Changes for page NDDS75 -- NB-IoT Distance Detect Sensor User Manual
Last modified by Bei Jinggeng on 2024/05/31 09:53
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 23 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - NSE01NB-IoTSoil Moisture & EC Sensor User Manual1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -3,14 +3,6 @@ 3 3 4 4 5 5 6 - 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 14 **Table of Contents:** 15 15 16 16 {{toc/}} ... ... @@ -20,82 +20,65 @@ 20 20 21 21 22 22 15 += 1. Introduction = 23 23 24 -= 1. Introduction =17 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 25 25 26 -== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 27 - 28 28 ((( 29 29 30 30 31 -((( 32 -Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 22 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 33 33 ))) 34 34 35 35 ((( 36 -It candetect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and uploaditsvalueto the serverwirelessly.26 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 37 37 ))) 38 38 39 39 ((( 40 -The wireless technology used in NSE01 allowsthedevice to send data at a low data rate and reachultra-longdistances,providingultra-long-distance spread spectrumCommunication.30 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 41 41 ))) 42 42 43 43 ((( 44 - NSE01arepowered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%)batteries,whichcanbe usedforup to5years.34 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 45 45 ))) 46 46 47 - 37 +((( 38 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 48 48 ))) 49 49 41 + 50 50 [[image:1654503236291-817.png]] 51 51 52 52 53 -[[image:165 7245163077-232.png]]45 +[[image:1654503265560-120.png]] 54 54 55 55 56 56 57 -== 1.2 49 +== 1.2 Features == 58 58 59 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 51 +* LoRaWAN 1.0.3 Class A 52 +* Ultra low power consumption 60 60 * Monitor Soil Moisture 61 61 * Monitor Soil Temperature 62 62 * Monitor Soil Conductivity 56 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 63 63 * AT Commands to change parameters 64 64 * Uplink on periodically 65 65 * Downlink to change configure 66 66 * IP66 Waterproof Enclosure 67 -* Ultra-Low Power consumption 68 -* AT Commands to change parameters 69 -* Micro SIM card slot for NB-IoT SIM 70 -* 8500mAh Battery for long term use 61 +* 4000mAh or 8500mAh Battery for long term use 71 71 72 72 73 -== 1.3 Specification == 74 74 65 +== 1.3 Specification == 75 75 76 -(% style="color:#037691" %)**Common DC Characteristics:** 77 - 78 -* Supply Voltage: 2.1v ~~ 3.6v 79 -* Operating Temperature: -40 ~~ 85°C 80 - 81 -(% style="color:#037691" %)**NB-IoT Spec:** 82 - 83 -* - B1 @H-FDD: 2100MHz 84 -* - B3 @H-FDD: 1800MHz 85 -* - B8 @H-FDD: 900MHz 86 -* - B5 @H-FDD: 850MHz 87 -* - B20 @H-FDD: 800MHz 88 -* - B28 @H-FDD: 700MHz 89 - 90 -Probe(% style="color:#037691" %)** Specification:** 91 - 92 92 Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 93 93 94 -[[image:image-20220 708101224-1.png]]69 +[[image:image-20220606162220-5.png]] 95 95 96 96 97 97 98 -== 1.4 73 +== 1.4 Applications == 99 99 100 100 * Smart Agriculture 101 101 ... ... @@ -102,718 +102,1012 @@ 102 102 (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 103 103 104 104 105 -== 1.5 Pin Definitions==80 +== 1.5 Firmware Change log == 106 106 107 107 108 - [[image:1657246476176-652.png]]83 +**LSE01 v1.0 :** Release 109 109 110 110 111 111 112 -= 2. UseNSE01 to communicatewithIoTServer=87 += 2. Configure LSE01 to connect to LoRaWAN network = 113 113 114 -== 2.1 89 +== 2.1 How it works == 115 115 116 - 117 117 ((( 118 -The NSE01 isequippedwithaNB-IoT module,thepre-loadedfirmwareinNSE01willgetenvironmentdatafrom sensorsandsend thevaluetolocalNB-IoTnetworkviatheNB-IoTmodule.The NB-IoTnetworkwillforwardthisvaluetoIoTserver viatheprotocoldefinedbyNSE01.92 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 119 119 ))) 120 120 121 - 122 122 ((( 123 - Thediagrambelowshows theworkingflowindefaultfirmware ofNSE01:96 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 124 124 ))) 125 125 126 -[[image:image-20220708101605-2.png]] 127 127 128 -((( 129 - 130 -))) 131 131 101 +== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 132 132 103 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 133 133 134 -== 2.2 Configure the NSE01 == 135 135 106 +[[image:1654503992078-669.png]] 136 136 137 -=== 2.2.1 Test Requirement === 138 138 109 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 139 139 111 + 112 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSE01. 113 + 114 +Each LSE01 is shipped with a sticker with the default device EUI as below: 115 + 116 +[[image:image-20220606163732-6.jpeg]] 117 + 118 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 119 + 120 +**Add APP EUI in the application** 121 + 122 + 123 +[[image:1654504596150-405.png]] 124 + 125 + 126 + 127 +**Add APP KEY and DEV EUI** 128 + 129 +[[image:1654504683289-357.png]] 130 + 131 + 132 + 133 +(% style="color:blue" %)**Step 2**(%%): Power on LSE01 134 + 135 + 136 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 137 + 138 +[[image:image-20220606163915-7.png]] 139 + 140 + 141 +(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 142 + 143 +[[image:1654504778294-788.png]] 144 + 145 + 146 + 147 +== 2.3 Uplink Payload == 148 + 149 + 150 +=== 2.3.1 MOD~=0(Default Mode) === 151 + 152 +LSE01 will uplink payload via LoRaWAN with below payload format: 153 + 140 140 ((( 141 - To useNSE01inyour city, makesuremeetbelow requirements:155 +Uplink payload includes in total 11 bytes. 