Changes for page NDDS75 -- NB-IoT Distance Detect Sensor User Manual
Last modified by Bei Jinggeng on 2024/05/31 09:53
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 24 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - NSE01NB-IoTSoil Moisture & EC Sensor User Manual1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -3,16 +3,8 @@ 3 3 4 4 5 5 6 +**Contents:** 6 6 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 -**Table of Contents:** 15 - 16 16 {{toc/}} 17 17 18 18 ... ... @@ -20,804 +20,1033 @@ 20 20 21 21 22 22 15 += 1. Introduction = 23 23 24 -= 1. Introduction =17 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 25 25 26 -== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 27 - 28 28 ((( 29 - 20 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 21 +))) 30 30 31 31 ((( 32 - DraginoNSE01 isan(% style="color:blue" %)**NB-IOT soilmoisture& EC sensor**(%%)foragriculturalIoT. Used tomeasure the soilmoisture ofsaline-alkali soiland loam.Thesoil sensor uses the FDRmethod to calculate soil moisture andcompensates it with soiltemperature andelectricalconductivity.It hasalsobeencalibratedfor mineralsoiltypesatthe factory.24 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 33 33 ))) 34 34 35 35 ((( 36 - Itcandetect (%style="color:blue"%)**SoilMoisture,Soil Temperature andSoilConductivity**(%%),anduploaditsvalue totheserver wirelessly.28 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 37 37 ))) 38 38 39 39 ((( 40 - Thewirelesstechnology usedin NSE01allowsthedeviceto senddataata lowdata rateand reachultra-longdistances, providingultra-long-distancespreadspectrum Communication.32 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 41 41 ))) 42 42 43 43 ((( 44 - NSE01arepoweredby(%style="color:blue"%)**8500mAhLi-SOCI2**(%%)batteries,which canbeusedforupto5 years.36 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 45 45 ))) 46 46 47 - 48 -))) 49 49 50 50 [[image:1654503236291-817.png]] 51 51 52 52 53 -[[image:165 7245163077-232.png]]43 +[[image:1654503265560-120.png]] 54 54 55 55 56 56 57 -== 1.2 47 +== 1.2 Features == 58 58 59 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 49 +* LoRaWAN 1.0.3 Class A 50 +* Ultra low power consumption 60 60 * Monitor Soil Moisture 61 61 * Monitor Soil Temperature 62 62 * Monitor Soil Conductivity 54 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 63 63 * AT Commands to change parameters 64 64 * Uplink on periodically 65 65 * Downlink to change configure 66 66 * IP66 Waterproof Enclosure 67 -* Ultra-Low Power consumption 68 -* AT Commands to change parameters 69 -* Micro SIM card slot for NB-IoT SIM 70 -* 8500mAh Battery for long term use 59 +* 4000mAh or 8500mAh Battery for long term use 71 71 61 +== 1.3 Specification == 72 72 73 - ==1.3Specification==63 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 74 74 65 +[[image:image-20220606162220-5.png]] 75 75 76 -(% style="color:#037691" %)**Common DC Characteristics:** 77 77 78 -* Supply Voltage: 2.1v ~~ 3.6v 79 -* Operating Temperature: -40 ~~ 85°C 80 80 81 - (% style="color:#037691"%)**NB-IoT Spec:**69 +== 1.4 Applications == 82 82 83 -* - B1 @H-FDD: 2100MHz 84 -* - B3 @H-FDD: 1800MHz 85 -* - B8 @H-FDD: 900MHz 86 -* - B5 @H-FDD: 850MHz 87 -* - B20 @H-FDD: 800MHz 88 -* - B28 @H-FDD: 700MHz 71 +* Smart Agriculture 89 89 90 -Probe(% style="color:#037691" %)** Specification:** 73 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 74 + 91 91 92 - MeasureVolume:Base on the centrapin of the probe,a cylinder with7cm diameter and 10cm height.76 +== 1.5 Firmware Change log == 93 93 94 -[[image:image-20220708101224-1.png]] 95 95 79 +**LSE01 v1.0 :** Release 96 96 97 97 98 -== 1.4 Applications == 99 99 100 - *SmartAgriculture83 += 2. Configure LSE01 to connect to LoRaWAN network = 101 101 102 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 103 - 85 +== 2.1 How it works == 104 104 105 -== 1.5 Pin Definitions == 87 +((( 88 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 89 +))) 106 106 91 +((( 92 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 93 +))) 107 107 108 -[[image:1657246476176-652.png]] 109 109 110 110 97 +== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 111 111 112 - =2. UseNSE01to communicate withIoTServer=99 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 113 113 114 -== 2.1 How it works == 115 115 102 +[[image:1654503992078-669.png]] 116 116 117 -((( 118 -The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 119 -))) 120 120 105 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 121 121 107 + 108 +**Step 1**: Create a device in TTN with the OTAA keys from LSE01. 