Changes for page NDDS75 -- NB-IoT Distance Detect Sensor User Manual
Last modified by Bei Jinggeng on 2024/05/31 09:53
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 21 removed)
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
Details
- Page properties
-
- Content
-
... ... @@ -13,36 +13,25 @@ 13 13 14 14 **Table of Contents:** 15 15 16 -{{toc/}} 17 17 18 18 19 19 20 20 21 21 21 += 1. Introduction = 22 22 23 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 23 23 24 -= 1. Introduction = 25 - 26 -== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 27 - 28 28 ((( 29 29 30 30 31 -((( 32 -Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 33 -))) 28 +Dragino NSE01 is an **NB-IOT soil moisture & EC sensor** for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 34 34 35 -((( 36 -It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 37 -))) 30 +It can detect **Soil Moisture, Soil Temperature and Soil Conductivity**, and upload its value to the server wirelessly. 38 38 39 -((( 40 40 The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 41 -))) 42 42 43 -((( 44 -NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years. 45 -))) 34 +NSE01 are powered by **8500mAh Li-SOCI2** batteries, which can be used for up to 5 years. 46 46 47 47 48 48 ))) ... ... @@ -54,766 +54,1034 @@ 54 54 55 55 56 56 57 -== 1.2 46 +== 1.2 Features == 58 58 59 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 48 +* LoRaWAN 1.0.3 Class A 49 +* Ultra low power consumption 60 60 * Monitor Soil Moisture 61 61 * Monitor Soil Temperature 62 62 * Monitor Soil Conductivity 53 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 63 63 * AT Commands to change parameters 64 64 * Uplink on periodically 65 65 * Downlink to change configure 66 66 * IP66 Waterproof Enclosure 67 -* Ultra-Low Power consumption 68 -* AT Commands to change parameters 69 -* Micro SIM card slot for NB-IoT SIM 70 -* 8500mAh Battery for long term use 58 +* 4000mAh or 8500mAh Battery for long term use 71 71 60 +== 1.3 Specification == 72 72 73 - ==1.3Specification==62 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 74 74 64 +[[image:image-20220606162220-5.png]] 75 75 76 -(% style="color:#037691" %)**Common DC Characteristics:** 77 77 78 -* Supply Voltage: 2.1v ~~ 3.6v 79 -* Operating Temperature: -40 ~~ 85°C 80 80 81 - (% style="color:#037691"%)**NB-IoT Spec:**68 +== 1.4 Applications == 82 82 83 -* - B1 @H-FDD: 2100MHz 84 -* - B3 @H-FDD: 1800MHz 85 -* - B8 @H-FDD: 900MHz 86 -* - B5 @H-FDD: 850MHz 87 -* - B20 @H-FDD: 800MHz 88 -* - B28 @H-FDD: 700MHz 70 +* Smart Agriculture 89 89 90 -Probe(% style="color:#037691" %)** Specification:** 72 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 73 + 91 91 92 - MeasureVolume:Base on the centrapin of the probe,a cylinder with7cm diameter and 10cm height.75 +== 1.5 Firmware Change log == 93 93 94 -[[image:image-20220708101224-1.png]] 95 95 78 +**LSE01 v1.0 :** Release 96 96 97 97 98 -== 1.4 Applications == 99 99 100 - *SmartAgriculture82 += 2. Configure LSE01 to connect to LoRaWAN network = 101 101 102 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 103 - 84 +== 2.1 How it works == 104 104 105 -== 1.5 Pin Definitions == 86 +((( 87 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 88 +))) 106 106 90 +((( 91 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 92 +))) 107 107 108 -[[image:1657246476176-652.png]] 109 109 110 110 96 +== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 111 111 112 - =2. UseNSE01to communicate withIoTServer=98 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 113 113 114 -== 2.1 How it works == 115 115 101 +[[image:1654503992078-669.png]] 116 116 103 + 104 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 105 + 106 + 107 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSE01. 108 + 109 +Each LSE01 is shipped with a sticker with the default device EUI as below: 110 + 111 +[[image:image-20220606163732-6.jpeg]] 112 + 113 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 114 + 115 +**Add APP EUI in the application** 116 + 117 + 118 +[[image:1654504596150-405.png]] 119 + 120 + 121 + 122 +**Add APP KEY and DEV EUI** 123 + 124 +[[image:1654504683289-357.png]] 125 + 126 + 127 + 128 +(% style="color:blue" %)**Step 2**(%%): Power on LSE01 129 + 130 + 131 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 132 + 133 +[[image:image-20220606163915-7.png]] 134 + 135 + 136 +(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 137 + 138 +[[image:1654504778294-788.png]] 139 + 140 + 141 + 142 +== 2.3 Uplink Payload == 143 + 144 + 145 +=== 2.3.1 MOD~=0(Default Mode) === 146 + 147 +LSE01 will uplink payload via LoRaWAN with below payload format: 148 + 117 117 ((( 118 - The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware inNSE01 will get environment data from sensors and send the value to local NB-IoT networkviathe NB-IoT module. The NB-IoT network will forwardthis valueto IoTserverviathe protocoldefinedbyNSE01.150 +Uplink payload includes in total 11 bytes. 