142 142 ))) 143 143 144 - *Yourlocaloperatorhasalready distributeda NB-IoT Networkthere.145 - * The local NB-IoT network used the band that NSE01 supports.146 -* Your operatoris ableto distribute the data received in their NB-IoT network to your IoT server.158 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 159 +|((( 160 +**Size** 147 147 148 -((( 149 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 162 +**(bytes)** 163 +)))|**2**|**2**|**2**|**2**|**2**|**1** 164 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 165 +Temperature 166 + 167 +(Reserve, Ignore now) 168 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 169 +MOD & Digital Interrupt 170 + 171 +(Optional) 150 150 ))) 151 151 152 152 153 -[[image:1657249419225-449.png]] 154 154 155 155 156 156 157 -=== 2. 2.2InsertSIM card===178 +=== 2.3.2 MOD~=1(Original value) === 158 158 159 - Insert theNB-IoT Cardgetfromyourprovider.180 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 160 160 161 -User need to take out the NB-IoT module and insert the SIM card like below: 182 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 183 +|((( 184 +**Size** 162 162 186 +**(bytes)** 187 +)))|**2**|**2**|**2**|**2**|**2**|**1** 188 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 189 +Temperature 163 163 164 -[[image:1657249468462-536.png]] 191 +(Reserve, Ignore now) 192 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 193 +MOD & Digital Interrupt 165 165 195 +(Optional) 196 +))) 166 166 167 167 168 -=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 169 169 200 + 201 + 202 +=== 2.3.3 Battery Info === 203 + 170 170 ((( 205 +Check the battery voltage for LSE01. 206 +))) 207 + 171 171 ((( 172 - User need to configure NSE01via serial port to set the (% style="color:blue"%)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USBtoTTL adapter to connect to NSE01 and use AT Commands to configure it, as below.209 +Ex1: 0x0B45 = 2885mV 173 173 ))) 211 + 212 +((( 213 +Ex2: 0x0B49 = 2889mV 174 174 ))) 175 175 176 176 177 -**Connection:** 178 178 179 - (%style="background-color:yellow"%)USB TTL GND <~-~-~-~-> GND218 +=== 2.3.4 Soil Moisture === 180 180 181 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 220 +((( 221 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 222 +))) 182 182 183 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 224 +((( 225 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 226 +))) 184 184 228 +((( 229 + 230 +))) 185 185 186 -In the PC, use below serial tool settings: 232 +((( 233 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 234 +))) 187 187 188 -* Baud: (% style="color:green" %)**9600** 189 -* Data bits:** (% style="color:green" %)8(%%)** 190 -* Stop bits: (% style="color:green" %)**1** 191 -* Parity: (% style="color:green" %)**None** 192 -* Flow Control: (% style="color:green" %)**None** 193 193 237 + 238 +=== 2.3.5 Soil Temperature === 239 + 194 194 ((( 195 - Makesure the switchisinFLASH position,thenpowerondevice byconnectingthejumperonNSE01.NSE01 willoutputsystem infooncepower onasbelow,wecan enter the(%style="color:green"%)**password:12345678**(%%)toaccessAT Commandinput.241 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 196 196 ))) 197 197 198 -[[image:image-20220708110657-3.png]] 244 +((( 245 +**Example**: 246 +))) 199 199 200 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 248 +((( 249 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 250 +))) 201 201 252 +((( 253 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 254 +))) 202 202 203 203 204 -=== 2.2.4 Use CoAP protocol to uplink data === 205 205 206 - (% style="color:red"%)Note:if you don't have CoAP server, you can refer thislinktoset up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]258 +=== 2.3.6 Soil Conductivity (EC) === 207 207 260 +((( 261 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 262 +))) 208 208 209 -**Use below commands:** 264 +((( 265 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 266 +))) 210 210 211 - *(% style="color:blue" %)**AT+PRO=1**(%%) ~/~/ Set to use CoAP protocol to uplink212 - * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683** (%%)~/~/to setCoAPserver address andport213 - * (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%)~/~/Set COAP resource path268 +((( 269 +Generally, the EC value of irrigation water is less than 800uS / cm. 270 +))) 214 214 215 -For parameter description, please refer to AT command set 272 +((( 273 + 274 +))) 216 216 217 -[[image:1657249793983-486.png]] 276 +((( 277 + 278 +))) 218 218 280 +=== 2.3.7 MOD === 219 219 220 - After configurethe serveraddress and(% style="color:green" %)**resetthe device**(%%) (via AT+ATZ ), NSE01willstart touplink sensorvaluestoCoAP server.282 +Firmware version at least v2.1 supports changing mode. 221 221 222 - [[image:1657249831934-534.png]]284 +For example, bytes[10]=90 223 223 286 +mod=(bytes[10]>>7)&0x01=1. 