109 + 110 +Each LSE01 is shipped with a sticker with the default device EUI as below: 111 + 112 +[[image:image-20220606163732-6.jpeg]] 113 + 114 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 115 + 116 +**Add APP EUI in the application** 117 + 118 + 119 +[[image:1654504596150-405.png]] 120 + 121 + 122 + 123 +**Add APP KEY and DEV EUI** 124 + 125 +[[image:1654504683289-357.png]] 126 + 127 + 128 + 129 +**Step 2**: Power on LSE01 130 + 131 + 132 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 133 + 134 +[[image:image-20220606163915-7.png]] 135 + 136 + 137 +**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 138 + 139 +[[image:1654504778294-788.png]] 140 + 141 + 142 + 143 +== 2.3 Uplink Payload == 144 + 145 +(% class="wikigeneratedid" %) 146 +=== === 147 + 148 +=== 2.3.1 MOD~=0(Default Mode) === 149 + 150 +LSE01 will uplink payload via LoRaWAN with below payload format: 151 + 122 122 ((( 123 - The diagram below shows the workingflowinfaultfirmwareofNSE01:153 +Uplink payload includes in total 11 bytes. 124 124 ))) 125 125 126 -[[image:image-20220708101605-2.png]] 156 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 157 +|((( 158 +**Size** 127 127 128 -((( 129 - 160 +**(bytes)** 161 +)))|**2**|**2**|**2**|**2**|**2**|**1** 162 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 163 +Temperature 164 + 165 +(Reserve, Ignore now) 166 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 167 +MOD & Digital Interrupt 168 + 169 +(Optional) 130 130 ))) 131 131 132 132 133 133 134 -== 2.2 Configurethe NSE01==174 +=== 2.3.2 MOD~=1(Original value) === 135 135 176 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 136 136 137 -=== 2.2.1 Test Requirement === 178 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 179 +|((( 180 +**Size** 138 138 182 +**(bytes)** 183 +)))|**2**|**2**|**2**|**2**|**2**|**1** 184 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 185 +Temperature 139 139 187 +(Reserve, Ignore now) 188 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 189 +MOD & Digital Interrupt 190 + 191 +(Optional) 192 +))) 193 + 194 + 195 + 196 +=== 2.3.3 Battery Info === 197 + 140 140 ((( 141 - To useNSE01 in yourcity,makesuremeetbelowrequirements:199 +Check the battery voltage for LSE01. 142 142 ))) 143 143 144 - * Your local operator has already distributed a NB-IoT Network there.145 - *The local NB-IoTnetworkused the band that NSE01 supports.146 - * Your operator is able to distribute the data received in their NB-IoT network to your IoT server.202 +((( 203 +Ex1: 0x0B45 = 2885mV 204 +))) 147 147 148 148 ((( 149 - Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%)or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%)or MQTT((% style="color:red"%)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server207 +Ex2: 0x0B49 = 2889mV 150 150 ))) 151 151 152 152 153 -[[image:1657249419225-449.png]] 154 154 212 +=== 2.3.4 Soil Moisture === 155 155 214 +((( 215 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 216 +))) 156 156 157 -=== 2.2.2 Insert SIM card === 218 +((( 219 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 220 +))) 158 158 159 159 ((( 160 - Insertthe NB-IoT Card get from your provider.223 + 161 161 ))) 162 162 163 163 ((( 164 - Userneedto takeut the NB-IoT moduleandinserttheSIMcardlike below:227 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 165 165 ))) 166 166 167 167 168 -[[image:1657249468462-536.png]] 169 169 232 +=== 2.3.5 Soil Temperature === 170 170 234 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 171 171 172 - === 2.2.3 Connect USB – TTL to NSE01 to configureit ===236 +**Example**: 173 173 238 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 239 + 240 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 241 + 242 + 243 + 244 +=== 2.3.6 Soil Conductivity (EC) === 245 + 174 174 ((( 247 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 248 +))) 249 + 175 175 ((( 176 - User need toconfigureNSE01 via serialportto set the(% style="color:blue"%)**ServerAddress** / **Uplink Topic**(%%)todefinewhereand how-to uplink packets.NSE01support ATCommands,usercan use a USB toTTL adapter toconnectoNSE01 and useATCommandstoconfigureit,asbelow.251 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 177 177 ))) 253 + 254 +((( 255 +Generally, the EC value of irrigation water is less than 800uS / cm. 178 178 ))) 179 179 258 +((( 259 + 260 +))) 180 180 181 -**Connection:** 262 +((( 263 + 264 +))) 182 182 183 - (% style="background-color:yellow"%)USBTTL GND<~-~-~-~-> GND266 +=== 2.3.7 MOD === 184 184 185 - (%style="background-color:yellow"%)USBTTL TXD <~-~-~-~-> UART_RXD268 +Firmware version at least v2.1 supports changing mode. 186 186 187 - (% style="background-color:yellow"%)USB TTL RXD <~-~-~-~-> UART_TXD270 +For example, bytes[10]=90 188 188 272 +mod=(bytes[10]>>7)&0x01=1. 189 189 190 -In the PC, use below serial tool settings: 191 191 192 -* Baud: (% style="color:green" %)**9600** 193 -* Data bits:** (% style="color:green" %)8(%%)** 194 -* Stop bits: (% style="color:green" %)**1** 195 -* Parity: (% style="color:green" %)**None** 196 -* Flow Control: (% style="color:green" %)**None** 275 +**Downlink Command:** 197 197 198 -((( 199 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 200 -))) 277 +If payload = 0x0A00, workmode=0 201 201 202 - [[image:image-20220708110657-3.png]]279 +If** **payload =** **0x0A01, workmode=1 203 203 204 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 205 205 206 206 283 +=== 2.3.8 Decode payload in The Things Network === 207 207 208 - ===2.2.4UseCoAPprotocoltouplink data ===285 +While using TTN network, you can add the payload format to decode the payload. 