Last modified by Bei Jinggeng on 2024/05/31 09:53

From version 65.10
edited by Xiaoling
on 2022/07/08 15:43
Change comment: There is no comment for this version
To version 45.2
edited by Xiaoling
on 2022/07/08 10:16
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -13,14 +13,11 @@
13 13  
14 14  **Table of Contents:**
15 15  
16 -{{toc/}}
17 17  
18 18  
19 19  
20 20  
21 21  
22 -
23 -
24 24  = 1.  Introduction =
25 25  
26 26  == 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
... ... @@ -28,21 +28,13 @@
28 28  (((
29 29  
30 30  
31 -(((
32 32  Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
33 -)))
34 34  
35 -(((
36 36  It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
37 -)))
38 38  
39 -(((
40 40  The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
41 -)))
42 42  
43 -(((
44 44  NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
45 -)))
46 46  
47 47  
48 48  )))
... ... @@ -54,8 +54,9 @@
54 54  
55 55  
56 56  
57 -== 1.2 ​ Features ==
46 +== 1.2 ​Features ==
58 58  
48 +
59 59  * NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
60 60  * Monitor Soil Moisture
61 61  * Monitor Soil Temperature
... ... @@ -70,6 +70,7 @@
70 70  * 8500mAh Battery for long term use
71 71  
72 72  
63 +
73 73  == 1.3  Specification ==
74 74  
75 75  
... ... @@ -78,6 +78,7 @@
78 78  * Supply Voltage: 2.1v ~~ 3.6v
79 79  * Operating Temperature: -40 ~~ 85°C
80 80  
72 +
81 81  (% style="color:#037691" %)**NB-IoT Spec:**
82 82  
83 83  * - B1 @H-FDD: 2100MHz
... ... @@ -87,8 +87,9 @@
87 87  * - B20 @H-FDD: 800MHz
88 88  * - B28 @H-FDD: 700MHz
89 89  
90 -Probe(% style="color:#037691" %)** Specification:**
91 91  
83 +(% style="color:#037691" %)**Probe Specification:**
84 +
92 92  Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
93 93  
94 94  [[image:image-20220708101224-1.png]]
... ... @@ -131,689 +131,984 @@
131 131  
132 132  
133 133  
134 -== 2.2 ​ Configure the NSE01 ==
127 +== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
135 135  
129 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
136 136  
137 -=== 2.2.1 Test Requirement ===
138 138  
132 +[[image:1654503992078-669.png]]
139 139  
140 -(((
141 -To use NSE01 in your city, make sure meet below requirements:
142 -)))
143 143  
144 -* Your local operator has already distributed a NB-IoT Network there.
145 -* The local NB-IoT network used the band that NSE01 supports.
146 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
135 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
147 147  
137 +
138 +(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
139 +
140 +Each LSE01 is shipped with a sticker with the default device EUI as below:
141 +
142 +[[image:image-20220606163732-6.jpeg]]
143 +
144 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
145 +
146 +**Add APP EUI in the application**
147 +
148 +
149 +[[image:1654504596150-405.png]]
150 +
151 +
152 +
153 +**Add APP KEY and DEV EUI**
154 +
155 +[[image:1654504683289-357.png]]
156 +
157 +
158 +
159 +(% style="color:blue" %)**Step 2**(%%): Power on LSE01
160 +
161 +
162 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
163 +
164 +[[image:image-20220606163915-7.png]]
165 +
166 +
167 +(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
168 +
169 +[[image:1654504778294-788.png]]
170 +
171 +
172 +
173 +== 2.3 Uplink Payload ==
174 +
175 +
176 +=== 2.3.1 MOD~=0(Default Mode) ===
177 +
178 +LSE01 will uplink payload via LoRaWAN with below payload format: 
179 +
148 148  (((
149 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
181 +Uplink payload includes in total 11 bytes.
150 150  )))
151 151  
184 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
185 +|(((
186 +**Size**
152 152  
153 -[[image:1657249419225-449.png]]
188 +**(bytes)**
189 +)))|**2**|**2**|**2**|**2**|**2**|**1**
190 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
191 +Temperature
154 154  
193 +(Reserve, Ignore now)
194 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
195 +MOD & Digital Interrupt
155 155  
197 +(Optional)
198 +)))
156 156  
157 -=== 2.2.2 Insert SIM card ===
200 +=== 2.3.2 MOD~=1(Original value) ===
158 158  
159 -Insert the NB-IoT Card get from your provider.