224 224 225 225 226 - === 2.2.5 Use UDP protocolto uplinkdata(Default protocol) ===289 +**Downlink Command:** 227 227 228 - Thisfeatureis supportedsincefirmware version v1.0.1291 +If payload = 0x0A00, workmode=0 229 229 293 +If** **payload =** **0x0A01, workmode=1 230 230 231 -* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 232 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 233 -* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 234 234 235 -[[image:1657249864775-321.png]] 236 236 297 +=== 2.3.8 Decode payload in The Things Network === 237 237 238 - [[image:1657249930215-289.png]]299 +While using TTN network, you can add the payload format to decode the payload. 239 239 240 240 302 +[[image:1654505570700-128.png]] 241 241 242 -=== 2.2.6 Use MQTT protocol to uplink data === 304 +((( 305 +The payload decoder function for TTN is here: 306 +))) 243 243 244 -This feature is supported since firmware version v110 308 +((( 309 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]] 310 +))) 245 245 246 246 247 -* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 248 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 249 -* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 250 -* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 251 -* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 252 -* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 253 -* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 313 +== 2.4 Uplink Interval == 254 254 255 - [[image:1657249978444-674.png]]315 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 256 256 257 257 258 -[[image:1657249990869-686.png]] 259 259 319 +== 2.5 Downlink Payload == 260 260 321 +By default, LSE50 prints the downlink payload to console port. 322 + 323 +[[image:image-20220606165544-8.png]] 324 + 325 + 261 261 ((( 262 - MQTT protocol has amuch higherpower consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.327 +**Examples:** 263 263 ))) 264 264 330 +((( 331 + 332 +))) 265 265 334 +* ((( 335 +**Set TDC** 336 +))) 266 266 267 -=== 2.2.7 Use TCP protocol to uplink data === 338 +((( 339 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 340 +))) 268 268 269 -This feature is supported since firmware version v110 342 +((( 343 +Payload: 01 00 00 1E TDC=30S 344 +))) 270 270 346 +((( 347 +Payload: 01 00 00 3C TDC=60S 348 +))) 271 271 272 -* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 273 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 350 +((( 351 + 352 +))) 274 274 275 -[[image:1657250217799-140.png]] 354 +* ((( 355 +**Reset** 356 +))) 276 276 358 +((( 359 +If payload = 0x04FF, it will reset the LSE01 360 +))) 277 277 278 -[[image:1657250255956-604.png]] 279 279 363 +* **CFM** 280 280 365 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 281 281 282 -=== 2.2.8 Change Update Interval === 283 283 284 -User can use below command to change the (% style="color:green" %)**uplink interval**. 285 285 286 - * (% style="color:blue" %)**AT+TDC=600** (%%)~/~/SetUpdate Intervalto 600s369 +== 2.6 Show Data in DataCake IoT Server == 287 287 288 288 ((( 289 - (%style="color:red"%)**NOTE:**372 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 290 290 ))) 291 291 292 292 ((( 293 - (%style="color:red" %)1. By default, the device will send an uplink message every 1 hour.376 + 294 294 ))) 295 295 379 +((( 380 +**Step 1**: Be sure that your device is programmed and properly connected to the network at this time. 381 +))) 296 296 383 +((( 384 +**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 385 +))) 297 297 298 -== 2.3 Uplink Payload == 299 299 300 - In thismode, uplink payload includes in total18bytes388 +[[image:1654505857935-743.png]] 301 301 302 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 303 -|=(% style="width: 50px;" %)((( 304 -**Size(bytes)** 305 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1** 306 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 307 307 308 - If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01uplink data.391 +[[image:1654505874829-548.png]] 309 309 393 +Step 3: Create an account or log in Datacake. 310 310 311 - [[image:image-20220708111918-4.png]]395 +Step 4: Search the LSE01 and add DevEUI. 312 312 313 313 314 - The payloadis ASCII string, representative same HEX:398 +[[image:1654505905236-553.png]] 315 315 316 -0x72403155615900640c7817075e0a8c02f900 where: 317 317 318 -* Device ID: 0x 724031556159 = 724031556159 319 -* Version: 0x0064=100=1.0.0 401 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 320 320 321 -* BAT: 0x0c78 = 3192 mV = 3.192V 322 -* Singal: 0x17 = 23 323 -* Soil Moisture: 0x075e= 1886 = 18.86 % 324 -* Soil Temperature:0x0a8c =2700=27 °C 325 -* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 326 -* Interrupt: 0x00 = 0 403 +[[image:1654505925508-181.png]] 327 327 328 328 329 -== 2.4 Payload Explanation and Sensor Interface == 330 330 407 +== 2.7 Frequency Plans == 331 331 332 - ===2.4.1Device ID===409 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 333 333 334 -By default, the