209 209 210 -(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 211 211 288 +[[image:1654505570700-128.png]] 212 212 213 - **Usebelowcommands:**290 +The payload decoder function for TTN is here: 214 214 215 -* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 216 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 217 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 292 +LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 218 218 219 -For parameter description, please refer to AT command set 220 220 221 -[[image:1657249793983-486.png]] 222 222 296 +== 2.4 Uplink Interval == 223 223 224 - Afterconfigurethe serveraddress and(% style="color:green"%)**resetthedevice**(%%) (via AT+ATZ),NSE01willstarttouplinksensorvaluesto CoAP server.298 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 225 225 226 -[[image:1657249831934-534.png]] 227 227 228 228 302 +== 2.5 Downlink Payload == 229 229 230 - ===2.2.5 UseUDPprotocoltouplinkdata(Default protocol)===304 +By default, LSE50 prints the downlink payload to console port. 231 231 232 - This features supported since firmwareversion v1.0.1306 +[[image:image-20220606165544-8.png]] 233 233 234 234 235 -* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 236 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 237 -* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 309 +**Examples:** 238 238 239 -[[image:1657249864775-321.png]] 240 240 312 +* **Set TDC** 241 241 242 - [[image:1657249930215-289.png]]314 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 243 243 316 +Payload: 01 00 00 1E TDC=30S 244 244 318 +Payload: 01 00 00 3C TDC=60S 245 245 246 -=== 2.2.6 Use MQTT protocol to uplink data === 247 247 248 - Thisfeature issupported since firmware version v110321 +* **Reset** 249 249 323 +If payload = 0x04FF, it will reset the LSE01 250 250 251 -* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 252 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 253 -* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 254 -* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 255 -* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 256 -* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 257 -* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 258 258 259 - [[image:1657249978444-674.png]]326 +* **CFM** 260 260 328 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 261 261 262 -[[image:1657249990869-686.png]] 263 263 264 264 265 -((( 266 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 267 -))) 332 +== 2.6 Show Data in DataCake IoT Server == 268 268 334 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 269 269 270 270 271 - ===2.2.7UseTCPprotocoltouplinkdata===337 +**Step 1**: Be sure that your device is programmed and properly connected to the network at this time. 272 272 273 -T hisfeatureissupportedsincefirmwareversionv110339 +**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 274 274 275 275 276 -* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 277 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 342 +[[image:1654505857935-743.png]] 278 278 279 -[[image:1657250217799-140.png]] 280 280 345 +[[image:1654505874829-548.png]] 281 281 282 - [[image:1657250255956-604.png]]347 +Step 3: Create an account or log in Datacake. 283 283 349 +Step 4: Search the LSE01 and add DevEUI. 284 284 285 285 286 - === 2.2.8 ChangeUpdate Interval ===352 +[[image:1654505905236-553.png]] 287 287 288 -User can use below command to change the (% style="color:green" %)**uplink interval**. 289 289 290 - *(%style="color:blue"%)**AT+TDC=600** (%%)~/~/ SetUpdateIntervalto600s355 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 291 291 292 -((( 293 -(% style="color:red" %)**NOTE:** 294 -))) 357 +[[image:1654505925508-181.png]] 295 295 296 -((( 297 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 298 -))) 299 299 300 300 361 +== 2.7 Frequency Plans == 301 301 302 - ==2.3UplinkPayload==363 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 303 303 304 -In this mode, uplink payload includes in total 18 bytes 305 305 306 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 307 -|=(% style="width: 50px;" %)((( 308 -**Size(bytes)** 309 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1** 310 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 366 +=== 2.7.1 EU863-870 (EU868) === 311 311 312 - Ifwe usethe MQTT client to subscribe tothis MQTT topic, we can see the following information when the NSE01uplinkdata.368 +(% style="color:#037691" %)** Uplink:** 313 313 370 +868.1 - SF7BW125 to SF12BW125 314 314 315 - [[image:image-20220708111918-4.png]]372 +868.3 - SF7BW125 to SF12BW125 and SF7BW250 316 316 374 +868.5 - SF7BW125 to SF12BW125 317 317 318 - Thepayloadis ASCIIstring,representative same HEX:376 +867.1 - SF7BW125 to SF12BW125 319 319 320 - 0x72403155615900640c7817075e0a8c02f900 where:378 +867.3 - SF7BW125 to SF12BW125 321 321 322 -* Device ID: 0x 724031556159 = 724031556159 323 -* Version: 0x0064=100=1.0.0 380 +867.5 - SF7BW125 to SF12BW125 324 324 325 -* BAT: 0x0c78 = 3192 mV = 3.192V 326 -* Singal: 0x17 = 23 327 -* Soil Moisture: 0x075e= 1886 = 18.86 % 328 -* Soil Temperature:0x0a8c =2700=27 °C 329 -* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 330 -* Interrupt: 0x00 = 0 382 +867.7 - SF7BW125 to SF12BW125 331 331 384 +867.9 - SF7BW125 to SF12BW125 332 332 333 - == 2.4Payload Explanation andSensor Interface ==386 +868.8 - FSK 334 334 335 335 336 - ===2.4.1 DeviceID===389 +(% style="color:#037691" %)** Downlink:** 337 337 338 - By default, the DeviceID equal to theast6bytes of IMEI.391 +Uplink channels 1-9 (RX1) 339 339 340 - Usercanuse(%style="color:blue" %)**AT+DEUI**(%%) to set Device ID393 +869.525 - SF9BW125 (RX2 downlink only) 341 341 342 -**Example:** 343 343 344 -AT+DEUI=A84041F15612 345 345 346 - TheDeviceID is stored in a none-erase area,Upgradethe firmware or run AT+FDR won't erase Device ID.397 +=== 2.7.2 US902-928(US915) === 347 347 399 +Used in USA, Canada and South America. Default use CHE=2 348 348 401 +(% style="color:#037691" %)**Uplink:** 349 349 350 - ===2.4.2VersionInfo ===403 +903.9 - SF7BW125 to SF10BW125 351 351 352 - Specify the software version:0x64=100,meansfirmwareversion1.00.405 +904.1 - SF7BW125 to SF10BW125 353 353 354 - For example:0x00 64:this device is NSE01with firmware version1.0.0.407 +904.3 - SF7BW125 to SF10BW125 355 355 409 +904.5 - SF7BW125 to SF10BW125 356 356 411 +904.7 - SF7BW125 to SF10BW125 357 357 358 - === 2.4.3BatteryInfo===413 +904.9 - SF7BW125 to SF10BW125 359 359 360 -((( 361 -Check the battery voltage for LSE01. 362 -))) 415 +905.1 - SF7BW125 to SF10BW125 363 363 364 -((( 365 -Ex1: 0x0B45 = 2885mV 366 -))) 417 +905.3 - SF7BW125 to SF10BW125 367 367 368 -((( 369 -Ex2: 0x0B49 = 2889mV 370 -))) 371 371 420 +(% style="color:#037691" %)**Downlink:** 372 372 422 +923.3 - SF7BW500 to SF12BW500 373 373 374 - ===2.4.4SignalStrength===424 +923.9 - SF7BW500 to SF12BW500 375 375 376 - NB-IoTNetworksignalStrength.426 +924.5 - SF7BW500 to SF12BW500 377 377 378 - **Ex1:0x1d=29**428 +925.1 - SF7BW500 to SF12BW500 379 379 380 - (%style="color:blue"%)**0**(%%)-113dBm or less430 +925.7 - SF7BW500 to SF12BW500 381 381 382 - (%style="color:blue"%)**1**(%%) -111dBm432 +926.3 - SF7BW500 to SF12BW500 383 383 384 - (% style="color:blue" %)**2...30**(%%) -109dBm...-53dBm434 +926.9 - SF7BW500 to SF12BW500 385 385 386 - (%style="color:blue" %)**31** (%%)-51dBmorgreater436 +927.5 - SF7BW500 to SF12BW500 387 387 388 - (% style="color:blue" %)**99**(%%)Not known ornot detectable438 +923.3 - SF12BW500(RX2 downlink only) 389 389 390 390 391 391 392 -=== 2. 4.5SoilMoisture===442 +=== 2.7.3 CN470-510 (CN470) === 393 393 394 -((( 395 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 396 -))) 444 +Used in China, Default use CHE=1 397 397 398 -((( 399 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 400 -))) 446 +(% style="color:#037691" %)**Uplink:** 401 401 402 -((( 403 - 404 -))) 448 +486.3 - SF7BW125 to SF12BW125 405 405 406 -((( 407 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 408 -))) 450 +486.5 - SF7BW125 to SF12BW125 409 409 452 +486.7 - SF7BW125 to SF12BW125 410 410 454 +486.9 - SF7BW125 to SF12BW125 411 411 412 - === 2.4.6SoilTemperature===456 +487.1 - SF7BW125 to SF12BW125 413 413 414 -((( 415 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 416 -))) 458 +487.3 - SF7BW125 to SF12BW125 417 417 418 -((( 419 -**Example**: 420 -))) 460 +487.5 - SF7BW125 to SF12BW125 421 421 422 -((( 423 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 424 -))) 462 +487.7 - SF7BW125 to SF12BW125 425 425 426 -((( 427 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 428 -))) 429 429 465 +(% style="color:#037691" %)**Downlink:** 430 430 467 +506.7 - SF7BW125 to SF12BW125 431 431 432 - === 2.4.7SoilConductivity(EC) ===469 +506.9 - SF7BW125 to SF12BW125 433 433 434 -((( 435 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 436 -))) 471 +507.1 - SF7BW125 to SF12BW125 437 437 438 -((( 439 -For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 440 -))) 473 +507.3 - SF7BW125 to SF12BW125 441 441 442 -((( 443 -Generally, the EC value of irrigation water is less than 800uS / cm. 444 -))) 475 +507.5 - SF7BW125 to SF12BW125 445 445 446 -((( 447 - 448 -))) 477 +507.7 - SF7BW125 to SF12BW125 449 449 450 -((( 451 - 452 -))) 479 +507.9 - SF7BW125 to SF12BW125 453 453 454 - ===2.4.8DigitalInterrupt ===481 +508.1 - SF7BW125 to SF12BW125 455 455 456 - DigitalInterruptrefersto pin(% style="color:blue" %)**GPIO_EXTI**(%%),andthere are different trigger methods. When there is a trigger, the NSE01will send a packettothe server.483 +505.3 - SF12BW125 (RX2 downlink only) 457 457 458 -The command is: 459 459 460 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 461 461 487 +=== 2.7.4 AU915-928(AU915) === 462 462 463 - Thelowerfour bits of this data field shows if this packet is generated by interrupt or not. Click here forthehardware andsoftwareset up.489 +Default use CHE=2 464 464 491 +(% style="color:#037691" %)**Uplink:** 465 465 466 - Example:493 +916.8 - SF7BW125 to SF12BW125 467 467 468 -0 x(00):Normaluplinkpacket.495 +917.0 - SF7BW125 to SF12BW125 469 469 470 - 0x(01):InterruptUplinkPacket.497 +917.2 - SF7BW125 to SF12BW125 471 471 499 +917.4 - SF7BW125 to SF12BW125 472 472 501 +917.6 - SF7BW125 to SF12BW125 473 473 474 - === 2.4.9+5VOutput===503 +917.8 - SF7BW125 to SF12BW125 475 475 476 - NSE01willenable +5Voutput beforeall sampling and disable the +5v after all sampling.505 +918.0 - SF7BW125 to SF12BW125 477 477 507 +918.2 - SF7BW125 to SF12BW125 478 478 479 -The 5V output time can be controlled by AT Command. 