Changes for page NDDS75 -- NB-IoT Distance Detect Sensor User Manual
Last modified by Bei Jinggeng on 2024/05/31 09:53
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 24 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - NSE01NB-IoTSoil Moisture & EC Sensor User Manual1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -3,16 +3,8 @@ 3 3 4 4 5 5 6 +**Contents:** 6 6 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 -**Table of Contents:** 15 - 16 16 {{toc/}} 17 17 18 18 ... ... @@ -20,804 +20,1015 @@ 20 20 21 21 22 22 15 += 1. Introduction = 23 23 24 -= 1. Introduction =17 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 25 25 26 -== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 27 - 28 28 ((( 29 - 20 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 21 +))) 30 30 31 31 ((( 32 - DraginoNSE01 isan(% style="color:blue" %)**NB-IOT soilmoisture& EC sensor**(%%)foragriculturalIoT. Used tomeasure the soilmoisture ofsaline-alkali soiland loam.Thesoil sensor uses the FDRmethod to calculate soil moisture andcompensates it with soiltemperature andelectricalconductivity.It hasalsobeencalibratedfor mineralsoiltypesatthe factory.24 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 33 33 ))) 34 34 35 35 ((( 36 - Itcandetect (%style="color:blue"%)**SoilMoisture,Soil Temperature andSoilConductivity**(%%),anduploaditsvalue totheserver wirelessly.28 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 37 37 ))) 38 38 39 39 ((( 40 - Thewirelesstechnology usedin NSE01allowsthedeviceto senddataata lowdata rateand reachultra-longdistances, providingultra-long-distancespreadspectrum Communication.32 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 41 41 ))) 42 42 43 43 ((( 44 - NSE01arepoweredby(%style="color:blue"%)**8500mAhLi-SOCI2**(%%)batteries,which canbeusedforupto5 years.36 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 45 45 ))) 46 46 47 - 48 -))) 49 49 50 50 [[image:1654503236291-817.png]] 51 51 52 52 53 -[[image:165 7245163077-232.png]]43 +[[image:1654503265560-120.png]] 54 54 55 55 56 56 57 -== 1.2 47 +== 1.2 Features == 58 58 59 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 49 +* LoRaWAN 1.0.3 Class A 50 +* Ultra low power consumption 60 60 * Monitor Soil Moisture 61 61 * Monitor Soil Temperature 62 62 * Monitor Soil Conductivity 54 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 63 63 * AT Commands to change parameters 64 64 * Uplink on periodically 65 65 * Downlink to change configure 66 66 * IP66 Waterproof Enclosure 67 -* Ultra-Low Power consumption 68 -* AT Commands to change parameters 69 -* Micro SIM card slot for NB-IoT SIM 70 -* 8500mAh Battery for long term use 59 +* 4000mAh or 8500mAh Battery for long term use 71 71 61 +== 1.3 Specification == 72 72 73 - ==1.3Specification==63 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 74 74 65 +[[image:image-20220606162220-5.png]] 75 75 76 -(% style="color:#037691" %)**Common DC Characteristics:** 77 77 78 -* Supply Voltage: 2.1v ~~ 3.6v 79 -* Operating Temperature: -40 ~~ 85°C 80 80 81 - (% style="color:#037691"%)**NB-IoT Spec:**69 +== 1.4 Applications == 82 82 83 -* - B1 @H-FDD: 2100MHz 84 -* - B3 @H-FDD: 1800MHz 85 -* - B8 @H-FDD: 900MHz 86 -* - B5 @H-FDD: 850MHz 87 -* - B20 @H-FDD: 800MHz 88 -* - B28 @H-FDD: 700MHz 71 +* Smart Agriculture 89 89 90 -Probe(% style="color:#037691" %)** Specification:** 73 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 74 + 91 91 92 - MeasureVolume:Base on the centrapin of the probe,a cylinder with7cm diameter and 10cm height.76 +== 1.5 Firmware Change log == 93 93 94 -[[image:image-20220708101224-1.png]] 95 95 79 +**LSE01 v1.0 :** Release 96 96 97 97 98 -== 1.4 Applications == 99 99 100 - *SmartAgriculture83 += 2. Configure LSE01 to connect to LoRaWAN network = 101 101 102 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 103 - 85 +== 2.1 How it works == 104 104 105 -== 1.5 Pin Definitions == 87 +((( 88 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 89 +))) 106 106 91 +((( 92 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 93 +))) 107 107 108 -[[image:1657246476176-652.png]] 109 109 110 110 97 +== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 111 111 112 - =2. UseNSE01to communicate withIoTServer=99 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 113 113 114 -== 2.1 How it works == 115 115 102 +[[image:1654503992078-669.png]] 116 116 104 + 105 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 106 + 107 + 108 +**Step 1**: Create a device in TTN with the OTAA keys from LSE01. 109 + 110 +Each LSE01 is shipped with a sticker with the default device EUI as below: 111 + 112 +[[image:image-20220606163732-6.jpeg]] 113 + 114 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 115 + 116 +**Add APP EUI in the application** 117 + 118 + 119 +[[image:1654504596150-405.png]] 120 + 121 + 122 + 123 +**Add APP KEY and DEV EUI** 124 + 125 +[[image:1654504683289-357.png]] 126 + 127 + 128 + 129 +**Step 2**: Power on LSE01 130 + 131 + 132 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 133 + 134 +[[image:image-20220606163915-7.png]] 135 + 136 + 137 +**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 138 + 139 +[[image:1654504778294-788.png]] 140 + 141 + 142 + 143 +== 2.3 Uplink Payload == 144 + 145 +=== 2.3.1 MOD~=0(Default Mode) === 146 + 147 +LSE01 will uplink payload via LoRaWAN with below payload format: 148 + 149 + 150 +Uplink payload includes in total 11 bytes. 