Device ID equal to the last 6 bytes of IMEI. 335 335 336 - Usercanuse(% style="color:blue" %)**AT+DEUI**(%%)to set Device ID412 +=== 2.7.1 EU863-870 (EU868) === 337 337 338 -** Example:**414 +(% style="color:#037691" %)** Uplink:** 339 339 340 - AT+DEUI=A84041F15612416 +868.1 - SF7BW125 to SF12BW125 341 341 342 - TheDeviceIDis storedinaone-erase area, Upgradethe firmware or run AT+FDR won't erase Device ID.418 +868.3 - SF7BW125 to SF12BW125 and SF7BW250 343 343 420 +868.5 - SF7BW125 to SF12BW125 344 344 422 +867.1 - SF7BW125 to SF12BW125 345 345 346 - ===2.4.2VersionInfo ===424 +867.3 - SF7BW125 to SF12BW125 347 347 348 - Specifythesoftware version: 0x64=100,means firmware version1.00.426 +867.5 - SF7BW125 to SF12BW125 349 349 350 - For example: 0x0064:this device is NSE01with firmware version1.0.0.428 +867.7 - SF7BW125 to SF12BW125 351 351 430 +867.9 - SF7BW125 to SF12BW125 352 352 432 +868.8 - FSK 353 353 354 -=== 2.4.3 Battery Info === 355 355 356 -((( 357 -Check the battery voltage for LSE01. 358 -))) 435 +(% style="color:#037691" %)** Downlink:** 359 359 360 -((( 361 -Ex1: 0x0B45 = 2885mV 362 -))) 437 +Uplink channels 1-9 (RX1) 363 363 364 -((( 365 -Ex2: 0x0B49 = 2889mV 366 -))) 439 +869.525 - SF9BW125 (RX2 downlink only) 367 367 368 368 369 369 370 -=== 2. 4.4SignalStrength===443 +=== 2.7.2 US902-928(US915) === 371 371 372 - NB-IoT NetworksignalStrength.445 +Used in USA, Canada and South America. Default use CHE=2 373 373 374 - **Ex1:0x1d= 29**447 +(% style="color:#037691" %)**Uplink:** 375 375 376 - (% style="color:blue" %)**0**(%%)113dBmorless449 +903.9 - SF7BW125 to SF10BW125 377 377 378 - (%style="color:blue"%)**1**(%%)-111dBm451 +904.1 - SF7BW125 to SF10BW125 379 379 380 - (% style="color:blue" %)**2...30**(%%)-109dBm... -53dBm453 +904.3 - SF7BW125 to SF10BW125 381 381 382 - (%style="color:blue"%)**31** (%%) -51dBmorgreater455 +904.5 - SF7BW125 to SF10BW125 383 383 384 - (% style="color:blue" %)**99**(%%)Notknownor not detectable457 +904.7 - SF7BW125 to SF10BW125 385 385 459 +904.9 - SF7BW125 to SF10BW125 386 386 461 +905.1 - SF7BW125 to SF10BW125 387 387 388 - ===2.4.5SoilMoisture ===463 +905.3 - SF7BW125 to SF10BW125 389 389 390 -((( 391 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 392 -))) 393 393 394 -((( 395 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 396 -))) 466 +(% style="color:#037691" %)**Downlink:** 397 397 398 -((( 399 - 400 -))) 468 +923.3 - SF7BW500 to SF12BW500 401 401 402 -((( 403 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 404 -))) 470 +923.9 - SF7BW500 to SF12BW500 405 405 472 +924.5 - SF7BW500 to SF12BW500 406 406 474 +925.1 - SF7BW500 to SF12BW500 407 407 408 - ===2.4.6SoilTemperature===476 +925.7 - SF7BW500 to SF12BW500 409 409 410 -((( 411 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 412 -))) 478 +926.3 - SF7BW500 to SF12BW500 413 413 414 -((( 415 -**Example**: 416 -))) 480 +926.9 - SF7BW500 to SF12BW500 417 417 418 -((( 419 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 420 -))) 482 +927.5 - SF7BW500 to SF12BW500 421 421 422 -((( 423 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 424 -))) 484 +923.3 - SF12BW500(RX2 downlink only) 425 425 426 426 427 427 428 -=== 2. 4.7SoilConductivity(EC) ===488 +=== 2.7.3 CN470-510 (CN470) === 429 429 430 -((( 431 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 432 -))) 490 +Used in China, Default use CHE=1 433 433 434 -((( 435 -For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 436 -))) 492 +(% style="color:#037691" %)**Uplink:** 437 437 438 -((( 439 -Generally, the EC value of irrigation water is less than 800uS / cm. 440 -))) 494 +486.3 - SF7BW125 to SF12BW125 441 441 442 -((( 443 - 444 -))) 496 +486.5 - SF7BW125 to SF12BW125 445 445 446 -((( 447 - 448 -))) 498 +486.7 - SF7BW125 to SF12BW125 449 449 450 - === 2.4.8DigitalInterrupt===500 +486.9 - SF7BW125 to SF12BW125 451 451 452 - Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods.Whenthere is a trigger, the NSE01will send a packettothe server.502 +487.1 - SF7BW125 to SF12BW125 453 453 454 - Thecommandis:504 +487.3 - SF7BW125 to SF12BW125 455 455 456 - (%style="color:blue"%)**AT+INTMOD=3**(%%) ~/~/(more info aboutINMOD please refer [[**AT CommandManual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**506 +487.5 - SF7BW125 to SF12BW125 457 457 508 +487.7 - SF7BW125 to SF12BW125 458 458 459 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up. 460 460 511 +(% style="color:#037691" %)**Downlink:** 461 461 462 - Example:513 +506.7 - SF7BW125 to SF12BW125 463 463 464 -0 x(00):Normaluplinkpacket.515 +506.9 - SF7BW125 to SF12BW125 465 465 466 -0 x(01):InterruptUplinkPacket.517 +507.1 - SF7BW125 to SF12BW125 467 467 519 +507.3 - SF7BW125 to SF12BW125 468 468 521 +507.5 - SF7BW125 to SF12BW125 469 469 470 - === 2.4.9+5VOutput===523 +507.7 - SF7BW125 to SF12BW125 471 471 472 - NSE01willenable +5Voutput beforeall sampling and disable the +5v after all sampling.525 +507.9 - SF7BW125 to SF12BW125 473 473 527 +508.1 - SF7BW125 to SF12BW125 474 474 475 - The5Voutputtimecanbe controlledby AT Command.529 +505.3 - SF12BW125 (RX2 downlink only) 476 476 477 -(% style="color:blue" %)**AT+5VT=1000** 478 