119 119 ))) 120 120 153 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 154 +|((( 155 +**Size** 121 121 157 +**(bytes)** 158 +)))|**2**|**2**|**2**|**2**|**2**|**1** 159 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 160 +Temperature 161 + 162 +(Reserve, Ignore now) 163 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 164 +MOD & Digital Interrupt 165 + 166 +(Optional) 167 +))) 168 + 169 +=== 2.3.2 MOD~=1(Original value) === 170 + 171 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 172 + 173 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 174 +|((( 175 +**Size** 176 + 177 +**(bytes)** 178 +)))|**2**|**2**|**2**|**2**|**2**|**1** 179 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 180 +Temperature 181 + 182 +(Reserve, Ignore now) 183 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 184 +MOD & Digital Interrupt 185 + 186 +(Optional) 187 +))) 188 + 189 +=== 2.3.3 Battery Info === 190 + 122 122 ((( 123 - Thediagram below showstheworkingflow in defaultfirmwareofNSE01:192 +Check the battery voltage for LSE01. 124 124 ))) 125 125 126 -[[image:image-20220708101605-2.png]] 195 +((( 196 +Ex1: 0x0B45 = 2885mV 197 +))) 127 127 128 128 ((( 200 +Ex2: 0x0B49 = 2889mV 201 +))) 202 + 203 + 204 + 205 +=== 2.3.4 Soil Moisture === 206 + 207 +((( 208 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 209 +))) 210 + 211 +((( 212 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 213 +))) 214 + 215 +((( 129 129 130 130 ))) 131 131 219 +((( 220 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 221 +))) 132 132 133 133 134 -== 2.2 Configure the NSE01 == 135 135 225 +=== 2.3.5 Soil Temperature === 136 136 137 -=== 2.2.1 Test Requirement === 227 +((( 228 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 229 +))) 138 138 231 +((( 232 +**Example**: 233 +))) 139 139 140 140 ((( 141 - TouseNSE01inyourcity,makesureeetbelowrequirements:236 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 142 142 ))) 143 143 144 - * Your local operator has already distributed a NB-IoT Network there.145 - *ThelocalNB-IoTnetworkusedthebandthatNSE01supports.146 - * Your operator is able to distribute the data received in their NB-IoT network to your IoT server.239 +((( 240 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 241 +))) 147 147 243 + 244 + 245 +=== 2.3.6 Soil Conductivity (EC) === 246 + 148 148 ((( 149 - Below figureshows our testingstructure.Here we have NB-IoTnetwork coverage by ChinaMobile, the bandthey useis B8. The NSE01 willuse CoAP((% style="color:red" %)120.24.4.116:5683)(%%)orrawUDP((%style="color:red" %)120.24.4.116:5601)(%%) orMQTT((% style="color:red" %)120.24.4.116:1883)(%%)orTCP((%style="color:red"%)120.24.4.116:5600)(%%)protocoltosenddatato thetest server248 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 150 150 ))) 151 151 251 +((( 252 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 253 +))) 152 152 153 -[[image:1657249419225-449.png]] 255 +((( 256 +Generally, the EC value of irrigation water is less than 800uS / cm. 257 +))) 154 154 259 +((( 260 + 261 +))) 155 155 263 +((( 264 + 265 +))) 156 156 157 -=== 2. 2.2Insert SIMcard===267 +=== 2.3.7 MOD === 158 158 159 - Insert theNB-IoTCardgetfromyourprovider.269 +Firmware version at least v2.1 supports changing mode. 160 160 161 - Userneed to take out the NB-IoTmoduleand inserttheSIM card like below:271 +For example, bytes[10]=90 162 162 273 +mod=(bytes[10]>>7)&0x01=1. 163 163 164 -[[image:1657249468462-536.png]] 165 165 276 +**Downlink Command:** 166 166 278 +If payload = 0x0A00, workmode=0 167 167 168 - ===2.2.3 ConnectUSB– TTL to NSE01toconfigureit===280 +If** **payload =** **0x0A01, workmode=1 169 169 282 + 283 + 284 +=== 2.3.8 Decode payload in The Things Network === 285 + 286 +While using TTN network, you can add the payload format to decode the payload. 287 + 288 + 289 +[[image:1654505570700-128.png]] 290 + 170 170 ((( 292 +The payload decoder function for TTN is here: 293 +))) 294 + 171 171 ((( 172 - User need to configure NSE01viaserial port to set the (% style="color:blue" %)**Server Address** /**Uplink Topic** (%%)tofine whereandhow-to uplink packets.NSE01 support AT Commands, usercan use a USBtoTTLadaptertoconnect toNSE01anduseATCommandsto configure it,as below.296 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]] 173 173 ))) 174 -))) 175 175 176 176 177 - **Connection:**300 +== 2.4 Uplink Interval == 178 178 179 - (%style="background-color:yellow"%)USBTTLGND<~-~-~-~->GND302 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 180 180 181 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 182 182 183 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 184 184 306 +== 2.5 Downlink Payload == 185 185 186 - InthePC,usebelowserial toolsettings:308 +By default, LSE50 prints the downlink payload to console port. 187 187 188 -* Baud: (% style="color:green" %)**9600** 189 -* Data bits:** (% style="color:green" %)8(%%)** 190 -* Stop bits: (% style="color:green" %)**1** 191 -* Parity: (% style="color:green" %)**None** 192 -* Flow Control: (% style="color:green" %)**None** 310 +[[image:image-20220606165544-8.png]] 193 193 312 + 194 194 ((( 195 - Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the(% style="color:green" %)**password:12345678**(%%) to