480 480 481 -(% style="color: blue" %)**AT+5VT=1000**510 +(% style="color:#037691" %)**Downlink:** 482 482 483 - Meansset5V valid time to have 1000ms.Sothe real 5Voutputwill actually have1000ms + sampling time for other sensors.512 +923.3 - SF7BW500 to SF12BW500 484 484 514 +923.9 - SF7BW500 to SF12BW500 485 485 516 +924.5 - SF7BW500 to SF12BW500 486 486 487 - ==2.5DownlinkPayload ==518 +925.1 - SF7BW500 to SF12BW500 488 488 489 - Bydefault,NSE01prints the downlinkpayload to console port.520 +925.7 - SF7BW500 to SF12BW500 490 490 491 - [[image:image-20220708133731-5.png]]522 +926.3 - SF7BW500 to SF12BW500 492 492 524 +926.9 - SF7BW500 to SF12BW500 493 493 494 -((( 495 -(% style="color:blue" %)**Examples:** 496 -))) 526 +927.5 - SF7BW500 to SF12BW500 497 497 498 -((( 499 - 500 -))) 528 +923.3 - SF12BW500(RX2 downlink only) 501 501 502 -* ((( 503 -(% style="color:blue" %)**Set TDC** 504 -))) 505 505 506 -((( 507 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 508 -))) 509 509 510 -((( 511 -Payload: 01 00 00 1E TDC=30S 512 -))) 532 +=== 2.7.5 AS920-923 & AS923-925 (AS923) === 513 513 514 -((( 515 -Payload: 01 00 00 3C TDC=60S 516 -))) 534 +(% style="color:#037691" %)**Default Uplink channel:** 517 517 518 -((( 519 - 520 -))) 536 +923.2 - SF7BW125 to SF10BW125 521 521 522 -* ((( 523 -(% style="color:blue" %)**Reset** 524 -))) 538 +923.4 - SF7BW125 to SF10BW125 525 525 526 -((( 527 -If payload = 0x04FF, it will reset the NSE01 528 -))) 529 529 541 +(% style="color:#037691" %)**Additional Uplink Channel**: 530 530 531 - *(%style="color:blue"%)**INTMOD**543 +(OTAA mode, channel added by JoinAccept message) 532 532 533 - DownlinkPayload:00003, Set AT+INTMOD=3545 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 534 534 547 +922.2 - SF7BW125 to SF10BW125 535 535 549 +922.4 - SF7BW125 to SF10BW125 536 536 537 - ==2.6LEDIndicator==551 +922.6 - SF7BW125 to SF10BW125 538 538 539 -((( 540 -The NSE01 has an internal LED which is to show the status of different state. 553 +922.8 - SF7BW125 to SF10BW125 541 541 555 +923.0 - SF7BW125 to SF10BW125 542 542 543 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 544 -* Then the LED will be on for 1 second means device is boot normally. 545 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 546 -* For each uplink probe, LED will be on for 500ms. 547 -))) 557 +922.0 - SF7BW125 to SF10BW125 548 548 549 549 560 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 550 550 562 +923.6 - SF7BW125 to SF10BW125 551 551 552 - ==2.7InstallationinSoil ==564 +923.8 - SF7BW125 to SF10BW125 553 553 554 - __**Measurementthesoilsurface**__566 +924.0 - SF7BW125 to SF10BW125 555 555 556 - Choose the proper measuring position.Avoidthe probe to touch rocks or hard things.Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]568 +924.2 - SF7BW125 to SF10BW125 557 557 558 - [[image:1657259653666-883.png]]570 +924.4 - SF7BW125 to SF10BW125 559 559 572 +924.6 - SF7BW125 to SF10BW125 560 560 561 -((( 562 - 563 563 564 -((( 565 -Dig a hole with diameter > 20CM. 566 -))) 575 +(% style="color:#037691" %)** Downlink:** 567 567 568 -((( 569 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 570 -))) 571 -))) 577 +Uplink channels 1-8 (RX1) 572 572 573 - [[image:1654506665940-119.png]]579 +923.2 - SF10BW125 (RX2) 574 574 575 -((( 576 - 577 -))) 578 578 579 579 580 -== 2. 8FirmwareChangeLog==583 +=== 2.7.6 KR920-923 (KR920) === 581 581 585 +Default channel: 582 582 583 - DownloadURL&FirmwareChange log587 +922.1 - SF7BW125 to SF12BW125 584 584 585 - [[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]589 +922.3 - SF7BW125 to SF12BW125 586 586 591 +922.5 - SF7BW125 to SF12BW125 587 587 588 -Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]] 589 589 594 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 590 590 596 +922.1 - SF7BW125 to SF12BW125 591 591 592 - ==2.9BatteryAnalysis ==598 +922.3 - SF7BW125 to SF12BW125 593 593 594 - ===2.9.1BatteryType ===600 +922.5 - SF7BW125 to SF12BW125 595 595 602 +922.7 - SF7BW125 to SF12BW125 596 596 597 - TheNSE01battery is a combinationof an 8500mAh Li/SOCI2attery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.604 +922.9 - SF7BW125 to SF12BW125 598 598 606 +923.1 - SF7BW125 to SF12BW125 599 599 600 - Thebatteryisdesignedtolast for several years depends on the actually use environment and update interval.608 +923.3 - SF7BW125 to SF12BW125 601 601 602 602 603 - Thebatteryrelated documents as below:611 +(% style="color:#037691" %)**Downlink:** 604 604 605 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 606 -* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 607 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 613 +Uplink channels 1-7(RX1) 608 608 615 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 616 + 617 + 618 + 619 +=== 2.7.7 IN865-867 (IN865) === 620 + 621 +(% style="color:#037691" %)** Uplink:** 622 + 623 +865.0625 - SF7BW125 to SF12BW125 624 + 625 +865.4025 - SF7BW125 to SF12BW125 626 + 627 +865.9850 - SF7BW125 to SF12BW125 628 + 629 + 630 +(% style="color:#037691" %) **Downlink:** 631 + 632 +Uplink channels 1-3 (RX1) 633 + 634 +866.550 - SF10BW125 (RX2) 635 + 636 + 637 + 638 + 639 +== 2.8 LED Indicator == 640 + 641 +The LSE01 has an internal LED which is to show the status of different state. 