478 479 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 480 480 533 +=== 2.7.4 AU915-928(AU915) === 481 481 535 +Default use CHE=2 482 482 483 - ==2.5 DownlinkPayload ==537 +(% style="color:#037691" %)**Uplink:** 484 484 485 - Bydefault,NSE01prints the downlinkpayload to console port.539 +916.8 - SF7BW125 to SF12BW125 486 486 487 - [[image:image-20220708133731-5.png]]541 +917.0 - SF7BW125 to SF12BW125 488 488 543 +917.2 - SF7BW125 to SF12BW125 489 489 490 -((( 491 -(% style="color:blue" %)**Examples:** 492 -))) 545 +917.4 - SF7BW125 to SF12BW125 493 493 494 -((( 495 - 496 -))) 547 +917.6 - SF7BW125 to SF12BW125 497 497 498 -* ((( 499 -(% style="color:blue" %)**Set TDC** 500 -))) 549 +917.8 - SF7BW125 to SF12BW125 501 501 502 -((( 503 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 504 -))) 551 +918.0 - SF7BW125 to SF12BW125 505 505 506 -((( 507 -Payload: 01 00 00 1E TDC=30S 508 -))) 553 +918.2 - SF7BW125 to SF12BW125 509 509 510 -((( 511 -Payload: 01 00 00 3C TDC=60S 512 -))) 513 513 514 -((( 515 - 516 -))) 556 +(% style="color:#037691" %)**Downlink:** 517 517 518 -* ((( 519 -(% style="color:blue" %)**Reset** 520 -))) 558 +923.3 - SF7BW500 to SF12BW500 521 521 522 -((( 523 -If payload = 0x04FF, it will reset the NSE01 524 -))) 560 +923.9 - SF7BW500 to SF12BW500 525 525 562 +924.5 - SF7BW500 to SF12BW500 526 526 527 - *(%style="color:blue"%)**INTMOD**564 +925.1 - SF7BW500 to SF12BW500 528 528 529 - DownlinkPayload:06000003,SetAT+INTMOD=3566 +925.7 - SF7BW500 to SF12BW500 530 530 568 +926.3 - SF7BW500 to SF12BW500 531 531 570 +926.9 - SF7BW500 to SF12BW500 532 532 533 - ==2.6LEDIndicator==572 +927.5 - SF7BW500 to SF12BW500 534 534 535 -((( 536 -The NSE01 has an internal LED which is to show the status of different state. 574 +923.3 - SF12BW500(RX2 downlink only) 537 537 538 538 539 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 540 -* Then the LED will be on for 1 second means device is boot normally. 541 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 542 -* For each uplink probe, LED will be on for 500ms. 543 -))) 544 544 578 +=== 2.7.5 AS920-923 & AS923-925 (AS923) === 545 545 580 +(% style="color:#037691" %)**Default Uplink channel:** 546 546 582 +923.2 - SF7BW125 to SF10BW125 547 547 548 - ==2.7InstallationinSoil ==584 +923.4 - SF7BW125 to SF10BW125 549 549 550 -__**Measurement the soil surface**__ 551 551 552 - Choosethe proper measuring position. Avoid the probe to touch rocks or hard things. Split thesurface soilaccordingto the measuredeep. Keepthe measured as originaldensity. Verticalsert the probe into the soil to be measured. Makesure not shake wheninserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]587 +(% style="color:#037691" %)**Additional Uplink Channel**: 553 553 554 - [[image:1657259653666-883.png]]589 +(OTAA mode, channel added by JoinAccept message) 555 555 591 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 556 556 557 -((( 558 - 593 +922.2 - SF7BW125 to SF10BW125 559 559 560 -((( 561 -Dig a hole with diameter > 20CM. 562 -))) 595 +922.4 - SF7BW125 to SF10BW125 563 563 564 -((( 565 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 566 -))) 567 -))) 597 +922.6 - SF7BW125 to SF10BW125 568 568 569 - [[image:1654506665940-119.png]]599 +922.8 - SF7BW125 to SF10BW125 570 570 571 -((( 572 - 573 -))) 601 +923.0 - SF7BW125 to SF10BW125 574 574 603 +922.0 - SF7BW125 to SF10BW125 575 575 576 -== 2.8 Firmware Change Log == 577 577 606 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 578 578 579 - DownloadURL&FirmwareChange log608 +923.6 - SF7BW125 to SF10BW125 580 580 581 - [[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]610 +923.8 - SF7BW125 to SF10BW125 582 582 612 +924.0 - SF7BW125 to SF10BW125 583 583 584 - UpgradeInstruction:[[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]614 +924.2 - SF7BW125 to SF10BW125 585 585 616 +924.4 - SF7BW125 to SF10BW125 586 586 618 +924.6 - SF7BW125 to SF10BW125 587 587 588 -== 2.9 Battery Analysis == 589 589 590 - ===2.9.1 BatteryType===621 +(% style="color:#037691" %)** Downlink:** 591 591 623 +Uplink channels 1-8 (RX1) 592 592 593 - TheNSE01battery is a combination of an 8500mAhLi/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate(<2% per year). This type of battery is commonly used in IoT devices such as water meter.625 +923.2 - SF10BW125 (RX2) 594 594 595 595 596 -The battery is designed to last for several years depends on the actually use environment and update interval. 