access AT Command input.314 +(% style="color:blue" %)**Examples:** 196 196 ))) 197 197 198 -[[image:image-20220708110657-3.png]] 317 +((( 318 + 319 +))) 199 199 200 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 321 +* ((( 322 +(% style="color:blue" %)**Set TDC** 323 +))) 201 201 325 +((( 326 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 327 +))) 202 202 329 +((( 330 +Payload: 01 00 00 1E TDC=30S 331 +))) 203 203 204 -=== 2.2.4 Use CoAP protocol to uplink data === 333 +((( 334 +Payload: 01 00 00 3C TDC=60S 335 +))) 205 205 206 -(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 337 +((( 338 + 339 +))) 207 207 341 +* ((( 342 +(% style="color:blue" %)**Reset** 343 +))) 208 208 209 -**Use below commands:** 345 +((( 346 +If payload = 0x04FF, it will reset the LSE01 347 +))) 210 210 211 -* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 212 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 213 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 214 214 215 - Forparameterdescription, please refer to ATcommand set350 +* (% style="color:blue" %)**CFM** 216 216 217 - [[image:1657249793983-486.png]]352 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 218 218 219 219 220 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 221 221 222 - [[image:1657249831934-534.png]]356 +== 2.6 Show Data in DataCake IoT Server == 223 223 358 +((( 359 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 360 +))) 224 224 362 +((( 363 + 364 +))) 225 225 226 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 366 +((( 367 +(% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time. 368 +))) 227 227 228 -This feature is supported since firmware version v1.0.1 370 +((( 371 +(% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 372 +))) 229 229 230 230 231 -* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 232 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 233 -* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 375 +[[image:1654505857935-743.png]] 234 234 235 -[[image:1657249864775-321.png]] 236 236 378 +[[image:1654505874829-548.png]] 237 237 238 -[[image:1657249930215-289.png]] 239 239 381 +(% style="color:blue" %)**Step 3**(%%)**:** Create an account or log in Datacake. 240 240 383 +(% style="color:blue" %)**Step 4**(%%)**:** Search the LSE01 and add DevEUI. 241 241 242 -=== 2.2.6 Use MQTT protocol to uplink data === 243 243 244 - This feature is supported since firmwareversion v110386 +[[image:1654505905236-553.png]] 245 245 246 246 247 -* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 248 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 249 -* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 250 -* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 251 -* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 252 -* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 253 -* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 389 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 254 254 255 -[[image:165 7249978444-674.png]]391 +[[image:1654505925508-181.png]] 256 256 257 257 258 -[[image:1657249990869-686.png]] 259 259 395 +== 2.7 Frequency Plans == 260 260 261 -((( 262 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 263 -))) 397 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 264 264 265 265 400 +=== 2.7.1 EU863-870 (EU868) === 266 266 267 - ===2.2.7 Use TCP protocoltouplinkdata ===402 +(% style="color:#037691" %)** Uplink:** 268 268 269 - Thisfeatureissupported since firmware versionv110404 +868.1 - SF7BW125 to SF12BW125 270 270 406 +868.3 - SF7BW125 to SF12BW125 and SF7BW250 271 271 272 -* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 273 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 408 +868.5 - SF7BW125 to SF12BW125 274 274 275 - [[image:1657250217799-140.png]]410 +867.1 - SF7BW125 to SF12BW125 276 276 412 +867.3 - SF7BW125 to SF12BW125 277 277 278 - [[image:1657250255956-604.png]]414 +867.5 - SF7BW125 to SF12BW125 279 279 416 +867.7 - SF7BW125 to SF12BW125 280 280 418 +867.9 - SF7BW125 to SF12BW125 281 281 282 - === 2.2.8Change Update Interval ===420 +868.8 - FSK 283 283 284 -User can use below command to change the (% style="color:green" %)**uplink interval**. 285 285 286 - *(% style="color:blue" %)**AT+TDC=600** (%%)~/~/ Set Update Intervalto 600s423 +(% style="color:#037691" %)** Downlink:** 287 287 288 -((( 289 -(% style="color:red" %)**NOTE:** 290 -))) 425 +Uplink channels 1-9 (RX1) 291 291 292 -((( 293 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 294 -))) 427 +869.525 - SF9BW125 (RX2 downlink only) 295 295 296 296 297 297 298 -== 2. 