151 + 152 + 153 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 154 +|((( 155 +**Size** 156 + 157 +**(bytes)** 158 +)))|**2**|**2**|**2**|**2**|**2**|**1** 159 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 160 +Temperature 161 + 162 +(Reserve, Ignore now) 163 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 164 +MOD & Digital Interrupt 165 + 166 +(Optional) 167 +))) 168 + 169 + 170 + 171 +=== 2.3.2 MOD~=1(Original value) === 172 + 173 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 174 + 175 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 176 +|((( 177 +**Size** 178 + 179 +**(bytes)** 180 +)))|**2**|**2**|**2**|**2**|**2**|**1** 181 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 182 +Temperature 183 + 184 +(Reserve, Ignore now) 185 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 186 +MOD & Digital Interrupt 187 + 188 +(Optional) 189 +))) 190 + 191 + 192 + 193 +=== 2.3.3 Battery Info === 194 + 195 +Check the battery voltage for LSE01. 196 + 197 +Ex1: 0x0B45 = 2885mV 198 + 199 +Ex2: 0x0B49 = 2889mV 200 + 201 + 202 + 203 +=== 2.3.4 Soil Moisture === 204 + 205 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 206 + 207 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 208 + 209 + 210 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 211 + 212 + 213 + 214 +=== 2.3.5 Soil Temperature === 215 + 216 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 217 + 218 +**Example**: 219 + 220 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 221 + 222 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 223 + 224 + 225 + 226 +=== 2.3.6 Soil Conductivity (EC) === 227 + 117 117 ((( 118 - The NSE01 is equipped withaNB-IoTmodule, the pre-loaded firmware in NSE01willgetenvironmentdata fromsensorsandsendthe valuetolocal NB-IoTnetworkviatheNB-IoT module.NB-IoTnetworkwillforwardthisvaluetoIoT server viaheprotocoldefinedby NSE01.229 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 119 119 ))) 120 120 232 +((( 233 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 234 +))) 121 121 122 122 ((( 123 - Thediagram belowshowstheworkingflowin defaultfirmwareofNSE01:237 +Generally, the EC value of irrigation water is less than 800uS / cm. 124 124 ))) 125 125 126 -[[image:image-20220708101605-2.png]] 240 +((( 241 + 242 +))) 127 127 128 128 ((( 129 129 130 130 ))) 131 131 248 +=== 2.3.7 MOD === 132 132 250 +Firmware version at least v2.1 supports changing mode. 133 133 134 - == 2.2 Configure theNSE01=252 +For example, bytes[10]=90 135 135 254 +mod=(bytes[10]>>7)&0x01=1. 136 136 137 -=== 2.2.1 Test Requirement === 138 138 257 +**Downlink Command:** 139 139 140 -((( 141 -To use NSE01 in your city, make sure meet below requirements: 142 -))) 259 +If payload = 0x0A00, workmode=0 143 143 144 -* Your local operator has already distributed a NB-IoT Network there. 145 -* The local NB-IoT network used the band that NSE01 supports. 146 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 261 +If** **payload =** **0x0A01, workmode=1 147 147 148 -((( 149 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 150 -))) 151 151 152 152 153 - [[image:1657249419225-449.png]]265 +=== 2.3.8 Decode payload in The Things Network === 154 154 267 +While using TTN network, you can add the payload format to decode the payload. 155 155 156 156 157 - ===2.2.2 Insert SIM card ===270 +[[image:1654505570700-128.png]] 158 158 159 -((( 160 -Insert the NB-IoT Card get from your provider. 161 -))) 272 +The payload decoder function for TTN is here: 162 162 163 -((( 164 -User need to take out the NB-IoT module and insert the SIM card like below: 165 -))) 274 +LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 166 166 167 167 168 -[[image:1657249468462-536.png]] 169 169 278 +== 2.4 Uplink Interval == 170 170 280 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 171 171 172 -=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 173 173 174 -((( 175 -((( 176 -User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 177 -))) 178 -))) 179 179 284 +== 2.5 Downlink Payload == 180 180 181 - **Connection:**286 +By default, LSE50 prints the downlink payload to console port. 182 182 183 - (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND288 +[[image:image-20220606165544-8.png]] 184 184 185 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 186 186 187 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD291 +**Examples:** 188 188 189 189 190 - InthePC, use below serialtoolsettings:294 +* **Set TDC** 191 191 192 -* Baud: (% style="color:green" %)**9600** 193 -* Data bits:** (% style="color:green" %)8(%%)** 194 -* Stop bits: (% style="color:green" %)**1** 195 -* Parity: (% style="color:green" %)**None** 196 -* Flow Control: (% style="color:green" %)**None** 