597 597 629 +=== 2.7.6 KR920-923 (KR920) === 598 598 599 - Thebattery relateddocumentsas below:631 +Default channel: 600 600 601 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 602 -* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 603 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 633 +922.1 - SF7BW125 to SF12BW125 604 604 635 +922.3 - SF7BW125 to SF12BW125 636 + 637 +922.5 - SF7BW125 to SF12BW125 638 + 639 + 640 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 641 + 642 +922.1 - SF7BW125 to SF12BW125 643 + 644 +922.3 - SF7BW125 to SF12BW125 645 + 646 +922.5 - SF7BW125 to SF12BW125 647 + 648 +922.7 - SF7BW125 to SF12BW125 649 + 650 +922.9 - SF7BW125 to SF12BW125 651 + 652 +923.1 - SF7BW125 to SF12BW125 653 + 654 +923.3 - SF7BW125 to SF12BW125 655 + 656 + 657 +(% style="color:#037691" %)**Downlink:** 658 + 659 +Uplink channels 1-7(RX1) 660 + 661 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 662 + 663 + 664 + 665 +=== 2.7.7 IN865-867 (IN865) === 666 + 667 +(% style="color:#037691" %)** Uplink:** 668 + 669 +865.0625 - SF7BW125 to SF12BW125 670 + 671 +865.4025 - SF7BW125 to SF12BW125 672 + 673 +865.9850 - SF7BW125 to SF12BW125 674 + 675 + 676 +(% style="color:#037691" %) **Downlink:** 677 + 678 +Uplink channels 1-3 (RX1) 679 + 680 +866.550 - SF10BW125 (RX2) 681 + 682 + 683 + 684 + 685 +== 2.8 LED Indicator == 686 + 687 +The LSE01 has an internal LED which is to show the status of different state. 688 + 689 +* Blink once when device power on. 690 +* Solid ON for 5 seconds once device successful Join the network. 691 +* Blink once when device transmit a packet. 692 + 693 +== 2.9 Installation in Soil == 694 + 695 +**Measurement the soil surface** 696 + 697 + 698 +[[image:1654506634463-199.png]] 699 + 605 605 ((( 606 -[[image:image-20220708140453-6.png]] 701 +((( 702 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 607 607 ))) 704 +))) 608 608 609 609 707 +[[image:1654506665940-119.png]] 610 610 611 -=== 2.9.2 Power consumption Analyze === 709 +((( 710 +Dig a hole with diameter > 20CM. 711 +))) 612 612 613 613 ((( 614 - Draginobattery powered productare allrunsinLow Powermode. Wehavean update battery calculator whichbase onthemeasurementof the realdevice. User canuse this calculatorto checkthebatterylife andcalculatethe batterylifeif want to use different transmit interval.714 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 615 615 ))) 616 616 617 617 718 +== 2.10 Firmware Change Log == 719 + 618 618 ((( 619 - Instructiontouseasbelow:721 +**Firmware download link:** 620 620 ))) 621 621 622 622 ((( 623 - (% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:[[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]725 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 624 624 ))) 625 625 728 +((( 729 + 730 +))) 626 626 627 627 ((( 628 - (% style="color:blue" %)**Step2: **(%%)Openithoose733 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 629 629 ))) 630 630 631 - *(((632 - ProductModel736 +((( 737 + 633 633 ))) 634 -* ((( 635 -Uplink Interval 739 + 740 +((( 741 +**V1.0.** 636 636 ))) 637 -* ((( 638 -Working Mode 639 -))) 640 640 641 641 ((( 642 - And theLifeexpectation in difference casewill be shown on the right.745 +Release 643 643 ))) 644 644 645 -[[image:image-20220708141352-7.jpeg]] 646 646 749 +== 2.11 Battery Analysis == 647 647 751 +=== 2.11.1 Battery Type === 648 648 649 -=== 2.9.3 Battery Note === 753 +((( 754 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 755 +))) 650 650 651 651 ((( 652 -The Li-SICObattery is designedfor small current/ longperiod application. It isnotgood to use a high current,short period transmit method. Therecommendedminimum period for use ofthis batteryis5minutes. Ifyou useshorterperiod time to transmitLoRa,thenthe battery life may be decreased.758 +The battery is designed to last for more than 5 years for the LSN50. 653 653 ))) 654 654 761 +((( 762 +((( 763 +The battery-related documents are as below: 764 +))) 765 +))) 655 655 767 +* ((( 768 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 769 +))) 770 +* ((( 771 +[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 772 +))) 773 +* ((( 774 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 775 +))) 656 656 657 - ===2.9.4 Replacethe battery ===777 + [[image:image-20220610172436-1.png]] 658 658 779 + 780 + 781 +=== 2.11.2 Battery Note === 782 + 659 659 ((( 660 -The defaultbatterypackofNSE01includesaER26500 plussupercapacitor. Ifusercan'tfind this pack locally,theycanfindER26500 orquivalence withoutthe SPC1520 capacitor, which will alsowork inmostcase. TheSPCcanlarge thebatterylifeforhigh frequency use(update periodbelow5minutes).784 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 661 661 ))) 662 662 663 663 664 664 665 -= 3. AccessNB-IoTModule =789 +=== 2.11.3 Replace the battery === 666 666 667 667 ((( 668 - Userscan directlyaccesstheAT command setoftheNB-IoTmodule.792 +If Battery is lower than 2.7v, user should replace the battery of LSE01. 669 669 ))) 670 670 671 671 ((( 672 - The AT Commandsetcanrefer theBC35-G NB-IoTModuleATCommand: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]]796 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 673 673 ))) 674 674 675 -[[image:1657261278785-153.png]] 799 +((( 800 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 801 +))) 676 676 677 677 678 678 679 -= 4.805 += 3. Using the AT Commands = 680 680 681 -== 4.1807 +== 3.1 Access AT Commands == 682 682 683 -See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 684 684 810 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 685 685 686 - AT+<CMD>? : Helpon<CMD>812 +[[image:1654501986557-872.png||height="391" width="800"]] 687 687 688 -AT+<CMD> : Run <CMD> 689 689 690 - AT+<CMD>=<value>: Setthevalue815 +Or if you have below board, use below connection: 691 691 692 -AT+<CMD>=? : Get the value 693 693 818 +[[image:1654502005655-729.png||height="503" width="801"]] 694 694 820 + 821 + 822 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 823 + 824 + 825 + [[image:1654502050864-459.png||height="564" width="806"]] 826 + 827 + 828 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]] 829 + 830 + 831 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 832 + 833 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 834 + 835 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 836 + 837 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 838 + 839 + 695 695 (% style="color:#037691" %)**General Commands**(%%) 696 696 697 -AT 842 +(% style="background-color:#dcdcdc" %)**AT**(%%) : Attention 698 698 699 -AT? 844 +(% style="background-color:#dcdcdc" %)**AT?