202 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
160 160  
161 -User need to take out the NB-IoT module and insert the SIM card like below:
204 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
205 +|(((
206 +**Size**
162 162  
208 +**(bytes)**
209 +)))|**2**|**2**|**2**|**2**|**2**|**1**
210 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
211 +Temperature
163 163  
164 -[[image:1657249468462-536.png]]
213 +(Reserve, Ignore now)
214 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
215 +MOD & Digital Interrupt
165 165  
217 +(Optional)
218 +)))
166 166  
220 +=== 2.3.3 Battery Info ===
167 167  
168 -=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
222 +(((
223 +Check the battery voltage for LSE01.
224 +)))
169 169  
170 170  (((
227 +Ex1: 0x0B45 = 2885mV
228 +)))
229 +
171 171  (((
172 -User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
231 +Ex2: 0x0B49 = 2889mV
173 173  )))
233 +
234 +
235 +
236 +=== 2.3.4 Soil Moisture ===
237 +
238 +(((
239 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
174 174  )))
175 175  
242 +(((
243 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
244 +)))
176 176  
177 -**Connection:**
246 +(((
247 +
248 +)))
178 178  
179 - (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
250 +(((
251 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
252 +)))
180 180  
181 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
182 182  
183 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
184 184  
256 +=== 2.3.5 Soil Temperature ===
185 185  
186 -In the PC, use below serial tool settings:
258 +(((
259 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
260 +)))
187 187  
188 -* Baud:  (% style="color:green" %)**9600**
189 -* Data bits:** (% style="color:green" %)8(%%)**
190 -* Stop bits: (% style="color:green" %)**1**
191 -* Parity:  (% style="color:green" %)**None**
192 -* Flow Control: (% style="color:green" %)**None**
262 +(((
263 +**Example**:
264 +)))
193 193  
194 194  (((
195 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
267 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
196 196  )))
197 197  
198 -[[image:image-20220708110657-3.png]]
270 +(((
271 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
272 +)))
199 199  
200 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
201 201  
202 202  
276 +=== 2.3.6 Soil Conductivity (EC) ===
203 203  
204 -=== 2.2.4 Use CoAP protocol to uplink data ===
278 +(((
279 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
280 +)))
205 205  
206 -(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
282 +(((
283 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
284 +)))
207 207  
286 +(((
287 +Generally, the EC value of irrigation water is less than 800uS / cm.
288 +)))
208 208  
209 -**Use below commands:**
290 +(((
291 +
292 +)))
210 210  
211 -* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
212 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
213 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
294 +(((
295 +
296 +)))
214 214  
215 -For parameter description, please refer to AT command set
298 +=== 2.3.7 MOD ===
216 216  
217 -[[image:1657249793983-486.png]]
300 +Firmware version at least v2.1 supports changing mode.
218 218  
302 +For example, bytes[10]=90
219 219  
220 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
304 +mod=(bytes[10]>>7)&0x01=1.
221 221  
222 -[[image:1657249831934-534.png]]
223 223  
307 +**Downlink Command:**
224 224  
309 +If payload = 0x0A00, workmode=0
225 225  
226 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
311 +If** **payload =** **0x0A01, workmode=1
227 227  
228 -This feature is supported since firmware version v1.0.1
229 229  
230 230  
231 -* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
232 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
233 -* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
315 +=== 2.3.8 ​Decode payload in The Things Network ===
234 234  
235 -[[image:1657249864775-321.png]]
317 +While using TTN network, you can add the payload format to decode the payload.
236 236  
237 237  
238 -[[image:1657249930215-289.png]]
320 +[[image:1654505570700-128.png]]
239 239  
322 +(((
323 +The payload decoder function for TTN is here:
324 +)))
240 240  
326 +(((
327 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
328 +)))
241 241  
242 -=== 2.2.6 Use MQTT protocol to uplink data ===
243 243  
244 -This feature is supported since firmware version v110
331 +== 2.4 Uplink Interval ==
245 245  
333 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
246 246  
247 -* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
248 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
249 -* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
250 -* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
251 -* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
252 -* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
253 -* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
254 254  
255 -[[image:1657249978444-674.png]]
256 256  
337 +== 2.5 Downlink Payload ==
257 257  
258 -[[image:1657249990869-686.png]]
339 +By default, LSE50 prints the downlink payload to console port.
