Changes for page NDDS75 -- NB-IoT Distance Detect Sensor User Manual
Last modified by Bei Jinggeng on 2024/05/31 09:53
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 24 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - NSE01NB-IoTSoil Moisture & EC Sensor User Manual1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -3,16 +3,8 @@ 3 3 4 4 5 5 6 +**Contents:** 6 6 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 -**Table of Contents:** 15 - 16 16 {{toc/}} 17 17 18 18 ... ... @@ -20,800 +20,1015 @@ 20 20 21 21 22 22 15 += 1. Introduction = 23 23 24 -= 1. Introduction =17 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 25 25 26 -== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 27 - 28 28 ((( 29 - 20 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 21 +))) 30 30 31 31 ((( 32 - DraginoNSE01 isan(% style="color:blue" %)**NB-IOT soilmoisture& EC sensor**(%%)foragriculturalIoT. Used tomeasure the soilmoisture ofsaline-alkali soiland loam.Thesoil sensor uses the FDRmethod to calculate soil moisture andcompensates it with soiltemperature andelectricalconductivity.It hasalsobeencalibratedfor mineralsoiltypesatthe factory.24 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 33 33 ))) 34 34 35 35 ((( 36 - Itcandetect (%style="color:blue"%)**SoilMoisture,Soil Temperature andSoilConductivity**(%%),anduploaditsvalue totheserver wirelessly.28 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 37 37 ))) 38 38 39 39 ((( 40 - Thewirelesstechnology usedin NSE01allowsthedeviceto senddataata lowdata rateand reachultra-longdistances, providingultra-long-distancespreadspectrum Communication.32 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 41 41 ))) 42 42 43 43 ((( 44 - NSE01arepoweredby(%style="color:blue"%)**8500mAhLi-SOCI2**(%%)batteries,which canbeusedforupto5 years.36 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 45 45 ))) 46 46 47 - 48 -))) 49 49 50 50 [[image:1654503236291-817.png]] 51 51 52 52 53 -[[image:165 7245163077-232.png]]43 +[[image:1654503265560-120.png]] 54 54 55 55 56 56 57 -== 1.2 47 +== 1.2 Features == 58 58 59 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 49 +* LoRaWAN 1.0.3 Class A 50 +* Ultra low power consumption 60 60 * Monitor Soil Moisture 61 61 * Monitor Soil Temperature 62 62 * Monitor Soil Conductivity 54 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 63 63 * AT Commands to change parameters 64 64 * Uplink on periodically 65 65 * Downlink to change configure 66 66 * IP66 Waterproof Enclosure 67 -* Ultra-Low Power consumption 68 -* AT Commands to change parameters 69 -* Micro SIM card slot for NB-IoT SIM 70 -* 8500mAh Battery for long term use 59 +* 4000mAh or 8500mAh Battery for long term use 71 71 61 +== 1.3 Specification == 72 72 73 - ==1.3Specification==63 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 74 74 65 +[[image:image-20220606162220-5.png]] 75 75 76 -(% style="color:#037691" %)**Common DC Characteristics:** 77 77 78 -* Supply Voltage: 2.1v ~~ 3.6v 79 -* Operating Temperature: -40 ~~ 85°C 80 80 81 - (% style="color:#037691"%)**NB-IoT Spec:**69 +== 1.4 Applications == 82 82 83 -* - B1 @H-FDD: 2100MHz 84 -* - B3 @H-FDD: 1800MHz 85 -* - B8 @H-FDD: 900MHz 86 -* - B5 @H-FDD: 850MHz 87 -* - B20 @H-FDD: 800MHz 88 -* - B28 @H-FDD: 700MHz 71 +* Smart Agriculture 89 89 90 -Probe(% style="color:#037691" %)** Specification:** 73 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 74 + 91 91 92 - MeasureVolume:Base on the centrapin of the probe,a cylinder with7cm diameter and 10cm height.76 +== 1.5 Firmware Change log == 93 93 94 -[[image:image-20220708101224-1.png]] 95 95 79 +**LSE01 v1.0 :** Release 96 96 97 97 98 -== 1.4 Applications == 99 99 100 - *SmartAgriculture83 += 2. Configure LSE01 to connect to LoRaWAN network = 101 101 102 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 103 - 85 +== 2.1 How it works == 104 104 105 -== 1.5 Pin Definitions == 87 +((( 88 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 89 +))) 106 106 91 +((( 92 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 93 +))) 107 107 108 -[[image:1657246476176-652.png]] 109 109 110 110 97 +== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 111 111 112 - =2. UseNSE01to communicate withIoTServer=99 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 113 113 114 -== 2.1 How it works == 115 115 102 +[[image:1654503992078-669.png]] 116 116 104 + 105 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 106 + 107 + 108 +**Step 1**: Create a device in TTN with the OTAA keys from LSE01. 109 + 110 +Each LSE01 is shipped with a sticker with the default device EUI as below: 111 + 112 +[[image:image-20220606163732-6.jpeg]] 113 + 114 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 115 + 116 +**Add APP EUI in the application** 117 + 118 + 119 +[[image:1654504596150-405.png]] 120 + 121 + 122 + 123 +**Add APP KEY and DEV EUI** 124 + 125 +[[image:1654504683289-357.png]] 126 + 127 + 128 + 129 +**Step 2**: Power on LSE01 130 + 131 + 132 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 133 + 134 +[[image:image-20220606163915-7.png]] 135 + 136 + 137 +**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 138 + 139 +[[image:1654504778294-788.png]] 140 + 141 + 142 + 143 +== 2.3 Uplink Payload == 144 + 145 +=== 2.3.1 MOD~=0(Default Mode) === 146 + 147 +LSE01 will uplink payload via LoRaWAN with below payload format: 148 + 149 + 150 +Uplink payload includes in total 11 bytes. 