296 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 197 197 198 -((( 199 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 200 -))) 298 +Payload: 01 00 00 1E TDC=30S 201 201 202 - [[image:image-20220708110657-3.png]]300 +Payload: 01 00 00 3C TDC=60S 203 203 204 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 205 205 303 +* **Reset** 206 206 305 +If payload = 0x04FF, it will reset the LSE01 207 207 208 -=== 2.2.4 Use CoAP protocol to uplink data === 209 209 210 - (%style="color:red" %)Note: if you don't haveCoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]308 +* **CFM** 211 211 310 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 212 212 213 -**Use below commands:** 214 214 215 -* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 216 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 217 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 218 218 219 - Forparameterdescription,pleaserefer toATcommand set314 +== 2.6 Show Data in DataCake IoT Server == 220 220 221 -[[ima ge:1657249793983-486.png]]316 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 222 222 223 223 224 - Afterconfigure theserveraddressand(% style="color:green" %)**reset thedevice**(%%) (via AT+ATZ ), NSE01willstart to uplinksensorvaluesto CoAP server.319 +**Step 1**: Be sure that your device is programmed and properly connected to the network at this time. 225 225 226 - [[image:1657249831934-534.png]]321 +**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 227 227 228 228 324 +[[image:1654505857935-743.png]] 229 229 230 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 231 231 232 - This feature is supported since firmwareversion v1.0.1327 +[[image:1654505874829-548.png]] 233 233 329 +Step 3: Create an account or log in Datacake. 234 234 235 -* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 236 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 237 -* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 331 +Step 4: Search the LSE01 and add DevEUI. 238 238 239 -[[image:1657249864775-321.png]] 240 240 334 +[[image:1654505905236-553.png]] 241 241 242 -[[image:1657249930215-289.png]] 243 243 337 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 244 244 339 +[[image:1654505925508-181.png]] 245 245 246 -=== 2.2.6 Use MQTT protocol to uplink data === 247 247 248 -This feature is supported since firmware version v110 249 249 343 +== 2.7 Frequency Plans == 250 250 251 -* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 252 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 253 -* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 254 -* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 255 -* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 256 -* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 257 -* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 345 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 258 258 259 -[[image:1657249978444-674.png]] 260 260 348 +=== 2.7.1 EU863-870 (EU868) === 261 261 262 - [[image:1657249990869-686.png]]350 +(% style="color:#037691" %)** Uplink:** 263 263 352 +868.1 - SF7BW125 to SF12BW125 264 264 265 -((( 266 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 267 -))) 354 +868.3 - SF7BW125 to SF12BW125 and SF7BW250 268 268 356 +868.5 - SF7BW125 to SF12BW125 269 269 358 +867.1 - SF7BW125 to SF12BW125 270 270 271 - === 2.2.7UseTCP protocolto uplink data ===360 +867.3 - SF7BW125 to SF12BW125 272 272 273 - Thisfeatureissupported since firmware versionv110362 +867.5 - SF7BW125 to SF12BW125 274 274 364 +867.7 - SF7BW125 to SF12BW125 275 275 276 -* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 277 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 366 +867.9 - SF7BW125 to SF12BW125 278 278 279 - [[image:1657250217799-140.png]]368 +868.8 - FSK 280 280 281 281 282 - [[image:1657250255956-604.png]]371 +(% style="color:#037691" %)** Downlink:** 283 283 373 +Uplink channels 1-9 (RX1) 284 284 375 +869.525 - SF9BW125 (RX2 downlink only) 285 285 286 -=== 2.2.8 Change Update Interval === 287 287 288 -User can use below command to change the (% style="color:green" %)**uplink interval**. 289 289 290 - * (% style="color:blue" %)**AT+TDC=600**%%)~/~/Set Update Interval to 600s379 +=== 2.7.2 US902-928(US915) === 291 291 292 -((( 293 -(% style="color:red" %)**NOTE:** 294 -))) 381 +Used in USA, Canada and South America. Default use CHE=2 295 295 296 -((( 297 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 298 -))) 383 +(% style="color:#037691" %)**Uplink:** 299 299 385 +903.9 - SF7BW125 to SF10BW125 300 300 387 +904.1 - SF7BW125 to SF10BW125 301 301 302 - == 2.3UplinkPayload==389 +904.3 - SF7BW125 to SF10BW125 303 303 304 - Inthismode,uplink payload includes intotal18 bytes391 +904.5 - SF7BW125 to SF10BW125 305 305 306 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 307 -|=(% style="width: 50px;" %)((( 308 -**Size(bytes)** 309 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1** 310 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 393 +904.7 - SF7BW125 to SF10BW125 311 311 312 - Ifweusethe MQTT