259 259  
341 +[[image:image-20220606165544-8.png]]
260 260  
343 +
261 261  (((
262 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
345 +(% style="color:blue" %)**Examples:**
263 263  )))
264 264  
348 +(((
349 +
350 +)))
265 265  
352 +* (((
353 +(% style="color:blue" %)**Set TDC**
354 +)))
266 266  
267 -=== 2.2.7 Use TCP protocol to uplink data ===
356 +(((
357 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
358 +)))
268 268  
269 -This feature is supported since firmware version v110
360 +(((
361 +Payload:    01 00 00 1E    TDC=30S
362 +)))
270 270  
364 +(((
365 +Payload:    01 00 00 3C    TDC=60S
366 +)))
271 271  
272 -* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
273 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
368 +(((
369 +
370 +)))
274 274  
275 -[[image:1657250217799-140.png]]
372 +* (((
373 +(% style="color:blue" %)**Reset**
374 +)))
276 276  
376 +(((
377 +If payload = 0x04FF, it will reset the LSE01
378 +)))
277 277  
278 -[[image:1657250255956-604.png]]
279 279  
381 +* (% style="color:blue" %)**CFM**
280 280  
383 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
281 281  
282 -=== 2.2.8 Change Update Interval ===
283 283  
284 -User can use below command to change the (% style="color:green" %)**uplink interval**.
285 285  
286 -* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
387 +== 2.6 Show Data in DataCake IoT Server ==
287 287  
288 288  (((
289 -(% style="color:red" %)**NOTE:**
390 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
290 290  )))
291 291  
292 292  (((
293 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
394 +
294 294  )))
295 295  
397 +(((
398 +(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
399 +)))
296 296  
401 +(((
402 +(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
403 +)))
297 297  
298 -== 2.3  Uplink Payload ==
299 299  
300 -In this mode, uplink payload includes in total 18 bytes
406 +[[image:1654505857935-743.png]]
301 301  
302 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
303 -|=(% style="width: 50px;" %)(((
304 -**Size(bytes)**
305 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
306 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
307 307  
308 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
409 +[[image:1654505874829-548.png]]
309 309  
310 310  
311 -[[image:image-20220708111918-4.png]]
412 +(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
312 312  
414 +(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
313 313  
314 -The payload is ASCII string, representative same HEX:
315 315  
316 -0x72403155615900640c7817075e0a8c02f900 where:
417 +[[image:1654505905236-553.png]]
317 317  
318 -* Device ID: 0x 724031556159 = 724031556159
319 -* Version: 0x0064=100=1.0.0
320 320  
321 -* BAT: 0x0c78 = 3192 mV = 3.192V
322 -* Singal: 0x17 = 23
323 -* Soil Moisture: 0x075e= 1886 = 18.86  %
324 -* Soil Temperature:0x0a8c =2700=27 °C
325 -* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
326 -* Interrupt: 0x00 = 0
420 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
327 327  
422 +[[image:1654505925508-181.png]]
328 328  
329 -== 2.4  Payload Explanation and Sensor Interface ==
330 330  
331 331  
332 -=== 2.4.1  Device ID ===
426 +== 2.7 Frequency Plans ==
333 333  
334 -By default, the Device ID equal to the last 6 bytes of IMEI.
428 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
335 335  
336 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
337 337  
338 -**Example:**
431 +=== 2.7.1 EU863-870 (EU868) ===
339 339  
340 -AT+DEUI=A84041F15612
433 +(% style="color:#037691" %)** Uplink:**
341 341  
342 -The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
435 +868.1 - SF7BW125 to SF12BW125
343 343  
437 +868.3 - SF7BW125 to SF12BW125 and SF7BW250
344 344  
439 +868.5 - SF7BW125 to SF12BW125
345 345  
346 -=== 2.4.2  Version Info ===
441 +867.1 - SF7BW125 to SF12BW125
347 347  
348 -Specify the software version: 0x64=100, means firmware version 1.00.
443 +867.3 - SF7BW125 to SF12BW125
349 349  
350 -For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
445 +867.5 - SF7BW125 to SF12BW125
351 351  
447 +867.7 - SF7BW125 to SF12BW125
352 352  
449 +867.9 - SF7BW125 to SF12BW125
353 353  
354 -=== 2.4.3  Battery Info ===
451 +868.8 - FSK
355 355  
356 -(((
357 -Check the battery voltage for LSE01.
358 -)))
359 359  
360 -(((
361 -Ex1: 0x0B45 = 2885mV
362 -)))
454 +(% style="color:#037691" %)** Downlink:**
363 363  
364 -(((
365 -Ex2: 0x0B49 = 2889mV
366 -)))
456 +Uplink channels 1-9 (RX1)
367 367  
458 +869.525 - SF9BW125 (RX2 downlink only)
368 368  
369 369  
370 -=== 2.4.4  Signal Strength ===
371 371  
372 -NB-IoT Network signal Strength.