**(%%) : Short Help 700 700 701 -ATZ 846 +(% style="background-color:#dcdcdc" %)**ATZ**(%%) : MCU Reset 702 702 703 -AT+TDC 848 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%) : Application Data Transmission Interval 704 704 705 -AT+CFG : Print all configurations 706 706 707 - AT+CFGMOD: Workingmode selection851 +(% style="color:#037691" %)**Keys, IDs and EUIs management** 708 708 709 -AT+I NTMOD:Setthe trigger interruptmode853 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%) : Application EUI 710 710 711 -AT+ 5VTSetextend the timeof5V power855 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%) : Application Key 712 712 713 -AT+P ROChooseagreement857 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%) : Application Session Key 714 714 715 -AT+ WEIGREGet weightorsetweight to 0859 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%) : Device Address 716 716 717 -AT+ WEIGAPGet or SettheGapValue of weight861 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%) : Device EUI 718 718 719 -AT+ RXDL: Extendthe sendingandreceivingtime863 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%) : Network ID (You can enter this command change only after successful network connection) 720 720 721 -AT+ CNTFACGettcountingparameters865 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%) : Network Session Key Joining and sending date on LoRa network 722 722 723 -AT+ SERVADDR:ServerAddress867 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%) : Confirm Mode 724 724 869 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 725 725 726 -(% style="color:# 037691" %)**COAPManagement**871 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%) : Join LoRa? Network 727 727 728 -AT+ URIsourceparameters873 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%) : LoRa? Network Join Mode 729 729 875 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 730 730 731 -(% style="color:# 037691" %)**UDPManagement**877 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%) : Print Last Received Data in Raw Format 732 732 733 -AT+C FM:Uploadconfirmationmode (onlyvalid forUDP)879 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%) : Print Last Received Data in Binary Format 734 734 881 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 735 735 736 -(% style="color:# 037691" %)**MQTTManagement**883 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%) : Send Hexadecimal Data 737 737 738 -AT+CLIENT : Get or Set MQTT client 739 739 740 - AT+UNAMEGetSetMQTT Username886 +(% style="color:#037691" %)**LoRa Network Management** 741 741 742 -AT+ PWDGetor SetMQTT password888 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%) : Adaptive Rate 743 743 744 -AT+ PUBTOPICGetorSetMQTTpublishtopic890 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%) : LoRa Class(Currently only support class A 745 745 746 -AT+ SUBTOPIC :GetorSetMQTT subscriptiontopic892 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%) : Duty Cycle Setting 747 747 894 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 748 748 749 -(% style="color:# 037691" %)**Information**896 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink 750 750 751 -AT+F DRctoryDataReset898 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%) : Frame Counter Uplink 752 752 753 -AT+ PWORDSerialAccessPassword900 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%) : Join Accept Delay1 754 754 902 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 755 755 904 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 756 756 757 -= 5.FAQ=906 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%) : Receive Delay1 758 758 759 -= =5.1HowtoUpgradeFirmware==908 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%) : Receive Delay2 760 760 910 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 761 761 912 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 913 + 914 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 915 + 916 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 917 + 918 + 919 +(% style="color:#037691" %)**Information** 920 + 921 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 922 + 923 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 924 + 925 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 926 + 927 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 928 + 929 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 930 + 931 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 932 + 933 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 934 + 935 + 936 += 4. FAQ = 937 + 938 +== 4.1 How to change the LoRa Frequency Bands/Region? == 939 + 762 762 ((( 763 -User can upgrade the firmware for 1) bug fix, 2) new feature release. 