642 + 643 +* Blink once when device power on. 644 +* Solid ON for 5 seconds once device successful Join the network. 645 +* Blink once when device transmit a packet. 646 + 647 + 648 + 649 +== 2.9 Installation in Soil == 650 + 651 +**Measurement the soil surface** 652 + 653 + 654 +[[image:1654506634463-199.png]] 655 + 609 609 ((( 610 -[[image:image-20220708140453-6.png]] 657 +((( 658 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 611 611 ))) 660 +))) 612 612 613 613 663 +[[image:1654506665940-119.png]] 614 614 615 -=== 2.9.2 Power consumption Analyze === 665 +((( 666 +Dig a hole with diameter > 20CM. 667 +))) 616 616 617 617 ((( 618 - Draginobattery powered productare allrunsinLow Powermode. Wehavean update battery calculator whichbase onthemeasurementof the realdevice. User canuse this calculatorto checkthebatterylife andcalculatethe batterylifeif want to use different transmit interval.670 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 619 619 ))) 620 620 621 621 674 +== 2.10 Firmware Change Log == 675 + 622 622 ((( 623 - Instructiontouseasbelow:677 +**Firmware download link:** 624 624 ))) 625 625 626 626 ((( 627 - (% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:[[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]681 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 628 628 ))) 629 629 684 +((( 685 + 686 +))) 630 630 631 631 ((( 632 - (% style="color:blue" %)**Step2: **(%%)Openithoose689 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 633 633 ))) 634 634 635 - *(((636 - ProductModel692 +((( 693 + 637 637 ))) 638 -* ((( 639 -Uplink Interval 695 + 696 +((( 697 +**V1.0.** 640 640 ))) 641 -* ((( 642 -Working Mode 643 -))) 644 644 645 645 ((( 646 - And theLifeexpectation in difference casewill be shown on the right.701 +Release 647 647 ))) 648 648 649 -[[image:image-20220708141352-7.jpeg]] 650 650 705 +== 2.11 Battery Analysis == 651 651 707 +=== 2.11.1 Battery Type === 652 652 653 -=== 2.9.3 Battery Note === 709 +((( 710 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 711 +))) 654 654 655 655 ((( 656 -The Li-SICObattery is designedfor small current/ longperiod application. It isnotgood to use a high current,short period transmit method. Therecommendedminimum period for use ofthis batteryis5minutes. Ifyou useshorterperiod time to transmitLoRa,thenthe battery life may be decreased.714 +The battery is designed to last for more than 5 years for the LSN50. 657 657 ))) 658 658 717 +((( 718 +((( 719 +The battery-related documents are as below: 720 +))) 721 +))) 659 659 723 +* ((( 724 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 725 +))) 726 +* ((( 727 +[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 728 +))) 729 +* ((( 730 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 731 +))) 660 660 661 - ===2.9.4 Replacethe battery ===733 + [[image:image-20220606171726-9.png]] 662 662 735 + 736 + 737 +=== 2.11.2 Battery Note === 738 + 663 663 ((( 664 -The defaultbatterypackofNSE01includesaER26500 plussupercapacitor. Ifusercan'tfind this pack locally,theycanfindER26500 orquivalence withoutthe SPC1520 capacitor, which will alsowork inmostcase. TheSPCcanlarge thebatterylifeforhigh frequency use(update periodbelow5minutes).740 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 665 665 ))) 666 666 667 667 668 668 669 -= 3. AccessNB-IoTModule =745 +=== 2.11.3 Replace the battery === 670 670 671 671 ((( 672 - Userscan directlyaccesstheAT command setoftheNB-IoTmodule.748 +If Battery is lower than 2.7v, user should replace the battery of LSE01. 673 673 ))) 674 674 675 675 ((( 676 - The AT Commandsetcanrefer theBC35-G NB-IoTModuleATCommand: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]]752 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 677 677 ))) 678 678 679 -[[image:1657261278785-153.png]] 755 +((( 756 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 757 +))) 680 680 681 681 682 682 683 -= 4.761 += 3. Using the AT Commands = 684 684 685 -== 4.1763 +== 3.1 Access AT Commands == 686 686 687 -See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 688 688 766 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 689 689 690 - AT+<CMD>? : Helpon<CMD>768 +[[image:1654501986557-872.png||height="391" width="800"]] 691 691 692 -AT+<CMD> : Run <CMD> 693 693 694 - AT+<CMD>=<value>: Setthevalue771 +Or if you have below board, use below connection: 695 695 696 -AT+<CMD>=? : Get the value 697 697 774 +[[image:1654502005655-729.png||height="503" width="801"]] 698 698 776 + 777 + 778 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 779 + 780 + 781 + [[image:1654502050864-459.png||height="564" width="806"]] 782 + 783 + 784 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]] 785 + 786 + 787 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 788 + 789 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 790 + 791 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 792 + 793 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 794 + 795 + 699 699 (% style="color:#037691" %)**General Commands**(%%) 700 700 701 -AT 798 +(% style="background-color:#dcdcdc" %)**AT**(%%) : Attention 702 702 703 -AT? 800 +(% style="background-color:#dcdcdc" %)**AT?