462 +=== 2.7.2 US902-928(US915) ===
373 373  
374 -**Ex1: 0x1d = 29**
464 +Used in USA, Canada and South America. Default use CHE=2
375 375  
376 -(% style="color:blue" %)**0**(%%)  -113dBm or less
466 +(% style="color:#037691" %)**Uplink:**
377 377  
378 -(% style="color:blue" %)**1**(%%)  -111dBm
468 +903.9 - SF7BW125 to SF10BW125
379 379  
380 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
470 +904.1 - SF7BW125 to SF10BW125
381 381  
382 -(% style="color:blue" %)**31**  (%%) -51dBm or greater
472 +904.3 - SF7BW125 to SF10BW125
383 383  
384 -(% style="color:blue" %)**99**   (%%) Not known or not detectable
474 +904.5 - SF7BW125 to SF10BW125
385 385  
476 +904.7 - SF7BW125 to SF10BW125
386 386  
478 +904.9 - SF7BW125 to SF10BW125
387 387  
388 -=== 2.4.5  Soil Moisture ===
480 +905.1 - SF7BW125 to SF10BW125
389 389  
390 -(((
391 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
392 -)))
482 +905.3 - SF7BW125 to SF10BW125
393 393  
394 -(((
395 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
396 -)))
397 397  
398 -(((
399 -
400 -)))
485 +(% style="color:#037691" %)**Downlink:**
401 401  
402 -(((
403 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
404 -)))
487 +923.3 - SF7BW500 to SF12BW500
405 405  
489 +923.9 - SF7BW500 to SF12BW500
406 406  
491 +924.5 - SF7BW500 to SF12BW500
407 407  
408 -=== 2.4.6  Soil Temperature ===
493 +925.1 - SF7BW500 to SF12BW500
409 409  
410 -(((
411 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
412 -)))
495 +925.7 - SF7BW500 to SF12BW500
413 413  
414 -(((
415 -**Example**:
416 -)))
497 +926.3 - SF7BW500 to SF12BW500
417 417  
418 -(((
419 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
420 -)))
499 +926.9 - SF7BW500 to SF12BW500
421 421  
422 -(((
423 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
424 -)))
501 +927.5 - SF7BW500 to SF12BW500
425 425  
503 +923.3 - SF12BW500(RX2 downlink only)
426 426  
427 427  
428 -=== 2.4.7  Soil Conductivity (EC) ===
429 429  
430 -(((
431 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
432 -)))
507 +=== 2.7.3 CN470-510 (CN470) ===
433 433  
434 -(((
435 -For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
436 -)))
509 +Used in China, Default use CHE=1
437 437  
438 -(((
439 -Generally, the EC value of irrigation water is less than 800uS / cm.
440 -)))
511 +(% style="color:#037691" %)**Uplink:**
441 441  
442 -(((
443 -
444 -)))
513 +486.3 - SF7BW125 to SF12BW125
445 445  
446 -(((
447 -
448 -)))
515 +486.5 - SF7BW125 to SF12BW125
449 449  
450 -=== 2.4.8  Digital Interrupt ===
517 +486.7 - SF7BW125 to SF12BW125
451 451  
452 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
519 +486.9 - SF7BW125 to SF12BW125
453 453  
454 -The command is:
521 +487.1 - SF7BW125 to SF12BW125
455 455  
456 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
523 +487.3 - SF7BW125 to SF12BW125
457 457  
525 +487.5 - SF7BW125 to SF12BW125
458 458  
459 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
527 +487.7 - SF7BW125 to SF12BW125
460 460  
461 461  
462 -Example:
530 +(% style="color:#037691" %)**Downlink:**
463 463  
464 -0x(00): Normal uplink packet.
532 +506.7 - SF7BW125 to SF12BW125
465 465  
466 -0x(01): Interrupt Uplink Packet.
534 +506.9 - SF7BW125 to SF12BW125
467 467  
536 +507.1 - SF7BW125 to SF12BW125
468 468  
538 +507.3 - SF7BW125 to SF12BW125
469 469  
470 -=== 2.4.9  ​+5V Output ===
540 +507.5 - SF7BW125 to SF12BW125
471 471  
472 -NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
542 +507.7 - SF7BW125 to SF12BW125
473 473  
544 +507.9 - SF7BW125 to SF12BW125
474 474  
475 -The 5V output time can be controlled by AT Command.
546 +508.1 - SF7BW125 to SF12BW125
476 476  
477 -(% style="color:blue" %)**AT+5VT=1000**
548 +505.3 - SF12BW125 (RX2 downlink only)
478 478  
479 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
480 480  
481 481  
552 +=== 2.7.4 AU915-928(AU915) ===
482 482  
483 -== 2.5  Downlink Payload ==
554 +Default use CHE=2
484 484  
485 -By default, NSE01 prints the downlink payload to console port.