3UplinkPayload==431 +=== 2.7.2 US902-928(US915) === 299 299 300 - In thismode,uplinkpayloadincludesin total18 bytes433 +Used in USA, Canada and South America. Default use CHE=2 301 301 302 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 303 -|=(% style="width: 50px;" %)((( 304 -**Size(bytes)** 305 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1** 306 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 435 +(% style="color:#037691" %)**Uplink:** 307 307 308 - Ifweusethe MQTT client tosubscribe to this MQTT topic, we can see the following information when the NSE01uplink data.437 +903.9 - SF7BW125 to SF10BW125 309 309 439 +904.1 - SF7BW125 to SF10BW125 310 310 311 - [[image:image-20220708111918-4.png]]441 +904.3 - SF7BW125 to SF10BW125 312 312 443 +904.5 - SF7BW125 to SF10BW125 313 313 314 - Thepayloadis ASCIIstring,representative same HEX:445 +904.7 - SF7BW125 to SF10BW125 315 315 316 - 0x72403155615900640c7817075e0a8c02f900 where:447 +904.9 - SF7BW125 to SF10BW125 317 317 318 -* Device ID: 0x 724031556159 = 724031556159 319 -* Version: 0x0064=100=1.0.0 449 +905.1 - SF7BW125 to SF10BW125 320 320 321 -* BAT: 0x0c78 = 3192 mV = 3.192V 322 -* Singal: 0x17 = 23 323 -* Soil Moisture: 0x075e= 1886 = 18.86 % 324 -* Soil Temperature:0x0a8c =2700=27 °C 325 -* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 326 -* Interrupt: 0x00 = 0 451 +905.3 - SF7BW125 to SF10BW125 327 327 328 328 329 - ==2.4 Payload Explanation and SensorInterface ==454 +(% style="color:#037691" %)**Downlink:** 330 330 456 +923.3 - SF7BW500 to SF12BW500 331 331 332 - ===2.4.1 DeviceID===458 +923.9 - SF7BW500 to SF12BW500 333 333 334 - Bydefault,theDevice ID equaltothe last 6 bytes of IMEI.460 +924.5 - SF7BW500 to SF12BW500 335 335 336 - Usercanuse(% style="color:blue"%)**AT+DEUI**(%%) to set Device ID462 +925.1 - SF7BW500 to SF12BW500 337 337 338 - **Example:**464 +925.7 - SF7BW500 to SF12BW500 339 339 340 - AT+DEUI=A84041F15612466 +926.3 - SF7BW500 to SF12BW500 341 341 342 - TheDevice ID is stored in a none-erasearea,Upgradethe firmwareorrun AT+FDR won't erase Device ID.468 +926.9 - SF7BW500 to SF12BW500 343 343 470 +927.5 - SF7BW500 to SF12BW500 344 344 472 +923.3 - SF12BW500(RX2 downlink only) 345 345 346 -=== 2.4.2 Version Info === 347 347 348 -Specify the software version: 0x64=100, means firmware version 1.00. 349 349 350 - Forexample:0x0064 : this device isNSE01with firmware version 1.0.0.476 +=== 2.7.3 CN470-510 (CN470) === 351 351 478 +Used in China, Default use CHE=1 352 352 480 +(% style="color:#037691" %)**Uplink:** 353 353 354 - === 2.4.3atteryInfo===482 +486.3 - SF7BW125 to SF12BW125 355 355 356 -((( 357 -Check the battery voltage for LSE01. 358 -))) 484 +486.5 - SF7BW125 to SF12BW125 359 359 360 -((( 361 -Ex1: 0x0B45 = 2885mV 362 -))) 486 +486.7 - SF7BW125 to SF12BW125 363 363 364 -((( 365 -Ex2: 0x0B49 = 2889mV 366 -))) 488 +486.9 - SF7BW125 to SF12BW125 367 367 490 +487.1 - SF7BW125 to SF12BW125 368 368 492 +487.3 - SF7BW125 to SF12BW125 369 369 370 - === 2.4.4SignalStrength===494 +487.5 - SF7BW125 to SF12BW125 371 371 372 - NB-IoTNetworksignalStrength.496 +487.7 - SF7BW125 to SF12BW125 373 373 374 -**Ex1: 0x1d = 29** 375 375 376 -(% style="color: blue" %)**0**(%%) -113dBmorless499 +(% style="color:#037691" %)**Downlink:** 377 377 378 - (%style="color:blue"%)**1**(%%)-111dBm501 +506.7 - SF7BW125 to SF12BW125 379 379 380 - (%style="color:blue"%)**2...30**(%%)-109dBm... -53dBm503 +506.9 - SF7BW125 to SF12BW125 381 381 382 - (% style="color:blue" %)**31**(%%)-51dBmorgreater505 +507.1 - SF7BW125 to SF12BW125 383 383 384 - (%style="color:blue"%)**99**(%%) Notknownor not detectable507 +507.3 - SF7BW125 to SF12BW125 385 385 509 +507.5 - SF7BW125 to SF12BW125 386 386 511 +507.7 - SF7BW125 to SF12BW125 387 387 388 - ===2.4.5SoilMoisture ===513 +507.9 - SF7BW125 to SF12BW125 389 389 390 -((( 391 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 392 -))) 515 +508.1 - SF7BW125 to SF12BW125 393 393 394 -((( 395 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 396 -))) 517 +505.3 - SF12BW125 (RX2 downlink only) 397 397 398 -((( 399 - 400 -))) 401 401 402 -((( 403 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 404 -))) 405 405 521 +=== 2.7.4 AU915-928(AU915) === 406 406 523 +Default use CHE=2 407 407 408 - ===2.4.6 SoilTemperature===525 +(% style="color:#037691" %)**Uplink:** 409 409 410 -((( 411 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 412 -))) 527 +916.8 - SF7BW125 to SF12BW125 413 413 414 -((( 415 -**Example**: 416 -))) 529 +917.0 - SF7BW125 to SF12BW125 417 417 418 -((( 419 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 420 -))) 531 +917.2 - SF7BW125 to SF12BW125 421 421 422 -((( 423 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 424 -))) 533 +917.4 - SF7BW125 to SF12BW125 425 425 535 +917.6 - SF7BW125 to SF12BW125 426 426 537 +917.8 - SF7BW125 to SF12BW125 427 427 428 - === 2.4.7SoilConductivity(EC) ===539 +918.0 - SF7BW125 to SF12BW125 429 429 430 -((( 431 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 432 -))) 541 +918.2 - SF7BW125 to SF12BW125 433 433 434 -((( 435 -For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 436 -))) 437 437 438 -((( 439 -Generally, the EC value of irrigation water is less than 800uS / cm. 440 -))) 544 +(% style="color:#037691" %)**Downlink:** 441 441 442 -((( 443 - 444 -))) 546 +923.3 - SF7BW500 to SF12BW500 445 445 446 -((( 447 - 448 -))) 548 +923.9 - SF7BW500 to SF12BW500 449 449 450 - ===2.4.8DigitalInterrupt===550 +924.5 - SF7BW500 to SF12BW500 451 451 452 - Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods.Whenthere is a trigger, the NSE01will send a packettothe server.552 +925.1 - SF7BW500 to SF12BW500 453 453 454 - Thecommandis:554 +925.7 - SF7BW500 to SF12BW500 455 455 456 - (% style="color:blue" %)**AT+INTMOD=3**(%%)~/~/(more info aboutINMOD please refer [[**AT CommandManual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**556 +926.3 - SF7BW500 to SF12BW500 457 457 558 +926.9 - SF7BW500 to SF12BW500 458 458 459 - The lower four bits of this data field shows if this packet is generated by interrupt or not.Clickhereforthe hardware and softwareset up.560 +927.5 - SF7BW500 to SF12BW500 460 460 562 +923.3 - SF12BW500(RX2 downlink only) 461 461 462 -Example: 463 463 464 -0x(00): Normal uplink packet. 