client tosubscribe to this MQTT topic, we can see the following information when the NSE01uplink data.395 +904.9 - SF7BW125 to SF10BW125 313 313 397 +905.1 - SF7BW125 to SF10BW125 314 314 315 - [[image:image-20220708111918-4.png]]399 +905.3 - SF7BW125 to SF10BW125 316 316 317 317 318 - Thepayload is ASCII string,representative same HEX:402 +(% style="color:#037691" %)**Downlink:** 319 319 320 - 0x72403155615900640c7817075e0a8c02f900 where:404 +923.3 - SF7BW500 to SF12BW500 321 321 322 -* Device ID: 0x 724031556159 = 724031556159 323 -* Version: 0x0064=100=1.0.0 406 +923.9 - SF7BW500 to SF12BW500 324 324 325 -* BAT: 0x0c78 = 3192 mV = 3.192V 326 -* Singal: 0x17 = 23 327 -* Soil Moisture: 0x075e= 1886 = 18.86 % 328 -* Soil Temperature:0x0a8c =2700=27 °C 329 -* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 330 -* Interrupt: 0x00 = 0 408 +924.5 - SF7BW500 to SF12BW500 331 331 410 +925.1 - SF7BW500 to SF12BW500 332 332 333 - ==2.4PayloadExplanation andSensorInterface==412 +925.7 - SF7BW500 to SF12BW500 334 334 414 +926.3 - SF7BW500 to SF12BW500 335 335 336 - ===2.4.1 DeviceID===416 +926.9 - SF7BW500 to SF12BW500 337 337 338 - Bydefault,theDevice ID equaltothe last 6 bytes of IMEI.418 +927.5 - SF7BW500 to SF12BW500 339 339 340 - Usercanuse(%style="color:blue" %)**AT+DEUI**(%%) to set Device ID420 +923.3 - SF12BW500(RX2 downlink only) 341 341 342 -**Example:** 343 343 344 -AT+DEUI=A84041F15612 345 345 346 - TheDeviceID is stored in a none-erasearea,Upgrade the firmware or run AT+FDR won't erase Device ID.424 +=== 2.7.3 CN470-510 (CN470) === 347 347 426 +Used in China, Default use CHE=1 348 348 428 +(% style="color:#037691" %)**Uplink:** 349 349 350 - === 2.4.2VersionInfo ===430 +486.3 - SF7BW125 to SF12BW125 351 351 352 - Specifythesoftware version: 0x64=100,means firmware version1.00.432 +486.5 - SF7BW125 to SF12BW125 353 353 354 - For example: 0x00 64:this device is NSE01with firmware version1.0.0.434 +486.7 - SF7BW125 to SF12BW125 355 355 436 +486.9 - SF7BW125 to SF12BW125 356 356 438 +487.1 - SF7BW125 to SF12BW125 357 357 358 - === 2.4.3atteryInfo===440 +487.3 - SF7BW125 to SF12BW125 359 359 360 -((( 361 -Check the battery voltage for LSE01. 362 -))) 442 +487.5 - SF7BW125 to SF12BW125 363 363 364 -((( 365 -Ex1: 0x0B45 = 2885mV 366 -))) 444 +487.7 - SF7BW125 to SF12BW125 367 367 368 -((( 369 -Ex2: 0x0B49 = 2889mV 370 -))) 371 371 447 +(% style="color:#037691" %)**Downlink:** 372 372 449 +506.7 - SF7BW125 to SF12BW125 373 373 374 - === 2.4.4SignalStrength===451 +506.9 - SF7BW125 to SF12BW125 375 375 376 - NB-IoTNetworksignalStrength.453 +507.1 - SF7BW125 to SF12BW125 377 377 378 - **Ex1:0x1d=29**455 +507.3 - SF7BW125 to SF12BW125 379 379 380 - (% style="color:blue" %)**0**(%%)113dBmorless457 +507.5 - SF7BW125 to SF12BW125 381 381 382 - (%style="color:blue"%)**1**(%%)-111dBm459 +507.7 - SF7BW125 to SF12BW125 383 383 384 - (%style="color:blue"%)**2...30**(%%)-109dBm... -53dBm461 +507.9 - SF7BW125 to SF12BW125 385 385 386 - (% style="color:blue" %)**31**(%%)-51dBmorgreater463 +508.1 - SF7BW125 to SF12BW125 387 387 388 - (%style="color:blue"%)**99**(%%)Not known ornot detectable465 +505.3 - SF12BW125 (RX2 downlink only) 389 389 390 390 391 391 392 -=== 2. 4.5Soil Moisture===469 +=== 2.7.4 AU915-928(AU915) === 393 393 394 -((( 395 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 396 -))) 471 +Default use CHE=2 397 397 398 -((( 399 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 400 -))) 473 +(% style="color:#037691" %)**Uplink:** 401 401 402 -((( 403 - 404 -))) 475 +916.8 - SF7BW125 to SF12BW125 405 405 406 -((( 407 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 408 -))) 477 +917.0 - SF7BW125 to SF12BW125 409 409 479 +917.2 - SF7BW125 to SF12BW125 410 410 481 +917.4 - SF7BW125 to SF12BW125 411 411 412 - === 2.4.6oilTemperature===483 +917.6 - SF7BW125 to SF12BW125 413 413 414 -((( 415 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 416 -))) 485 +917.8 - SF7BW125 to SF12BW125 417 417 418 -((( 419 -**Example**: 420 -))) 487 +918.0 - SF7BW125 to SF12BW125 421 421 422 -((( 423 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 424 -))) 489 +918.2 - SF7BW125 to SF12BW125 425 425 426 -((( 427 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 428 -))) 429 429 492 +(% style="color:#037691" %)**Downlink:** 430 430 494 +923.3 - SF7BW500 to SF12BW500 431 431 432 - ===2.4.7SoilConductivity(EC) ===496 +923.9 - SF7BW500 to SF12BW500 433 433 434 -((( 435 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 436 -))) 498 +924.5 - SF7BW500 to SF12BW500 437 437 438 -((( 439 -For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 440 -))) 500 +925.1 - SF7BW500 to SF12BW500 441 441 442 -((( 443 -Generally, the EC value of irrigation water is less than 800uS / cm. 444 -))) 502 +925.7 - SF7BW500 to SF12BW500 445 445 446 -((( 447 - 448 -))) 504 +926.3 - SF7BW500 to SF12BW500 449 449 450 -((( 451 - 452 -))) 506 +926.9 - SF7BW500 to SF12BW500 453 453 454 - ===2.4.8DigitalInterrupt===508 +927.5 - SF7BW500 to SF12BW500 455 455 456 - DigitalInterruptrefers to pin(% style="color:blue" %)**GPIO_EXTI**(%%),andthere are different trigger methods. When there is a trigger, the NSE01will send a packettothe server.510 +923.3 - SF12BW500(RX2 downlink only) 457 457 458 -The command is: 459 459 460 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 461 461 514 +=== 2.7.5 AS920-923 & AS923-925 (AS923) === 462 462 463 - Thelower four bitsofthis data field shows if this packet is generatedby interruptor not. Click here for the hardware and softwareset up.516 +(% style="color:#037691" %)**Default Uplink channel:** 464 464 518 +923.2 - SF7BW125 to SF10BW125 465 465 466 - Example:520 +923.4 - SF7BW125 to SF10BW125 467 467 468 -0x(00): Normal uplink packet. 