556 +(% style="color:#037691" %)**Uplink:**
486 486  
487 -[[image:image-20220708133731-5.png]]
558 +916.8 - SF7BW125 to SF12BW125
488 488  
560 +917.0 - SF7BW125 to SF12BW125
489 489  
490 -(((
491 -(% style="color:blue" %)**Examples:**
492 -)))
562 +917.2 - SF7BW125 to SF12BW125
493 493  
494 -(((
495 -
496 -)))
564 +917.4 - SF7BW125 to SF12BW125
497 497  
498 -* (((
499 -(% style="color:blue" %)**Set TDC**
500 -)))
566 +917.6 - SF7BW125 to SF12BW125
501 501  
502 -(((
503 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
504 -)))
568 +917.8 - SF7BW125 to SF12BW125
505 505  
506 -(((
507 -Payload:    01 00 00 1E    TDC=30S
508 -)))
570 +918.0 - SF7BW125 to SF12BW125
509 509  
510 -(((
511 -Payload:    01 00 00 3C    TDC=60S
512 -)))
572 +918.2 - SF7BW125 to SF12BW125
513 513  
514 -(((
515 -
516 -)))
517 517  
518 -* (((
519 -(% style="color:blue" %)**Reset**
520 -)))
575 +(% style="color:#037691" %)**Downlink:**
521 521  
522 -(((
523 -If payload = 0x04FF, it will reset the NSE01
524 -)))
577 +923.3 - SF7BW500 to SF12BW500
525 525  
579 +923.9 - SF7BW500 to SF12BW500
526 526  
527 -* (% style="color:blue" %)**INTMOD**
581 +924.5 - SF7BW500 to SF12BW500
528 528  
529 -Downlink Payload: 06000003, Set AT+INTMOD=3
583 +925.1 - SF7BW500 to SF12BW500
530 530  
585 +925.7 - SF7BW500 to SF12BW500
531 531  
587 +926.3 - SF7BW500 to SF12BW500
532 532  
533 -== 2.6  ​LED Indicator ==
589 +926.9 - SF7BW500 to SF12BW500
534 534  
535 -(((
536 -The NSE01 has an internal LED which is to show the status of different state.
591 +927.5 - SF7BW500 to SF12BW500
537 537  
593 +923.3 - SF12BW500(RX2 downlink only)
538 538  
539 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
540 -* Then the LED will be on for 1 second means device is boot normally.
541 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
542 -* For each uplink probe, LED will be on for 500ms.
543 -)))
544 544  
545 545  
597 +=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
546 546  
599 +(% style="color:#037691" %)**Default Uplink channel:**
547 547  
548 -== 2.7  Installation in Soil ==
601 +923.2 - SF7BW125 to SF10BW125
549 549  
550 -__**Measurement the soil surface**__
603 +923.4 - SF7BW125 to SF10BW125
551 551  
552 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
553 553  
554 -[[image:1657259653666-883.png]]
606 +(% style="color:#037691" %)**Additional Uplink Channel**:
555 555  
608 +(OTAA mode, channel added by JoinAccept message)
556 556  
557 -(((
558 -
610 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
559 559  
560 -(((
561 -Dig a hole with diameter > 20CM.
562 -)))
612 +922.2 - SF7BW125 to SF10BW125
563 563  
564 -(((
565 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
566 -)))
567 -)))
614 +922.4 - SF7BW125 to SF10BW125
568 568  
569 -[[image:1654506665940-119.png]]
616 +922.6 - SF7BW125 to SF10BW125
570 570  
571 -(((
572 -
573 -)))
618 +922.8 - SF7BW125 to SF10BW125
574 574  
620 +923.0 - SF7BW125 to SF10BW125
575 575  
576 -== 2. Firmware Change Log ==
622 +922.0 - SF7BW125 to SF10BW125
577 577  
578 578  
579 -Download URL & Firmware Change log
625 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
580 580  
581 -[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
627 +923.6 - SF7BW125 to SF10BW125
582 582  
629 +923.8 - SF7BW125 to SF10BW125
583 583  
584 -Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
631 +924.0 - SF7BW125 to SF10BW125
585 585  
633 +924.2 - SF7BW125 to SF10BW125
586 586  
635 +924.4 - SF7BW125 to SF10BW125
587 587  
588 -== 2. Battery Analysis ==
637 +924.6 - SF7BW125 to SF10BW125
589 589  
590 -=== 2.9.1  ​Battery Type ===
591 591  
640 +(% style="color:#037691" %)** Downlink:**
592 592  
593 -The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
642 +Uplink channels 1-8 (RX1)
594 594  
644 +923.2 - SF10BW125 (RX2)
595 595  
596 -The battery is designed to last for several years depends on the actually use environment and update interval. 