**(%%) : Short Help 704 704 705 -ATZ 802 +(% style="background-color:#dcdcdc" %)**ATZ**(%%) : MCU Reset 706 706 707 -AT+TDC 804 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%) : Application Data Transmission Interval 708 708 709 -AT+CFG : Print all configurations 710 710 711 - AT+CFGMOD: Workingmode selection807 +(% style="color:#037691" %)**Keys, IDs and EUIs management** 712 712 713 -AT+I NTMOD:Setthe trigger interruptmode809 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%) : Application EUI 714 714 715 -AT+ 5VTSetextend the timeof5V power811 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%) : Application Key 716 716 717 -AT+P ROChooseagreement813 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%) : Application Session Key 718 718 719 -AT+ WEIGREGet weightorsetweight to 0815 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%) : Device Address 720 720 721 -AT+ WEIGAPGet or SettheGapValue of weight817 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%) : Device EUI 722 722 723 -AT+ RXDL: Extendthe sendingandreceivingtime819 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%) : Network ID (You can enter this command change only after successful network connection) 724 724 725 -AT+ CNTFACGettcountingparameters821 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%) : Network Session Key Joining and sending date on LoRa network 726 726 727 -AT+ SERVADDR:ServerAddress823 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%) : Confirm Mode 728 728 825 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 729 729 730 -(% style="color:# 037691" %)**COAPManagement**827 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%) : Join LoRa? Network 731 731 732 -AT+ URIsourceparameters829 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%) : LoRa? Network Join Mode 733 733 831 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 734 734 735 -(% style="color:# 037691" %)**UDPManagement**833 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%) : Print Last Received Data in Raw Format 736 736 737 -AT+C FM:Uploadconfirmationmode (onlyvalid forUDP)835 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%) : Print Last Received Data in Binary Format 738 738 837 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 739 739 740 -(% style="color:# 037691" %)**MQTTManagement**839 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%) : Send Hexadecimal Data 741 741 742 -AT+CLIENT : Get or Set MQTT client 743 743 744 - AT+UNAMEGetSetMQTT Username842 +(% style="color:#037691" %)**LoRa Network Management** 745 745 746 -AT+ PWDGetor SetMQTT password844 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%) : Adaptive Rate 747 747 748 -AT+ PUBTOPICGetorSetMQTTpublishtopic846 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%) : LoRa Class(Currently only support class A 749 749 750 -AT+ SUBTOPIC :GetorSetMQTT subscriptiontopic848 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%) : Duty Cycle Setting 751 751 850 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 752 752 753 -(% style="color:# 037691" %)**Information**852 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink 754 754 755 -AT+F DRctoryDataReset854 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%) : Frame Counter Uplink 756 756 757 -AT+ PWORDSerialAccessPassword856 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%) : Join Accept Delay1 758 758 858 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 759 759 860 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 760 760 761 -= 5.FAQ=862 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%) : Receive Delay1 762 762 763 -= =5.1HowtoUpgradeFirmware==864 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%) : Receive Delay2 764 764 866 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 765 765 868 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 869 + 870 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 871 + 872 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 873 + 874 + 875 +(% style="color:#037691" %)**Information** 876 + 877 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 878 + 879 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 880 + 881 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 882 + 883 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 884 + 885 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 886 + 887 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 888 + 889 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 890 + 891 + 892 += 4. FAQ = 893 + 894 +== 4.1 How to change the LoRa Frequency Bands/Region? == 895 + 766 766 ((( 767 -User can upgrade the firmware for 1) bug fix, 2) new feature release. 