469 469 470 - 0x(01):Interrupt UplinkPacket.523 +(% style="color:#037691" %)**Additional Uplink Channel**: 471 471 525 +(OTAA mode, channel added by JoinAccept message) 472 472 527 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 473 473 474 - ===2.4.9+5VOutput===529 +922.2 - SF7BW125 to SF10BW125 475 475 476 - NSE01willenable +5Voutput beforeall sampling and disable the +5v after all sampling.531 +922.4 - SF7BW125 to SF10BW125 477 477 533 +922.6 - SF7BW125 to SF10BW125 478 478 479 - The5Voutput time can be controlledby AT Command.535 +922.8 - SF7BW125 to SF10BW125 480 480 481 - (%style="color:blue"%)**AT+5VT=1000**537 +923.0 - SF7BW125 to SF10BW125 482 482 483 - Meansset5Vvalidtime tohave 1000ms.So the real 5V output will actually have1000ms + sampling time for other sensors.539 +922.0 - SF7BW125 to SF10BW125 484 484 485 485 542 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 486 486 487 - ==2.5DownlinkPayload ==544 +923.6 - SF7BW125 to SF10BW125 488 488 489 - Bydefault,NSE01prints the downlinkpayload to console port.546 +923.8 - SF7BW125 to SF10BW125 490 490 491 - [[image:image-20220708133731-5.png]]548 +924.0 - SF7BW125 to SF10BW125 492 492 550 +924.2 - SF7BW125 to SF10BW125 493 493 494 -((( 495 -(% style="color:blue" %)**Examples:** 496 -))) 552 +924.4 - SF7BW125 to SF10BW125 497 497 498 -((( 499 - 500 -))) 554 +924.6 - SF7BW125 to SF10BW125 501 501 502 -* ((( 503 -(% style="color:blue" %)**Set TDC** 504 -))) 505 505 506 -((( 507 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 508 -))) 557 +(% style="color:#037691" %)** Downlink:** 509 509 510 -((( 511 -Payload: 01 00 00 1E TDC=30S 512 -))) 559 +Uplink channels 1-8 (RX1) 513 513 514 -((( 515 -Payload: 01 00 00 3C TDC=60S 516 -))) 561 +923.2 - SF10BW125 (RX2) 517 517 518 -((( 519 - 520 -))) 521 521 522 -* ((( 523 -(% style="color:blue" %)**Reset** 524 -))) 525 525 526 -((( 527 -If payload = 0x04FF, it will reset the NSE01 528 -))) 565 +=== 2.7.6 KR920-923 (KR920) === 529 529 567 +Default channel: 530 530 531 - *(%style="color:blue"%)**INTMOD**569 +922.1 - SF7BW125 to SF12BW125 532 532 533 - Downlink Payload: 06000003,SetAT+INTMOD=3571 +922.3 - SF7BW125 to SF12BW125 534 534 573 +922.5 - SF7BW125 to SF12BW125 535 535 536 536 537 - ==2.6LEDIndicator==576 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 538 538 539 -((( 540 -The NSE01 has an internal LED which is to show the status of different state. 578 +922.1 - SF7BW125 to SF12BW125 541 541 580 +922.3 - SF7BW125 to SF12BW125 542 542 543 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 544 -* Then the LED will be on for 1 second means device is boot normally. 545 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 546 -* For each uplink probe, LED will be on for 500ms. 547 -))) 582 +922.5 - SF7BW125 to SF12BW125 548 548 584 +922.7 - SF7BW125 to SF12BW125 549 549 586 +922.9 - SF7BW125 to SF12BW125 550 550 588 +923.1 - SF7BW125 to SF12BW125 551 551 552 - ==2.7InstallationinSoil ==590 +923.3 - SF7BW125 to SF12BW125 553 553 554 -__**Measurement the soil surface**__ 555 555 556 - Choosethe proper measuring position. Avoid the probe to touch rocks or hard things. Split thesurface soilaccording to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]593 +(% style="color:#037691" %)**Downlink:** 557 557 558 - [[image:1657259653666-883.png]] 595 +Uplink channels 1-7(RX1) 559 559 597 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 560 560 561 -((( 562 - 563 563 564 -((( 565 -Dig a hole with diameter > 20CM. 566 -))) 567 567 568 -((( 569 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 570 -))) 571 -))) 601 +=== 2.7.7 IN865-867 (IN865) === 572 572 573 - [[image:1654506665940-119.png]]603 +(% style="color:#037691" %)** Uplink:** 574 574 575 -((( 576 - 577 -))) 605 +865.0625 - SF7BW125 to SF12BW125 578 578 607 +865.4025 - SF7BW125 to SF12BW125 579 579 580 - == 2.8FirmwareChange Log==609 +865.9850 - SF7BW125 to SF12BW125 581 581 582 582 583 - DownloadURL& Firmware Changelog612 +(% style="color:#037691" %) **Downlink:** 584 584 585 - [[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]614 +Uplink channels 1-3 (RX1) 586 586 616 +866.550 - SF10BW125 (RX2) 587 587 588 -Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]] 589 589 590 590 591 591 592 -== 2. 9BatteryAnalysis==621 +== 2.8 LED Indicator == 593 593 594 - ===2.9.1BatteryType===623 +The LSE01 has an internal LED which is to show the status of different state. 