597 597  
598 598  
599 -The battery related documents as below:
648 +=== 2.7.6 KR920-923 (KR920) ===
600 600  
601 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
602 -* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
603 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
650 +Default channel:
604 604  
652 +922.1 - SF7BW125 to SF12BW125
653 +
654 +922.3 - SF7BW125 to SF12BW125
655 +
656 +922.5 - SF7BW125 to SF12BW125
657 +
658 +
659 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
660 +
661 +922.1 - SF7BW125 to SF12BW125
662 +
663 +922.3 - SF7BW125 to SF12BW125
664 +
665 +922.5 - SF7BW125 to SF12BW125
666 +
667 +922.7 - SF7BW125 to SF12BW125
668 +
669 +922.9 - SF7BW125 to SF12BW125
670 +
671 +923.1 - SF7BW125 to SF12BW125
672 +
673 +923.3 - SF7BW125 to SF12BW125
674 +
675 +
676 +(% style="color:#037691" %)**Downlink:**
677 +
678 +Uplink channels 1-7(RX1)
679 +
680 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
681 +
682 +
683 +
684 +=== 2.7.7 IN865-867 (IN865) ===
685 +
686 +(% style="color:#037691" %)** Uplink:**
687 +
688 +865.0625 - SF7BW125 to SF12BW125
689 +
690 +865.4025 - SF7BW125 to SF12BW125
691 +
692 +865.9850 - SF7BW125 to SF12BW125
693 +
694 +
695 +(% style="color:#037691" %) **Downlink:**
696 +
697 +Uplink channels 1-3 (RX1)
698 +
699 +866.550 - SF10BW125 (RX2)
700 +
701 +
702 +
703 +
704 +== 2.8 LED Indicator ==
705 +
706 +The LSE01 has an internal LED which is to show the status of different state.
707 +
708 +* Blink once when device power on.
709 +* Solid ON for 5 seconds once device successful Join the network.
710 +* Blink once when device transmit a packet.
711 +
712 +== 2.9 Installation in Soil ==
713 +
714 +**Measurement the soil surface**
715 +
716 +
717 +[[image:1654506634463-199.png]] ​
718 +
605 605  (((
606 -[[image:image-20220708140453-6.png]]
720 +(((
721 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
607 607  )))
723 +)))
608 608  
609 609  
610 610  
611 -=== 2.9.2  Power consumption Analyze ===
727 +[[image:1654506665940-119.png]]
612 612  
613 613  (((
614 -Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
730 +Dig a hole with diameter > 20CM.
615 615  )))
616 616  
733 +(((
734 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
735 +)))
617 617  
737 +
738 +== 2.10 ​Firmware Change Log ==
739 +
618 618  (((
619 -Instruction to use as below:
741 +**Firmware download link:**
620 620  )))
621 621  
622 622  (((
623 -(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
745 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
624 624  )))
625 625  
748 +(((
749 +
750 +)))
626 626  
627 627  (((
628 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose
753 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
629 629  )))
630 630  
631 -* (((
632 -Product Model
756 +(((
757 +
633 633  )))
634 -* (((
635 -Uplink Interval
759 +
760 +(((
761 +**V1.0.**
636 636  )))
637 -* (((
638 -Working Mode
639 -)))
640 640  
641 641  (((
642 -And the Life expectation in difference case will be shown on the right.
765 +Release
643 643  )))
644 644  
645 -[[image:image-20220708141352-7.jpeg]]
646 646  
769 +== 2.11 ​Battery Analysis ==
647 647  
771 +=== 2.11.1 ​Battery Type ===
648 648  
649 -=== 2.9.3  ​Battery Note ===
773 +(((
774 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
775 +)))
650 650  
651 651  (((
652 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
778 +The battery is designed to last for more than 5 years for the LSN50.
653 653  )))
654 654  
781 +(((
782 +(((
783 +The battery-related documents are as below:
784 +)))
785 +)))
655 655  
787 +* (((
788 +[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
789 +)))
790 +* (((
791 +[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
792 +)))
793 +* (((
794 +[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
795 +)))
656 656  
657 -=== 2.9.4  Replace the battery ===
797 + [[image:image-20220610172436-1.png]]
658 658  
799 +
800 +
801 +=== 2.11.2 ​Battery Note ===
802 +
659 659  (((
660 -The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
804 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
661 661  )))
662 662  
663 663  
664 664  
665 -= 3. ​ Access NB-IoT Module =
809 +=== 2.11.3 Replace the battery ===
666 666  
667 667  (((
668 -Users can directly access the AT command set of the NB-IoT module.
