examples:**
496 -)))
558 +917.2 - SF7BW125 to SF12BW125
497 497  
498 -(((
499 -
500 -)))
560 +917.4 - SF7BW125 to SF12BW125
501 501  
502 -* (((
503 -(% style="color:blue" %)**Set TDC**
504 -)))
562 +917.6 - SF7BW125 to SF12BW125
505 505  
506 -(((
507 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
508 -)))
564 +917.8 - SF7BW125 to SF12BW125
509 509  
510 -(((
511 -Payload:    01 00 00 1E    TDC=30S
512 -)))
566 +918.0 - SF7BW125 to SF12BW125
513 513  
514 -(((
515 -Payload:    01 00 00 3C    TDC=60S
516 -)))
568 +918.2 - SF7BW125 to SF12BW125
517 517  
518 -(((
519 -
520 -)))
521 521  
522 -* (((
523 -(% style="color:blue" %)**Reset**
524 -)))
571 +(% style="color:#037691" %)**Downlink:**
525 525  
526 -(((
527 -If payload = 0x04FF, it will reset the NSE01
528 -)))
573 +923.3 - SF7BW500 to SF12BW500
529 529  
575 +923.9 - SF7BW500 to SF12BW500
530 530  
531 -* (% style="color:blue" %)**INTMOD**
577 +924.5 - SF7BW500 to SF12BW500
532 532  
533 -Downlink Payload: 06000003, Set AT+INTMOD=3
579 +925.1 - SF7BW500 to SF12BW500
534 534  
581 +925.7 - SF7BW500 to SF12BW500
535 535  
583 +926.3 - SF7BW500 to SF12BW500
536 536  
537 -== 2.6  ​LED Indicator ==
585 +926.9 - SF7BW500 to SF12BW500
538 538  
539 -(((
540 -The NSE01 has an internal LED which is to show the status of different state.
587 +927.5 - SF7BW500 to SF12BW500
541 541  
589 +923.3 - SF12BW500(RX2 downlink only)
542 542  
543 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
544 -* Then the LED will be on for 1 second means device is boot normally.
545 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
546 -* For each uplink probe, LED will be on for 500ms.
547 -)))
548 548  
549 549  
593 +=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
550 550  
595 +(% style="color:#037691" %)**Default Uplink channel:**
551 551  
552 -== 2.7  Installation in Soil ==
597 +923.2 - SF7BW125 to SF10BW125
553 553  
554 -__**Measurement the soil surface**__
599 +923.4 - SF7BW125 to SF10BW125
555 555  
556 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
557 557  
558 -[[image:1657259653666-883.png]]
602 +(% style="color:#037691" %)**Additional Uplink Channel**:
559 559  
604 +(OTAA mode, channel added by JoinAccept message)
560 560  
561 -(((
562 -
606 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
563 563  
564 -(((
565 -Dig a hole with diameter > 20CM.
566 -)))
608 +922.2 - SF7BW125 to SF10BW125
567 567  
568 -(((
569 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
570 -)))
571 -)))
610 +922.4 - SF7BW125 to SF10BW125
572 572  
573 -[[image:1654506665940-119.png]]
612 +922.6 - SF7BW125 to SF10BW125
574 574  
575 -(((
576 -
577 -)))
614 +922.8 - SF7BW125 to SF10BW125
578 578  
616 +923.0 - SF7BW125 to SF10BW125
579 579  
580 -== 2. Firmware Change Log ==
618 +922.0 - SF7BW125 to SF10BW125
581 581  
582 582  
583 -Download URL & Firmware Change log
621 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
584 584  
585 -[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
623 +923.6 - SF7BW125 to SF10BW125
586 586  
625 +923.8 - SF7BW125 to SF10BW125
587 587  
588 -Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
627 +924.0 - SF7BW125 to SF10BW125
589 589  
629 +924.2 - SF7BW125 to SF10BW125
590 590  
631 +924.4 - SF7BW125 to SF10BW125
591 591  
592 -== 2. Battery Analysis ==
633 +924.6 - SF7BW125 to SF10BW125
593 593  
594 -=== 2.9.1  ​Battery Type ===
595 595  
636 +(% style="color:#037691" %)** Downlink:**
596 596  
597 -The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
638 +Uplink channels 1-8 (RX1)
598 598  
640 +923.2 - SF10BW125 (RX2)
599 599  
600 -The battery is designed to last for several years depends on the actually use environment and update interval. 