465 465 466 -0 x(01):InterruptUplinkPacket.566 +=== 2.7.5 AS920-923 & AS923-925 (AS923) === 467 467 568 +(% style="color:#037691" %)**Default Uplink channel:** 468 468 570 +923.2 - SF7BW125 to SF10BW125 469 469 470 - ===2.4.9+5VOutput===572 +923.4 - SF7BW125 to SF10BW125 471 471 472 -NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 473 473 575 +(% style="color:#037691" %)**Additional Uplink Channel**: 474 474 475 -T he5V output time canbe controlled by ATCommand.577 +(OTAA mode, channel added by JoinAccept message) 476 476 477 -(% style="color: blue" %)**AT+5VT=1000**579 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 478 478 479 - Meansset5Vvalidtime tohave 1000ms.So the real 5V output will actually have1000ms + sampling time for other sensors.581 +922.2 - SF7BW125 to SF10BW125 480 480 583 +922.4 - SF7BW125 to SF10BW125 481 481 585 +922.6 - SF7BW125 to SF10BW125 482 482 483 - ==2.5DownlinkPayload ==587 +922.8 - SF7BW125 to SF10BW125 484 484 485 - Bydefault,NSE01prints the downlinkpayload to console port.589 +923.0 - SF7BW125 to SF10BW125 486 486 487 - [[image:image-20220708133731-5.png]]591 +922.0 - SF7BW125 to SF10BW125 488 488 489 489 490 -((( 491 -(% style="color:blue" %)**Examples:** 492 -))) 594 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 493 493 494 -((( 495 - 496 -))) 596 +923.6 - SF7BW125 to SF10BW125 497 497 498 -* ((( 499 -(% style="color:blue" %)**Set TDC** 500 -))) 598 +923.8 - SF7BW125 to SF10BW125 501 501 502 -((( 503 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 504 -))) 600 +924.0 - SF7BW125 to SF10BW125 505 505 506 -((( 507 -Payload: 01 00 00 1E TDC=30S 508 -))) 602 +924.2 - SF7BW125 to SF10BW125 509 509 510 -((( 511 -Payload: 01 00 00 3C TDC=60S 512 -))) 604 +924.4 - SF7BW125 to SF10BW125 513 513 514 -((( 515 - 516 -))) 606 +924.6 - SF7BW125 to SF10BW125 517 517 518 -* ((( 519 -(% style="color:blue" %)**Reset** 520 -))) 521 521 522 -((( 523 -If payload = 0x04FF, it will reset the NSE01 524 -))) 609 +(% style="color:#037691" %)** Downlink:** 525 525 611 +Uplink channels 1-8 (RX1) 526 526 527 - *(%style="color:blue"%)**INTMOD**613 +923.2 - SF10BW125 (RX2) 528 528 529 -Downlink Payload: 06000003, Set AT+INTMOD=3 530 530 531 531 617 +=== 2.7.6 KR920-923 (KR920) === 532 532 533 - == 2.6 LEDIndicator==619 +Default channel: 534 534 535 -((( 536 -The NSE01 has an internal LED which is to show the status of different state. 621 +922.1 - SF7BW125 to SF12BW125 537 537 623 +922.3 - SF7BW125 to SF12BW125 538 538 539 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 540 -* Then the LED will be on for 1 second means device is boot normally. 541 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 542 -* For each uplink probe, LED will be on for 500ms. 543 -))) 625 +922.5 - SF7BW125 to SF12BW125 544 544 545 545 628 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 546 546 630 +922.1 - SF7BW125 to SF12BW125 547 547 548 - ==2.7InstallationinSoil ==632 +922.3 - SF7BW125 to SF12BW125 549 549 550 - __**Measurementthesoilsurface**__634 +922.5 - SF7BW125 to SF12BW125 551 551 552 - Choose the proper measuring position.Avoidthe probe to touch rocks or hard things.Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]636 +922.7 - SF7BW125 to SF12BW125 553 553 554 - [[image:1657259653666-883.png]]638 +922.9 - SF7BW125 to SF12BW125 555 555 640 +923.1 - SF7BW125 to SF12BW125 556 556 557 -((( 558 - 642 +923.3 - SF7BW125 to SF12BW125 559 559 560 -((( 561 -Dig a hole with diameter > 20CM. 562 -))) 563 563 564 -((( 565 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 566 -))) 567 -))) 645 +(% style="color:#037691" %)**Downlink:** 568 568 569 - [[image:1654506665940-119.png]]647 +Uplink channels 1-7(RX1) 570 570 571 -((( 572 - 573 -))) 649 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 574 574 575 575 576 -== 2.8 Firmware Change Log == 577 577 653 +=== 2.7.7 IN865-867 (IN865) === 578 578 579 - Download URL & FirmwareChangelog655 +(% style="color:#037691" %)** Uplink:** 580 580 581 - [[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]657 +865.0625 - SF7BW125 to SF12BW125 582 582 659 +865.4025 - SF7BW125 to SF12BW125 583 583 584 - UpgradeInstruction:[[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]661 +865.9850 - SF7BW125 to SF12BW125 585 585 586 586 664 +(% style="color:#037691" %) **Downlink:** 587 587 588 - ==2.9 Battery Analysis==666 +Uplink channels 1-3 (RX1) 589 589 590 - === 2.9.1BatteryType ===668 +866.550 - SF10BW125 (RX2) 591 591 592 592 593 -The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 594 594 595 595 596 - Thebatteryisdesignedto lastforseveral years depends on the actually use environment and update interval.673 +== 2.8 LED Indicator == 597 597 675 +The LSE01 has an internal LED which is to show the status of different state. 