595 595 625 +* Blink once when device power on. 626 +* Solid ON for 5 seconds once device successful Join the network. 627 +* Blink once when device transmit a packet. 596 596 597 -The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 598 598 599 599 600 - Thebatteryis designed to lastfor severalyears depends onthe actually use environmentandupdateinterval.631 +== 2.9 Installation in Soil == 601 601 633 +**Measurement the soil surface** 602 602 603 -The battery related documents as below: 604 604 605 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 606 -* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 607 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 636 +[[image:1654506634463-199.png]] 608 608 609 609 ((( 610 -[[image:image-20220708140453-6.png]] 639 +((( 640 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 611 611 ))) 642 +))) 612 612 613 613 645 +[[image:1654506665940-119.png]] 614 614 615 -=== 2.9.2 Power consumption Analyze === 647 +((( 648 +Dig a hole with diameter > 20CM. 649 +))) 616 616 617 617 ((( 618 - Draginobattery powered productare allrunsinLow Powermode. Wehavean update battery calculator whichbase onthemeasurementof the realdevice. User canuse this calculatorto checkthebatterylife andcalculatethe batterylifeif want to use different transmit interval.652 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 619 619 ))) 620 620 621 621 656 +== 2.10 Firmware Change Log == 657 + 622 622 ((( 623 - Instructiontouseasbelow:659 +**Firmware download link:** 624 624 ))) 625 625 626 626 ((( 627 - (% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:[[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]663 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 628 628 ))) 629 629 666 +((( 667 + 668 +))) 630 630 631 631 ((( 632 - (% style="color:blue" %)**Step2: **(%%)Openithoose671 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 633 633 ))) 634 634 635 - *(((636 - ProductModel674 +((( 675 + 637 637 ))) 638 -* ((( 639 -Uplink Interval 677 + 678 +((( 679 +**V1.0.** 640 640 ))) 641 -* ((( 642 -Working Mode 643 -))) 644 644 645 645 ((( 646 - And theLifeexpectation in difference casewill be shown on the right.683 +Release 647 647 ))) 648 648 649 -[[image:image-20220708141352-7.jpeg]] 650 650 687 +== 2.11 Battery Analysis == 651 651 689 +=== 2.11.1 Battery Type === 652 652 653 -=== 2.9.3 Battery Note === 691 +((( 692 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 693 +))) 654 654 655 655 ((( 656 -The Li-SICObattery is designedfor small current/ longperiod application. It isnotgood to use a high current,short period transmit method. Therecommendedminimum period for use ofthis batteryis5minutes. Ifyou useshorterperiod time to transmitLoRa,thenthe battery life may be decreased.696 +The battery is designed to last for more than 5 years for the LSN50. 657 657 ))) 658 658 699 +((( 700 +((( 701 +The battery-related documents are as below: 702 +))) 703 +))) 659 659 705 +* ((( 706 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 707 +))) 708 +* ((( 709 +[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 710 +))) 711 +* ((( 712 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 713 +))) 660 660 661 - ===2.9.4 Replacethe battery ===715 + [[image:image-20220606171726-9.png]] 662 662 717 + 718 + 719 +=== 2.11.2 Battery Note === 720 + 663 663 ((( 664 -The defaultbatterypackofNSE01includesaER26500 plussupercapacitor. Ifusercan'tfind this pack locally,theycanfindER26500 orquivalence withoutthe SPC1520 capacitor, which will alsowork inmostcase. TheSPCcanlarge thebatterylifeforhigh frequency use(update periodbelow5minutes).722 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 665 665 ))) 666 666 667 667 668 668 669 -= 3. AccessNB-IoTModule =727 +=== 2.11.3 Replace the battery === 670 670 671 671 ((( 672 - Userscan directlyaccesstheAT command setoftheNB-IoTmodule.730 +If Battery is lower than 2.7v, user should replace the battery of LSE01. 673 673 ))) 674 674 675 675 ((( 676 - The AT Commandsetcanrefer theBC35-G NB-IoTModuleATCommand: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]]734 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 677 677 ))) 678 678 679 -[[image:1657261278785-153.png]] 737 +((( 738 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 739 +))) 680 680 681 681 682 682 683 -= 4.743 += 3. Using the AT Commands = 684 684 685 -== 4.1745 +== 3.1 Access AT Commands == 686 686 687 -See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 688 688 748 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 689 689 690 - AT+<CMD>? : Helpon<CMD>750 +[[image:1654501986557-872.png||height="391" width="800"]] 691 691 692 -AT+<CMD> : Run <CMD> 693 693 694 - AT+<CMD>=<value>: Setthevalue753 +Or if you have below board, use below connection: 695 695 696 -AT+<CMD>=? : Get the value 697 697 756 +[[image:1654502005655-729.png||height="503" width="801"]] 698 698 758 + 759 + 760 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 761 + 762 + 763 + [[image:1654502050864-459.png||height="564" width="806"]] 764 + 765 + 766 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]] 767 + 768 + 769 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 770 + 771 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 772 + 773 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 774 + 775 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 776 + 777 + 699 699 (% style="color:#037691" %)**General Commands**(%%) 700 700 701 -AT 780 +(% style="background-color:#dcdcdc" %)**AT**(%%) : Attention 702 702 703 -AT? 782 +(% style="background-color:#dcdcdc" %)**AT?