601 601  
602 602  
603 -The battery related documents as below:
644 +=== 2.7.6 KR920-923 (KR920) ===
604 604  
605 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
606 -* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
607 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
646 +Default channel:
608 608  
648 +922.1 - SF7BW125 to SF12BW125
649 +
650 +922.3 - SF7BW125 to SF12BW125
651 +
652 +922.5 - SF7BW125 to SF12BW125
653 +
654 +
655 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
656 +
657 +922.1 - SF7BW125 to SF12BW125
658 +
659 +922.3 - SF7BW125 to SF12BW125
660 +
661 +922.5 - SF7BW125 to SF12BW125
662 +
663 +922.7 - SF7BW125 to SF12BW125
664 +
665 +922.9 - SF7BW125 to SF12BW125
666 +
667 +923.1 - SF7BW125 to SF12BW125
668 +
669 +923.3 - SF7BW125 to SF12BW125
670 +
671 +
672 +(% style="color:#037691" %)**Downlink:**
673 +
674 +Uplink channels 1-7(RX1)
675 +
676 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
677 +
678 +
679 +
680 +=== 2.7.7 IN865-867 (IN865) ===
681 +
682 +(% style="color:#037691" %)** Uplink:**
683 +
684 +865.0625 - SF7BW125 to SF12BW125
685 +
686 +865.4025 - SF7BW125 to SF12BW125
687 +
688 +865.9850 - SF7BW125 to SF12BW125
689 +
690 +
691 +(% style="color:#037691" %) **Downlink:**
692 +
693 +Uplink channels 1-3 (RX1)
694 +
695 +866.550 - SF10BW125 (RX2)
696 +
697 +
698 +
699 +
700 +== 2.8 LED Indicator ==
701 +
702 +The LSE01 has an internal LED which is to show the status of different state.
703 +
704 +* Blink once when device power on.
705 +* Solid ON for 5 seconds once device successful Join the network.
706 +* Blink once when device transmit a packet.
707 +
708 +== 2.9 Installation in Soil ==
709 +
710 +**Measurement the soil surface**
711 +
712 +
713 +[[image:1654506634463-199.png]] ​
714 +
609 609  (((
610 -[[image:image-20220708140453-6.png]]
716 +(((
717 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
611 611  )))
719 +)))
612 612  
613 613  
614 614  
615 -=== 2.9.2  Power consumption Analyze ===
723 +[[image:1654506665940-119.png]]
616 616  
617 617  (((
618 -Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
726 +Dig a hole with diameter > 20CM.
619 619  )))
620 620  
729 +(((
730 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
731 +)))
621 621  
733 +
734 +== 2.10 ​Firmware Change Log ==
735 +
622 622  (((
623 -Instruction to use as below:
737 +**Firmware download link:**
624 624  )))
625 625  
626 626  (((
627 -(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
741 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
628 628  )))
629 629  
744 +(((
745 +
746 +)))
630 630  
631 631  (((
632 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose
749 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
633 633  )))
634 634  
635 -* (((
636 -Product Model
752 +(((
753 +
637 637  )))
638 -* (((
639 -Uplink Interval
755 +
756 +(((
757 +**V1.0.**
640 640  )))
641 -* (((
642 -Working Mode
643 -)))
644 644  
645 645  (((
646 -And the Life expectation in difference case will be shown on the right.
761 +Release
647 647  )))
648 648  
649 -[[image:image-20220708141352-7.jpeg]]
650 650  
765 +== 2.11 ​Battery Analysis ==
651 651  
767 +=== 2.11.1 ​Battery Type ===
652 652  
653 -=== 2.9.3  ​Battery Note ===
769 +(((
770 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
771 +)))
654 654  
655 655  (((
656 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
774 +The battery is designed to last for more than 5 years for the LSN50.
657 657  )))
658 658  
777 +(((
778 +(((
779 +The battery-related documents are as below:
780 +)))
781 +)))
659 659  
783 +* (((
784 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
785 +)))
786 +* (((
787 +[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
788 +)))
789 +* (((
790 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
791 +)))
660 660  
661 -=== 2.9.4  Replace the battery ===
793 + [[image:image-20220610172436-1.png]]
662 662  
795 +
796 +
797 +=== 2.11.2 ​Battery Note ===
798 +
663 663  (((
664 -The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
800 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
665 665  )))
666 666  
667 667  
668 668  
669 -= 3. ​ Access NB-IoT Module =
805 +=== 2.11.3 Replace the battery ===
670 670  
671 671  (((
672 -Users can directly access the AT command set of the NB-IoT module.