598 598 599 -The battery related documents as below: 677 +* Blink once when device power on. 678 +* Solid ON for 5 seconds once device successful Join the network. 679 +* Blink once when device transmit a packet. 600 600 601 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 602 -* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 603 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 681 +== 2.9 Installation in Soil == 604 604 683 +**Measurement the soil surface** 684 + 685 + 686 +[[image:1654506634463-199.png]] 687 + 605 605 ((( 606 -[[image:image-20220708140453-6.png]] 689 +((( 690 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 607 607 ))) 692 +))) 608 608 609 609 610 610 611 - === 2.9.2 Power consumptionAnalyze ===696 +[[image:1654506665940-119.png]] 612 612 613 613 ((( 614 -D raginobatterypowered product are all runs in Low Powermode. We have an update battery calculatorwhich base onthemeasurement of the realdevice. User can usehis calculator to check the batterylifeand calculate the battery life if want to use different transmit interval.699 +Dig a hole with diameter > 20CM. 615 615 ))) 616 616 702 +((( 703 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 704 +))) 617 617 706 + 707 +== 2.10 Firmware Change Log == 708 + 618 618 ((( 619 - Instructiontouseasbelow:710 +**Firmware download link:** 620 620 ))) 621 621 622 622 ((( 623 - (% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:[[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]714 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 624 624 ))) 625 625 717 +((( 718 + 719 +))) 626 626 627 627 ((( 628 - (% style="color:blue" %)**Step2: **(%%)Openithoose722 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 629 629 ))) 630 630 631 - *(((632 - ProductModel725 +((( 726 + 633 633 ))) 634 -* ((( 635 -Uplink Interval 728 + 729 +((( 730 +**V1.0.** 636 636 ))) 637 -* ((( 638 -Working Mode 639 -))) 640 640 641 641 ((( 642 - And theLifeexpectation in difference casewill be shown on the right.734 +Release 643 643 ))) 644 644 645 -[[image:image-20220708141352-7.jpeg]] 646 646 738 +== 2.11 Battery Analysis == 647 647 740 +=== 2.11.1 Battery Type === 648 648 649 -=== 2.9.3 Battery Note === 742 +((( 743 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 744 +))) 650 650 651 651 ((( 652 -The Li-SICObattery is designedfor small current/ longperiod application. It isnotgood to use a high current,short period transmit method. Therecommendedminimum period for use ofthis batteryis5minutes. Ifyou useshorterperiod time to transmitLoRa,thenthe battery life may be decreased.747 +The battery is designed to last for more than 5 years for the LSN50. 653 653 ))) 654 654 750 +((( 751 +((( 752 +The battery-related documents are as below: 753 +))) 754 +))) 655 655 756 +* ((( 757 +[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], 758 +))) 759 +* ((( 760 +[[Lithium-Thionyl Chloride Battery datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], 761 +))) 762 +* ((( 763 +[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]] 764 +))) 656 656 657 - ===2.9.4 Replacethe battery ===766 + [[image:image-20220610172436-1.png]] 658 658 768 + 769 + 770 +=== 2.11.2 Battery Note === 771 + 659 659 ((( 660 -The defaultbatterypackofNSE01includesaER26500 plussupercapacitor. Ifusercan'tfind this pack locally,theycanfindER26500 orquivalence withoutthe SPC1520 capacitor, which will alsowork inmostcase. TheSPCcanlarge thebatterylifeforhigh frequency use(update periodbelow5minutes).773 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 661 661 ))) 662 662 663 663 664 664 665 -= 3. AccessNB-IoTModule =778 +=== 2.11.3 Replace the battery === 666 666 667 667 ((( 668 - Userscan directlyaccesstheAT command setoftheNB-IoTmodule.781 +If Battery is lower than 2.7v, user should replace the battery of LSE01. 669 669 ))) 670 670 671 671 ((( 672 - The AT Commandsetcanrefer theBC35-G NB-IoTModuleATCommand: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]]785 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 673 673 ))) 674 674 675 -[[image:1657261278785-153.png]] 788 +((( 789 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 790 +))) 676 676 677 677 678 678 679 -= 4.794 += 3. Using the AT Commands = 680 680 681 -== 4.1796 +== 3.1 Access AT Commands == 682 682 683 -See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 684 684 799 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 685 685 686 - AT+<CMD>? : Helpon<CMD>801 +[[image:1654501986557-872.png||height="391" width="800"]] 687 687 688 -AT+<CMD> : Run <CMD> 689 689 690 - AT+<CMD>=<value>: Setthevalue804 +Or if you have below board, use below connection: 691 691 692 -AT+<CMD>=? : Get the value 693 693 807 +[[image:1654502005655-729.png||height="503" width="801"]] 694 694 809 + 810 + 811 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 812 + 813 + 814 + [[image:1654502050864-459.png||height="564" width="806"]] 815 + 816 + 817 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]] 818 + 819 + 820 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 821 + 822 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 823 + 824 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 825 + 826 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 827 + 828 + 695 695 (% style="color:#037691" %)**General Commands**(%%) 696 696 697 -AT 831 +(% style="background-color:#dcdcdc" %)**AT**(%%) : Attention 698 698 699 -AT? 833 +(% style="background-color:#dcdcdc" %)**AT?