**(%%) : Short Help 704 704 705 -ATZ 784 +(% style="background-color:#dcdcdc" %)**ATZ**(%%) : MCU Reset 706 706 707 -AT+TDC 786 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%) : Application Data Transmission Interval 708 708 709 -AT+CFG : Print all configurations 710 710 711 - AT+CFGMOD: Workingmode selection789 +(% style="color:#037691" %)**Keys, IDs and EUIs management** 712 712 713 -AT+I NTMOD:Setthe trigger interruptmode791 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%) : Application EUI 714 714 715 -AT+ 5VTSetextend the timeof5V power793 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%) : Application Key 716 716 717 -AT+P ROChooseagreement795 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%) : Application Session Key 718 718 719 -AT+ WEIGREGet weightorsetweight to 0797 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%) : Device Address 720 720 721 -AT+ WEIGAPGet or SettheGapValue of weight799 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%) : Device EUI 722 722 723 -AT+ RXDL: Extendthe sendingandreceivingtime801 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%) : Network ID (You can enter this command change only after successful network connection) 724 724 725 -AT+ CNTFACGettcountingparameters803 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%) : Network Session Key Joining and sending date on LoRa network 726 726 727 -AT+ SERVADDR:ServerAddress805 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%) : Confirm Mode 728 728 807 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 729 729 730 -(% style="color:# 037691" %)**COAPManagement**809 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%) : Join LoRa? Network 731 731 732 -AT+ URIsourceparameters811 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%) : LoRa? Network Join Mode 733 733 813 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 734 734 735 -(% style="color:# 037691" %)**UDPManagement**815 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%) : Print Last Received Data in Raw Format 736 736 737 -AT+C FM:Uploadconfirmationmode (onlyvalid forUDP)817 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%) : Print Last Received Data in Binary Format 738 738 819 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 739 739 740 -(% style="color:# 037691" %)**MQTTManagement**821 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%) : Send Hexadecimal Data 741 741 742 -AT+CLIENT : Get or Set MQTT client 743 743 744 - AT+UNAMEGetSetMQTT Username824 +(% style="color:#037691" %)**LoRa Network Management** 745 745 746 -AT+ PWDGetor SetMQTT password826 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%) : Adaptive Rate 747 747 748 -AT+ PUBTOPICGetorSetMQTTpublishtopic828 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%) : LoRa Class(Currently only support class A 749 749 750 -AT+ SUBTOPIC :GetorSetMQTT subscriptiontopic830 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%) : Duty Cycle Setting 751 751 832 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 752 752 753 -(% style="color:# 037691" %)**Information**834 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink 754 754 755 -AT+F DRctoryDataReset836 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%) : Frame Counter Uplink 756 756 757 -AT+ PWORDSerialAccessPassword838 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%) : Join Accept Delay1 758 758 840 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 759 759 842 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 760 760 761 -= 5.FAQ=844 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%) : Receive Delay1 762 762 763 -= =5.1HowtoUpgradeFirmware==846 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%) : Receive Delay2 764 764 848 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 765 765 850 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 851 + 852 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 853 + 854 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 855 + 856 + 857 +(% style="color:#037691" %)**Information** 858 + 859 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 860 + 861 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 862 + 863 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 864 + 865 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 866 + 867 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 868 + 869 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 870 + 871 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 872 + 873 + 874 += 4. FAQ = 875 + 876 +== 4.1 How to change the LoRa Frequency Bands/Region? == 877 + 766 766 ((( 767 -User can upgrade the firmware for 1) bug fix, 2) new feature release. 