812 +If Battery is lower than 2.7v, user should replace the battery of LSE01.
669 669  )))
670 670  
671 671  (((
672 -The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
816 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
673 673  )))
674 674  
675 -[[image:1657261278785-153.png]]
819 +(((
820 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
821 +)))
676 676  
677 677  
678 678  
679 -= 4.  Using the AT Commands =
825 += 3. Using the AT Commands =
680 680  
681 -== 4.1  Access AT Commands ==
827 +== 3.1 Access AT Commands ==
682 682  
683 -See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
684 684  
830 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
685 685  
686 -AT+<CMD>?  : Help on <CMD>
832 +[[image:1654501986557-872.png||height="391" width="800"]]
687 687  
688 -AT+<CMD>         : Run <CMD>
689 689  
690 -AT+<CMD>=<value> : Set the value
835 +Or if you have below board, use below connection:
691 691  
692 -AT+<CMD>=?  : Get the value
693 693  
838 +[[image:1654502005655-729.png||height="503" width="801"]]
694 694  
840 +
841 +
842 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
843 +
844 +
845 + [[image:1654502050864-459.png||height="564" width="806"]]
846 +
847 +
848 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
849 +
850 +
851 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
852 +
853 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
854 +
855 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
856 +
857 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
858 +
859 +
695 695  (% style="color:#037691" %)**General Commands**(%%)      
696 696  
697 -AT  : Attention       
862 +(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
698 698  
699 -AT?  : Short Help     
864 +(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
700 700  
701 -ATZ  : MCU Reset    
866 +(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
702 702  
703 -AT+TDC  : Application Data Transmission Interval
868 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
704 704  
705 -AT+CFG  : Print all configurations
706 706  
707 -AT+CFGMOD           : Working mode selection
871 +(% style="color:#037691" %)**Keys, IDs and EUIs management**
708 708  
709 -AT+INTMOD            : Set the trigger interrupt mode
873 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
710 710  
711 -AT+5VT  : Set extend the time of 5V power  
875 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
712 712  
713 -AT+PRO  : Choose agreement
877 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
714 714  
715 -AT+WEIGRE  : Get weight or set weight to 0
879 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
716 716  
717 -AT+WEIGAP  : Get or Set the GapValue of weight
881 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
718 718  
719 -AT+RXDL  : Extend the sending and receiving time
883 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
720 720  
721 -AT+CNTFAC  : Get or set counting parameters
885 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
722 722  
723 -AT+SERVADDR  : Server Address
887 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
724 724  
889 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
725 725  
726 -(% style="color:#037691" %)**COAP Management**      
891 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
727 727  
728 -AT+URI            : Resource parameters
893 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
729 729  
895 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
730 730  
731 -(% style="color:#037691" %)**UDP Management**
897 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
732 732  
733 -AT+CFM          : Upload confirmation mode (only valid for UDP)
899 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
734 734  
901 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
735 735  
736 -(% style="color:#037691" %)**MQTT Management**
903 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
737 737  
738 -AT+CLIENT               : Get or Set MQTT client
739 739  
740 -AT+UNAME  : Get or Set MQTT Username
906 +(% style="color:#037691" %)**LoRa Network Management**
741 741  
742 -AT+PWD                  : Get or Set MQTT password
908 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
743 743  
744 -AT+PUBTOPI : Get or Set MQTT publish topic
910 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
745 745  
746 -AT+SUBTOPIC  : Get or Set MQTT subscription topic
912 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
747 747  
914 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
748 748  
749 -(% style="color:#037691" %)**Information**          
916 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
750 750  
751 -AT+FDR  : Factory Data Reset
918 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
752 752  
753 -AT+PWOR : Serial Access Password
920 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
754 754  
922 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
755 755  
924 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
756 756  
757 -= ​5.  FAQ =
926 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
758 758  
759 -== 5.1 How to Upgrade Firmware ==
928 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
760 760  
930 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
761 761  
932 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
933 +
934 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
935 +
936 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
937 +
938 +
939 +(% style="color:#037691" %)**Information** 
940 +
941 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
942 +
943 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
944 +
945 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
946 +
947 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
948 +
949 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
950 +
951 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
952 +
953 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
954 +
955 +
956 += ​4. FAQ =
957 +
958 +== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
959 +
762 762  (((
763 -User can upgrade the firmware for 1) bug fix, 2) new feature release.