808 +If Battery is lower than 2.7v, user should replace the battery of LSE01.
673 673  )))
674 674  
675 675  (((
676 -The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
812 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
677 677  )))
678 678  
679 -[[image:1657261278785-153.png]]
815 +(((
816 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
817 +)))
680 680  
681 681  
682 682  
683 -= 4.  Using the AT Commands =
821 += 3. Using the AT Commands =
684 684  
685 -== 4.1  Access AT Commands ==
823 +== 3.1 Access AT Commands ==
686 686  
687 -See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
688 688  
826 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
689 689  
690 -AT+<CMD>?  : Help on <CMD>
828 +[[image:1654501986557-872.png||height="391" width="800"]]
691 691  
692 -AT+<CMD>         : Run <CMD>
693 693  
694 -AT+<CMD>=<value> : Set the value
831 +Or if you have below board, use below connection:
695 695  
696 -AT+<CMD>=?  : Get the value
697 697  
834 +[[image:1654502005655-729.png||height="503" width="801"]]
698 698  
836 +
837 +
838 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
839 +
840 +
841 + [[image:1654502050864-459.png||height="564" width="806"]]
842 +
843 +
844 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
845 +
846 +
847 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
848 +
849 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
850 +
851 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
852 +
853 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
854 +
855 +
699 699  (% style="color:#037691" %)**General Commands**(%%)      
700 700  
701 -AT  : Attention       
858 +(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
702 702  
703 -AT?  : Short Help     
860 +(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
704 704  
705 -ATZ  : MCU Reset    
862 +(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
706 706  
707 -AT+TDC  : Application Data Transmission Interval
864 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
708 708  
709 -AT+CFG  : Print all configurations
710 710  
711 -AT+CFGMOD           : Working mode selection
867 +(% style="color:#037691" %)**Keys, IDs and EUIs management**
712 712  
713 -AT+INTMOD            : Set the trigger interrupt mode
869 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
714 714  
715 -AT+5VT  : Set extend the time of 5V power  
871 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
716 716  
717 -AT+PRO  : Choose agreement
873 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
718 718  
719 -AT+WEIGRE  : Get weight or set weight to 0
875 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
720 720  
721 -AT+WEIGAP  : Get or Set the GapValue of weight
877 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
722 722  
723 -AT+RXDL  : Extend the sending and receiving time
879 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
724 724  
725 -AT+CNTFAC  : Get or set counting parameters
881 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
726 726  
727 -AT+SERVADDR  : Server Address
883 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
728 728  
885 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
729 729  
730 -(% style="color:#037691" %)**COAP Management**      
887 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
731 731  
732 -AT+URI            : Resource parameters
889 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
733 733  
891 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
734 734  
735 -(% style="color:#037691" %)**UDP Management**
893 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
736 736  
737 -AT+CFM          : Upload confirmation mode (only valid for UDP)
895 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
738 738  
897 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
739 739  
740 -(% style="color:#037691" %)**MQTT Management**
899 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
741 741  
742 -AT+CLIENT               : Get or Set MQTT client
743 743  
744 -AT+UNAME  : Get or Set MQTT Username
902 +(% style="color:#037691" %)**LoRa Network Management**
745 745  
746 -AT+PWD                  : Get or Set MQTT password
904 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
747 747  
748 -AT+PUBTOPI : Get or Set MQTT publish topic
906 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
749 749  
750 -AT+SUBTOPIC  : Get or Set MQTT subscription topic
908 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
751 751  
910 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
752 752  
753 -(% style="color:#037691" %)**Information**          
912 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
754 754  
755 -AT+FDR  : Factory Data Reset
914 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
756 756  
757 -AT+PWOR : Serial Access Password
916 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
758 758  
918 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
759 759  
920 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
760 760  
761 -= ​5.  FAQ =
922 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
762 762  
763 -== 5.1 How to Upgrade Firmware ==
924 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
764 764  
926 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
765 765  
928 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
929 +
930 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
931 +
932 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
933 +
934 +
935 +(% style="color:#037691" %)**Information** 
936 +
937 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
938 +
939 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
940 +
941 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
942 +
943 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
944 +
945 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
946 +
947 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
948 +
949 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
950 +
951 +
952 += ​4. FAQ =
953 +
954 +== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
955 +
766 766  (((
767 -User can upgrade the firmware for 1) bug fix, 2) new feature release.