**(%%) : Short Help 700 700 701 -ATZ 835 +(% style="background-color:#dcdcdc" %)**ATZ**(%%) : MCU Reset 702 702 703 -AT+TDC 837 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%) : Application Data Transmission Interval 704 704 705 -AT+CFG : Print all configurations 706 706 707 - AT+CFGMOD: Workingmode selection840 +(% style="color:#037691" %)**Keys, IDs and EUIs management** 708 708 709 -AT+I NTMOD:Setthe trigger interruptmode842 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%) : Application EUI 710 710 711 -AT+ 5VTSetextend the timeof5V power844 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%) : Application Key 712 712 713 -AT+P ROChooseagreement846 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%) : Application Session Key 714 714 715 -AT+ WEIGREGet weightorsetweight to 0848 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%) : Device Address 716 716 717 -AT+ WEIGAPGet or SettheGapValue of weight850 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%) : Device EUI 718 718 719 -AT+ RXDL: Extendthe sendingandreceivingtime852 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%) : Network ID (You can enter this command change only after successful network connection) 720 720 721 -AT+ CNTFACGettcountingparameters854 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%) : Network Session Key Joining and sending date on LoRa network 722 722 723 -AT+ SERVADDR:ServerAddress856 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%) : Confirm Mode 724 724 858 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 725 725 726 -(% style="color:# 037691" %)**COAPManagement**860 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%) : Join LoRa? Network 727 727 728 -AT+ URIsourceparameters862 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%) : LoRa? Network Join Mode 729 729 864 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 730 730 731 -(% style="color:# 037691" %)**UDPManagement**866 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%) : Print Last Received Data in Raw Format 732 732 733 -AT+C FM:Uploadconfirmationmode (onlyvalid forUDP)868 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%) : Print Last Received Data in Binary Format 734 734 870 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 735 735 736 -(% style="color:# 037691" %)**MQTTManagement**872 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%) : Send Hexadecimal Data 737 737 738 -AT+CLIENT : Get or Set MQTT client 739 739 740 - AT+UNAMEGetSetMQTT Username875 +(% style="color:#037691" %)**LoRa Network Management** 741 741 742 -AT+ PWDGetor SetMQTT password877 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%) : Adaptive Rate 743 743 744 -AT+ PUBTOPICGetorSetMQTTpublishtopic879 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%) : LoRa Class(Currently only support class A 745 745 746 -AT+ SUBTOPIC :GetorSetMQTT subscriptiontopic881 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%) : Duty Cycle Setting 747 747 883 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 748 748 749 -(% style="color:# 037691" %)**Information**885 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink 750 750 751 -AT+F DRctoryDataReset887 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%) : Frame Counter Uplink 752 752 753 -AT+ PWORDSerialAccessPassword889 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%) : Join Accept Delay1 754 754 891 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 755 755 893 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 756 756 757 -= 5.FAQ=895 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%) : Receive Delay1 758 758 759 -= =5.1HowtoUpgradeFirmware==897 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%) : Receive Delay2 760 760 899 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 761 761 901 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 902 + 903 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 904 + 905 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 906 + 907 + 908 +(% style="color:#037691" %)**Information** 909 + 910 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 911 + 912 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 913 + 914 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 915 + 916 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 917 + 918 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 919 + 920 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 921 + 922 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 923 + 924 + 925 += 4. FAQ = 926 + 927 +== 4.1 How to change the LoRa Frequency Bands/Region? == 928 + 762 762 ((( 763 -User can upgrade the firmware for 1) bug fix, 2) new feature release. 