941 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 942 +When downloading the images, choose the required image file for download. 764 764 ))) 765 765 766 766 ((( 767 - Pleasesee this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]946 + 768 768 ))) 769 769 770 770 ((( 771 - (%style="color:red"%)Notice,NSE01andLSE01share thememotherboard.Theyuse thesameconnection andmethodto update.950 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 772 772 ))) 773 773 953 +((( 954 + 955 +))) 774 774 957 +((( 958 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 959 +))) 775 775 776 -= 6. Trouble Shooting = 961 +((( 962 + 963 +))) 777 777 778 -== 6.1 Connection problem when uploading firmware == 965 +((( 966 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 967 +))) 779 779 969 +[[image:image-20220606154726-3.png]] 780 780 781 -(% class="wikigeneratedid" %) 971 + 972 +When you use the TTN network, the US915 frequency bands use are: 973 + 974 +* 903.9 - SF7BW125 to SF10BW125 975 +* 904.1 - SF7BW125 to SF10BW125 976 +* 904.3 - SF7BW125 to SF10BW125 977 +* 904.5 - SF7BW125 to SF10BW125 978 +* 904.7 - SF7BW125 to SF10BW125 979 +* 904.9 - SF7BW125 to SF10BW125 980 +* 905.1 - SF7BW125 to SF10BW125 981 +* 905.3 - SF7BW125 to SF10BW125 982 +* 904.6 - SF8BW500 983 + 782 782 ((( 783 - (%style="font-size:14px"%)**Pleasesee:**(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color:rgb(255,255,255);font-size:14px;"]]985 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 784 784 ))) 785 785 988 +(% class="box infomessage" %) 989 +((( 990 +**AT+CHE=2** 991 +))) 786 786 993 +(% class="box infomessage" %) 994 +((( 995 +**ATZ** 996 +))) 787 787 788 -== 6.2 AT Command input doesn't work == 998 +((( 999 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 1000 +))) 789 789 790 790 ((( 791 - Inthe case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.1003 + 792 792 ))) 793 793 1006 +((( 1007 +The **AU915** band is similar. Below are the AU915 Uplink Channels. 1008 +))) 794 794 1010 +[[image:image-20220606154825-4.png]] 795 795 796 -= 7. Order Info = 797 797 798 798 799 - PartNumber**:** (% style="color:#4f81bd"%)**NSE01**1014 += 5. Trouble Shooting = 800 800 1016 +== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 801 801 1018 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 1019 + 1020 + 1021 +== 5.2 AT Command input doesn’t work == 1022 + 1023 +((( 1024 +In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1025 +))) 1026 + 1027 + 1028 +== 5.3 Device rejoin in at the second uplink packet == 1029 + 1030 +(% style="color:#4f81bd" %)**Issue describe as below:** 1031 + 1032 +[[image:1654500909990-784.png]] 1033 + 1034 + 1035 +(% style="color:#4f81bd" %)**Cause for this issue:** 1036 + 1037 +((( 1038 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 1039 +))) 1040 + 1041 + 1042 +(% style="color:#4f81bd" %)**Solution: ** 1043 + 1044 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 1045 + 1046 +[[image:1654500929571-736.png||height="458" width="832"]] 1047 + 1048 + 1049 += 6. Order Info = 1050 + 1051 + 1052 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 1053 + 1054 + 1055 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 1056 + 1057 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 1058 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 1059 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 1060 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 1061 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1062 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1063 +* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1064 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1065 + 1066 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1067 + 1068 +* (% style="color:red" %)**4**(%%): 4000mAh battery 1069 +* (% style="color:red" %)**8**(%%): 8500mAh battery 1070 + 802 802 (% class="wikigeneratedid" %) 803 803 ((( 804 804 805 805 ))) 806 806 807 -= 8.1076 += 7. Packing Info = 808 808 809 809 ((( 810 810 811 811 812 812 (% style="color:#037691" %)**Package Includes**: 1082 +))) 813 813 814 - 815 -* NSE01 NB-IoT Soil Moisture & EC Sensor x 1 816 -* External antenna x 1 1084 +* ((( 1085 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 817 817 ))) 818 818 819 819 ((( ... ... @@ -820,20 +820,24 @@ 820 820 821 821 822 822 (% style="color:#037691" %)**Dimension and weight**: 1092 +))) 823 823 824 - 825 -* Size: 195 x 125 x 55 mm 826 -* Weight: 420g 1094 +* ((( 1095 +Device Size: cm 827 827 ))) 1097 +* ((( 1098 +Device Weight: g 1099 +))) 1100 +* ((( 1101 +Package Size / pcs : cm 1102 +))) 1103 +* ((( 1104 +Weight / pcs : g 828 828 829 -((( 830 830 831 - 832 - 833 - 834 834 ))) 835 835 836 -= 9.1109 += 8. Support = 837 837 838 838 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 839 839 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -102.7 KB - Content