957 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
958 +When downloading the images, choose the required image file for download. ​
768 768  )))
769 769  
770 770  (((
771 -Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
962 +
772 772  )))
773 773  
774 774  (((
775 -(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
966 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
776 776  )))
777 777  
969 +(((
970 +
971 +)))
778 778  
973 +(((
974 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
975 +)))
779 779  
780 -= 6.  Trouble Shooting =
977 +(((
978 +
979 +)))
781 781  
782 -== 6.1  ​Connection problem when uploading firmware ==
981 +(((
982 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
983 +)))
783 783  
985 +[[image:image-20220606154726-3.png]]
784 784  
785 -(% class="wikigeneratedid" %)
987 +
988 +When you use the TTN network, the US915 frequency bands use are:
989 +
990 +* 903.9 - SF7BW125 to SF10BW125
991 +* 904.1 - SF7BW125 to SF10BW125
992 +* 904.3 - SF7BW125 to SF10BW125
993 +* 904.5 - SF7BW125 to SF10BW125
994 +* 904.7 - SF7BW125 to SF10BW125
995 +* 904.9 - SF7BW125 to SF10BW125
996 +* 905.1 - SF7BW125 to SF10BW125
997 +* 905.3 - SF7BW125 to SF10BW125
998 +* 904.6 - SF8BW500
999 +
786 786  (((
787 -(% style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]]
1001 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
1002 +
1003 +* (% style="color:#037691" %)**AT+CHE=2**
1004 +* (% style="color:#037691" %)**ATZ**
788 788  )))
789 789  
1007 +(((
1008 +
790 790  
1010 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
1011 +)))
791 791  
792 -== 6.2  AT Command input doesn't work ==
1013 +(((
1014 +
1015 +)))
793 793  
794 794  (((
795 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1018 +The **AU915** band is similar. Below are the AU915 Uplink Channels.
796 796  )))
797 797  
1021 +[[image:image-20220606154825-4.png]]
798 798  
799 799  
800 -= 7. ​ Order Info =
801 801  
1025 += 5. Trouble Shooting =
802 802  
803 -Part Number**:** (% style="color:#4f81bd" %)**NSE01**
1027 +== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
804 804  
1029 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
805 805  
1031 +
1032 +== 5.2 AT Command input doesn’t work ==
1033 +
1034 +(((
1035 +In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1036 +)))
1037 +
1038 +
1039 +== 5.3 Device rejoin in at the second uplink packet ==
1040 +
1041 +(% style="color:#4f81bd" %)**Issue describe as below:**
1042 +
1043 +[[image:1654500909990-784.png]]
1044 +
1045 +
1046 +(% style="color:#4f81bd" %)**Cause for this issue:**
1047 +
1048 +(((
1049 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
1050 +)))
1051 +
1052 +
1053 +(% style="color:#4f81bd" %)**Solution: **
1054 +
1055 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1056 +
1057 +[[image:1654500929571-736.png||height="458" width="832"]]
1058 +
1059 +
1060 += 6. ​Order Info =
1061 +
1062 +
1063 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1064 +
1065 +
1066 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1067 +
1068 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1069 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1070 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1071 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1072 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1073 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1074 +* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1075 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1076 +
1077 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1078 +
1079 +* (% style="color:red" %)**4**(%%): 4000mAh battery
1080 +* (% style="color:red" %)**8**(%%): 8500mAh battery
1081 +
806 806  (% class="wikigeneratedid" %)
807 807  (((
808 808  
809 809  )))
810 810  
811 -= 8.  Packing Info =
1087 += 7. Packing Info =
812 812  
813 813  (((
814 814  
815 815  
816 816  (% style="color:#037691" %)**Package Includes**:
1093 +)))
817 817  
818 -
819 -* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
820 -* External antenna x 1
1095 +* (((
1096 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
821 821  )))
822 822  
823 823  (((
... ... @@ -824,20 +824,24 @@
824 824  
825 825  
826 826  (% style="color:#037691" %)**Dimension and weight**:
1103 +)))
827 827  
828 -
829 -* Size: 195 x 125 x 55 mm
830 -* Weight:   420g
1105 +* (((
1106 +Device Size: cm
831 831  )))
1108 +* (((
1109 +Device Weight: g
1110 +)))
1111 +* (((
1112 +Package Size / pcs : cm
1113 +)))
1114 +* (((
1115 +Weight / pcs : g
832 832  
833 -(((
834 834  
835 -
836 -
837 -
838 838  )))
839 839  
840 -= 9.  Support =
1120 += 8. Support =
841 841  
842 842  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
843 843  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657245163077-232.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -102.7 KB
Content