930 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 931 +When downloading the images, choose the required image file for download. 764 764 ))) 765 765 766 766 ((( 767 - Pleasesee this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]935 + 768 768 ))) 769 769 770 770 ((( 771 - (%style="color:red"%)Notice,NSE01andLSE01share thememotherboard.Theyuse thesameconnection andmethodto update.939 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 772 772 ))) 773 773 942 +((( 943 + 944 +))) 774 774 946 +((( 947 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 948 +))) 775 775 776 -= 6. Trouble Shooting = 950 +((( 951 + 952 +))) 777 777 778 -== 6.1 Connection problem when uploading firmware == 954 +((( 955 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 956 +))) 779 779 958 +[[image:image-20220606154726-3.png]] 780 780 781 -(% class="wikigeneratedid" %) 960 + 961 +When you use the TTN network, the US915 frequency bands use are: 962 + 963 +* 903.9 - SF7BW125 to SF10BW125 964 +* 904.1 - SF7BW125 to SF10BW125 965 +* 904.3 - SF7BW125 to SF10BW125 966 +* 904.5 - SF7BW125 to SF10BW125 967 +* 904.7 - SF7BW125 to SF10BW125 968 +* 904.9 - SF7BW125 to SF10BW125 969 +* 905.1 - SF7BW125 to SF10BW125 970 +* 905.3 - SF7BW125 to SF10BW125 971 +* 904.6 - SF8BW500 972 + 782 782 ((( 783 -(% style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]] 974 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 975 + 976 +* (% style="color:#037691" %)**AT+CHE=2** 977 +* (% style="color:#037691" %)**ATZ** 784 784 ))) 785 785 980 +((( 981 + 786 786 983 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 984 +))) 787 787 788 -== 6.2 AT Command input doesn't work == 986 +((( 987 + 988 +))) 789 789 790 790 ((( 991 +The **AU915** band is similar. Below are the AU915 Uplink Channels. 992 +))) 993 + 994 +[[image:image-20220606154825-4.png]] 995 + 996 + 997 +== 4.2 Can I calibrate LSE01 to different soil types? == 998 + 999 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]]. 1000 + 1001 + 1002 += 5. Trouble Shooting = 1003 + 1004 +== 5.1 Why I can't join TTN in US915 / AU915 bands? == 1005 + 1006 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details. 1007 + 1008 + 1009 +== 5.2 AT Command input doesn't work == 1010 + 1011 +((( 791 791 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 792 792 ))) 793 793 794 794 1016 +== 5.3 Device rejoin in at the second uplink packet == 795 795 796 -= 7. OrderInfo=1018 +(% style="color:#4f81bd" %)**Issue describe as below:** 797 797 1020 +[[image:1654500909990-784.png]] 798 798 799 -Part Number**:** (% style="color:#4f81bd" %)**NSE01** 800 800 1023 +(% style="color:#4f81bd" %)**Cause for this issue:** 801 801 1025 +((( 1026 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 1027 +))) 1028 + 1029 + 1030 +(% style="color:#4f81bd" %)**Solution: ** 1031 + 1032 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 1033 + 1034 +[[image:1654500929571-736.png||height="458" width="832"]] 1035 + 1036 + 1037 += 6. Order Info = 1038 + 1039 + 1040 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 1041 + 1042 + 1043 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 1044 + 1045 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 1046 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 1047 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 1048 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 1049 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1050 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1051 +* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1052 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1053 + 1054 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1055 + 1056 +* (% style="color:red" %)**4**(%%): 4000mAh battery 1057 +* (% style="color:red" %)**8**(%%): 8500mAh battery 1058 + 802 802 (% class="wikigeneratedid" %) 803 803 ((( 804 804 805 805 ))) 806 806 807 -= 8.1064 += 7. Packing Info = 808 808 809 809 ((( 810 810 811 811 812 812 (% style="color:#037691" %)**Package Includes**: 1070 +))) 813 813 814 - 815 -* NSE01 NB-IoT Soil Moisture & EC Sensor x 1 816 -* External antenna x 1 1072 +* ((( 1073 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 817 817 ))) 818 818 819 819 ((( ... ... @@ -820,20 +820,24 @@ 820 820 821 821 822 822 (% style="color:#037691" %)**Dimension and weight**: 1080 +))) 823 823 824 - 825 -* Size: 195 x 125 x 55 mm 826 -* Weight: 420g 1082 +* ((( 1083 +Device Size: cm 827 827 ))) 1085 +* ((( 1086 +Device Weight: g 1087 +))) 1088 +* ((( 1089 +Package Size / pcs : cm 1090 +))) 1091 +* ((( 1092 +Weight / pcs : g 828 828 829 -((( 830 830 831 - 832 - 833 - 834 834 ))) 835 835 836 -= 9.1097 += 8. Support = 837 837 838 838 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 839 839 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -102.7 KB - Content