961 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
962 +When downloading the images, choose the required image file for download. ​
764 764  )))
765 765  
766 766  (((
767 -Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
966 +
768 768  )))
769 769  
770 770  (((
771 -(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
970 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
772 772  )))
773 773  
973 +(((
974 +
975 +)))
774 774  
977 +(((
978 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
979 +)))
775 775  
776 -= 6.  Trouble Shooting =
981 +(((
982 +
983 +)))
777 777  
778 -== 6.1  ​Connection problem when uploading firmware ==
985 +(((
986 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
987 +)))
779 779  
989 +[[image:image-20220606154726-3.png]]
780 780  
781 -(% class="wikigeneratedid" %)
991 +
992 +When you use the TTN network, the US915 frequency bands use are:
993 +
994 +* 903.9 - SF7BW125 to SF10BW125
995 +* 904.1 - SF7BW125 to SF10BW125
996 +* 904.3 - SF7BW125 to SF10BW125
997 +* 904.5 - SF7BW125 to SF10BW125
998 +* 904.7 - SF7BW125 to SF10BW125
999 +* 904.9 - SF7BW125 to SF10BW125
1000 +* 905.1 - SF7BW125 to SF10BW125
1001 +* 905.3 - SF7BW125 to SF10BW125
1002 +* 904.6 - SF8BW500
1003 +
782 782  (((
783 -(% style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]]
1005 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
1006 +
1007 +* (% style="color:#037691" %)**AT+CHE=2**
1008 +* (% style="color:#037691" %)**ATZ**
784 784  )))
785 785  
1011 +(((
1012 +
786 786  
1014 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
1015 +)))
787 787  
788 -== 6.2  AT Command input doesn't work ==
1017 +(((
1018 +
1019 +)))
789 789  
790 790  (((
1022 +The **AU915** band is similar. Below are the AU915 Uplink Channels.
1023 +)))
1024 +
1025 +[[image:image-20220606154825-4.png]]
1026 +
1027 +
1028 +== 4.2 ​Can I calibrate LSE01 to different soil types? ==
1029 +
1030 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1031 +
1032 +
1033 += 5. Trouble Shooting =
1034 +
1035 +== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
1036 +
1037 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
1038 +
1039 +
1040 +== 5.2 AT Command input doesn't work ==
1041 +
1042 +(((
791 791  In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
792 792  )))
793 793  
794 794  
1047 +== 5.3 Device rejoin in at the second uplink packet ==
795 795  
796 -= 7. ​ Order Info =
1049 +(% style="color:#4f81bd" %)**Issue describe as below:**
797 797  
1051 +[[image:1654500909990-784.png]]
798 798  
799 -Part Number**:** (% style="color:#4f81bd" %)**NSE01**
800 800  
1054 +(% style="color:#4f81bd" %)**Cause for this issue:**
801 801  
1056 +(((
1057 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
1058 +)))
1059 +
1060 +
1061 +(% style="color:#4f81bd" %)**Solution: **
1062 +
1063 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1064 +
1065 +[[image:1654500929571-736.png||height="458" width="832"]]
1066 +
1067 +
1068 += 6. ​Order Info =
1069 +
1070 +
1071 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1072 +
1073 +
1074 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1075 +
1076 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1077 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1078 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1079 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1080 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1081 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1082 +* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1083 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1084 +
1085 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1086 +
1087 +* (% style="color:red" %)**4**(%%): 4000mAh battery
1088 +* (% style="color:red" %)**8**(%%): 8500mAh battery
1089 +
802 802  (% class="wikigeneratedid" %)
803 803  (((
804 804  
805 805  )))
806 806  
807 -= 8.  Packing Info =
1095 += 7. Packing Info =
808 808  
809 809  (((
810 810  
811 811  
812 812  (% style="color:#037691" %)**Package Includes**:
1101 +)))
813 813  
814 -
815 -* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
816 -* External antenna x 1
1103 +* (((
1104 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
817 817  )))
818 818  
819 819  (((
... ... @@ -820,20 +820,24 @@
820 820  
821 821  
822 822  (% style="color:#037691" %)**Dimension and weight**:
1111 +)))
823 823  
824 -
825 -* Size: 195 x 125 x 55 mm
826 -* Weight:   420g
1113 +* (((
1114 +Device Size: cm
827 827  )))
1116 +* (((
1117 +Device Weight: g
1118 +)))
1119 +* (((
1120 +Package Size / pcs : cm
1121 +)))
1122 +* (((
1123 +Weight / pcs : g
828 828  
829 -(((
830 830  
831 -
832 -
833 -
834 834  )))
835 835  
836 -= 9.  Support =
1128 += 8. Support =
837 837  
838 838  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
839 839  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657249419225-449.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -102.7 KB
Content