897 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 898 +When downloading the images, choose the required image file for download. 768 768 ))) 769 769 770 770 ((( 771 - Pleasesee this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]902 + 772 772 ))) 773 773 774 774 ((( 775 - (%style="color:red"%)Notice,NSE01andLSE01share thememotherboard.Theyuse thesameconnection andmethodto update.906 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 776 776 ))) 777 777 909 +((( 910 + 911 +))) 778 778 913 +((( 914 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 915 +))) 779 779 780 -= 6. Trouble Shooting = 917 +((( 918 + 919 +))) 781 781 782 -== 6.1 Connection problem when uploading firmware == 921 +((( 922 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 923 +))) 783 783 925 +[[image:image-20220606154726-3.png]] 784 784 785 -(% class="wikigeneratedid" %) 927 + 928 +When you use the TTN network, the US915 frequency bands use are: 929 + 930 +* 903.9 - SF7BW125 to SF10BW125 931 +* 904.1 - SF7BW125 to SF10BW125 932 +* 904.3 - SF7BW125 to SF10BW125 933 +* 904.5 - SF7BW125 to SF10BW125 934 +* 904.7 - SF7BW125 to SF10BW125 935 +* 904.9 - SF7BW125 to SF10BW125 936 +* 905.1 - SF7BW125 to SF10BW125 937 +* 905.3 - SF7BW125 to SF10BW125 938 +* 904.6 - SF8BW500 939 + 786 786 ((( 787 - (%style="font-size:14px"%)**Pleasesee:**(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color:rgb(255,255,255);font-size:14px;"]]941 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 788 788 ))) 789 789 944 +(% class="box infomessage" %) 945 +((( 946 +**AT+CHE=2** 947 +))) 790 790 949 +(% class="box infomessage" %) 950 +((( 951 +**ATZ** 952 +))) 791 791 792 -== 6.2 AT Command input doesn't work == 954 +((( 955 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 956 +))) 793 793 794 794 ((( 795 - Inthe case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.959 + 796 796 ))) 797 797 962 +((( 963 +The **AU915** band is similar. Below are the AU915 Uplink Channels. 964 +))) 798 798 966 +[[image:image-20220606154825-4.png]] 799 799 800 -= 7. Order Info = 801 801 802 802 803 - PartNumber**:** (% style="color:#4f81bd"%)**NSE01**970 += 5. Trouble Shooting = 804 804 972 +== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 805 805 974 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 975 + 976 + 977 +== 5.2 AT Command input doesn’t work == 978 + 979 +((( 980 +In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 981 +))) 982 + 983 + 984 +== 5.3 Device rejoin in at the second uplink packet == 985 + 986 +(% style="color:#4f81bd" %)**Issue describe as below:** 987 + 988 +[[image:1654500909990-784.png]] 989 + 990 + 991 +(% style="color:#4f81bd" %)**Cause for this issue:** 992 + 993 +((( 994 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 995 +))) 996 + 997 + 998 +(% style="color:#4f81bd" %)**Solution: ** 999 + 1000 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 1001 + 1002 +[[image:1654500929571-736.png||height="458" width="832"]] 1003 + 1004 + 1005 += 6. Order Info = 1006 + 1007 + 1008 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 1009 + 1010 + 1011 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 1012 + 1013 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 1014 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 1015 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 1016 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 1017 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1018 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1019 +* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1020 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1021 + 1022 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1023 + 1024 +* (% style="color:red" %)**4**(%%): 4000mAh battery 1025 +* (% style="color:red" %)**8**(%%): 8500mAh battery 1026 + 806 806 (% class="wikigeneratedid" %) 807 807 ((( 808 808 809 809 ))) 810 810 811 -= 8.1032 += 7. Packing Info = 812 812 813 813 ((( 814 814 815 815 816 816 (% style="color:#037691" %)**Package Includes**: 1038 +))) 817 817 818 - 819 -* NSE01 NB-IoT Soil Moisture & EC Sensor x 1 820 -* External antenna x 1 1040 +* ((( 1041 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 821 821 ))) 822 822 823 823 ((( ... ... @@ -824,20 +824,30 @@ 824 824 825 825 826 826 (% style="color:#037691" %)**Dimension and weight**: 1048 +))) 827 827 828 - 829 -* Size: 195 x 125 x 55 mm 830 -* Weight: 420g 1050 +* ((( 1051 +Device Size: cm 831 831 ))) 1053 +* ((( 1054 +Device Weight: g 1055 +))) 1056 +* ((( 1057 +Package Size / pcs : cm 1058 +))) 1059 +* ((( 1060 +Weight / pcs : g 832 832 833 -((( 834 - 835 835 836 - 837 837 838 838 ))) 839 839 840 -= 9.1066 += 8. Support = 841 841 842 842 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 843 843 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1070 + 1071 + 1072 +~)~)~) 1073 +~)~)~) 1074 +~)~)~)
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -102.7 KB - Content