879 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 880 +When downloading the images, choose the required image file for download. 768 768 ))) 769 769 770 770 ((( 771 - Pleasesee this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]884 + 772 772 ))) 773 773 774 774 ((( 775 - (%style="color:red"%)Notice,NSE01andLSE01share thememotherboard.Theyuse thesameconnection andmethodto update.888 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 776 776 ))) 777 777 891 +((( 892 + 893 +))) 778 778 895 +((( 896 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 897 +))) 779 779 780 -= 6. Trouble Shooting = 899 +((( 900 + 901 +))) 781 781 782 -== 6.1 Connection problem when uploading firmware == 903 +((( 904 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 905 +))) 783 783 907 +[[image:image-20220606154726-3.png]] 784 784 785 -(% class="wikigeneratedid" %) 909 + 910 +When you use the TTN network, the US915 frequency bands use are: 911 + 912 +* 903.9 - SF7BW125 to SF10BW125 913 +* 904.1 - SF7BW125 to SF10BW125 914 +* 904.3 - SF7BW125 to SF10BW125 915 +* 904.5 - SF7BW125 to SF10BW125 916 +* 904.7 - SF7BW125 to SF10BW125 917 +* 904.9 - SF7BW125 to SF10BW125 918 +* 905.1 - SF7BW125 to SF10BW125 919 +* 905.3 - SF7BW125 to SF10BW125 920 +* 904.6 - SF8BW500 921 + 786 786 ((( 787 - (%style="font-size:14px"%)**Pleasesee:**(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color:rgb(255,255,255);font-size:14px;"]]923 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 788 788 ))) 789 789 926 +(% class="box infomessage" %) 927 +((( 928 +**AT+CHE=2** 929 +))) 790 790 931 +(% class="box infomessage" %) 932 +((( 933 +**ATZ** 934 +))) 791 791 792 -== 6.2 AT Command input doesn't work == 936 +((( 937 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 938 +))) 793 793 794 794 ((( 795 - Inthe case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.941 + 796 796 ))) 797 797 944 +((( 945 +The **AU915** band is similar. Below are the AU915 Uplink Channels. 946 +))) 798 798 948 +[[image:image-20220606154825-4.png]] 799 799 800 -= 7. Order Info = 801 801 802 802 803 - PartNumber**:** (% style="color:#4f81bd"%)**NSE01**952 += 5. Trouble Shooting = 804 804 954 +== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 805 805 956 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 957 + 958 + 959 +== 5.2 AT Command input doesn’t work == 960 + 961 +((( 962 +In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 963 +))) 964 + 965 + 966 +== 5.3 Device rejoin in at the second uplink packet == 967 + 968 +(% style="color:#4f81bd" %)**Issue describe as below:** 969 + 970 +[[image:1654500909990-784.png]] 971 + 972 + 973 +(% style="color:#4f81bd" %)**Cause for this issue:** 974 + 975 +((( 976 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 977 +))) 978 + 979 + 980 +(% style="color:#4f81bd" %)**Solution: ** 981 + 982 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 983 + 984 +[[image:1654500929571-736.png||height="458" width="832"]] 985 + 986 + 987 += 6. Order Info = 988 + 989 + 990 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 991 + 992 + 993 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 994 + 995 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 996 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 997 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 998 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 999 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1000 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1001 +* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1002 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1003 + 1004 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1005 + 1006 +* (% style="color:red" %)**4**(%%): 4000mAh battery 1007 +* (% style="color:red" %)**8**(%%): 8500mAh battery 1008 + 806 806 (% class="wikigeneratedid" %) 807 807 ((( 808 808 809 809 ))) 810 810 811 -= 8.1014 += 7. Packing Info = 812 812 813 813 ((( 814 814 815 815 816 816 (% style="color:#037691" %)**Package Includes**: 1020 +))) 817 817 818 - 819 -* NSE01 NB-IoT Soil Moisture & EC Sensor x 1 820 -* External antenna x 1 1022 +* ((( 1023 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 821 821 ))) 822 822 823 823 ((( ... ... @@ -824,20 +824,30 @@ 824 824 825 825 826 826 (% style="color:#037691" %)**Dimension and weight**: 1030 +))) 827 827 828 - 829 -* Size: 195 x 125 x 55 mm 830 -* Weight: 420g 1032 +* ((( 1033 +Device Size: cm 831 831 ))) 1035 +* ((( 1036 +Device Weight: g 1037 +))) 1038 +* ((( 1039 +Package Size / pcs : cm 1040 +))) 1041 +* ((( 1042 +Weight / pcs : g 832 832 833 -((( 834 - 835 835 836 - 837 837 838 838 ))) 839 839 840 -= 9.1048 += 8. Support = 841 841 842 842 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 843 843 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1052 + 1053 + 1054 +~)~)~) 1055 +~)~)~) 1056 +~)~)~)
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -102.7 KB - Content