151 + 152 + 153 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 154 +|((( 155 +**Size** 156 + 157 +**(bytes)** 158 +)))|**2**|**2**|**2**|**2**|**2**|**1** 159 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 160 +Temperature 161 + 162 +(Reserve, Ignore now) 163 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 164 +MOD & Digital Interrupt 165 + 166 +(Optional) 167 +))) 168 + 169 + 170 + 171 +=== 2.3.2 MOD~=1(Original value) === 172 + 173 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 174 + 175 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 176 +|((( 177 +**Size** 178 + 179 +**(bytes)** 180 +)))|**2**|**2**|**2**|**2**|**2**|**1** 181 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 182 +Temperature 183 + 184 +(Reserve, Ignore now) 185 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 186 +MOD & Digital Interrupt 187 + 188 +(Optional) 189 +))) 190 + 191 + 192 + 193 +=== 2.3.3 Battery Info === 194 + 195 +Check the battery voltage for LSE01. 196 + 197 +Ex1: 0x0B45 = 2885mV 198 + 199 +Ex2: 0x0B49 = 2889mV 200 + 201 + 202 + 203 +=== 2.3.4 Soil Moisture === 204 + 205 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 206 + 207 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 208 + 209 + 210 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 211 + 212 + 213 + 214 +=== 2.3.5 Soil Temperature === 215 + 216 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 217 + 218 +**Example**: 219 + 220 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 221 + 222 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 223 + 224 + 225 + 226 +=== 2.3.6 Soil Conductivity (EC) === 227 + 117 117 ((( 118 - The NSE01 is equipped withaNB-IoTmodule, the pre-loaded firmware in NSE01willgetenvironmentdata fromsensorsandsendthe valuetolocal NB-IoTnetworkviatheNB-IoT module.NB-IoTnetworkwillforwardthisvaluetoIoT server viaheprotocoldefinedby NSE01.229 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 119 119 ))) 120 120 232 +((( 233 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 234 +))) 121 121 122 122 ((( 123 - Thediagram belowshowstheworkingflowin defaultfirmwareofNSE01:237 +Generally, the EC value of irrigation water is less than 800uS / cm. 124 124 ))) 125 125 126 -[[image:image-20220708101605-2.png]] 240 +((( 241 + 242 +))) 127 127 128 128 ((( 129 129 130 130 ))) 131 131 248 +=== 2.3.7 MOD === 132 132 250 +Firmware version at least v2.1 supports changing mode. 133 133 134 - == 2.2 Configure theNSE01=252 +For example, bytes[10]=90 135 135 254 +mod=(bytes[10]>>7)&0x01=1. 136 136 137 -=== 2.2.1 Test Requirement === 138 138 257 +**Downlink Command:** 139 139 140 -((( 141 -To use NSE01 in your city, make sure meet below requirements: 142 -))) 259 +If payload = 0x0A00, workmode=0 143 143 144 -* Your local operator has already distributed a NB-IoT Network there. 145 -* The local NB-IoT network used the band that NSE01 supports. 146 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 261 +If** **payload =** **0x0A01, workmode=1 147 147 148 -((( 149 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 150 -))) 151 151 152 152 153 - [[image:1657249419225-449.png]]265 +=== 2.3.8 Decode payload in The Things Network === 154 154 267 +While using TTN network, you can add the payload format to decode the payload. 155 155 156 156 157 - ===2.2.2 Insert SIM card ===270 +[[image:1654505570700-128.png]] 158 158 159 - Insert theNB-IoT Cardgetfromyourprovider.272 +The payload decoder function for TTN is here: 160 160 161 - Userneedtotakeout theNB-IoT moduleandsert theIM cardkebelow:274 +LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 162 162 163 163 164 -[[image:1657249468462-536.png]] 165 165 278 +== 2.4 Uplink Interval == 166 166 280 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 167 167 168 -=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 169 169 170 -((( 171 -((( 172 -User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 173 -))) 174 -))) 175 175 284 +== 2.5 Downlink Payload == 176 176 177 - **Connection:**286 +By default, LSE50 prints the downlink payload to console port. 178 178 179 - (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND288 +[[image:image-20220606165544-8.png]] 180 180 181 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 182 182 183 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD291 +**Examples:** 184 184 185 185 186 - InthePC, use below serialtoolsettings:294 +* **Set TDC** 187 187 188 -* Baud: (% style="color:green" %)**9600** 189 -* Data bits:** (% style="color:green" %)8(%%)** 190 -* Stop bits: (% style="color:green" %)**1** 191 -* Parity: (% style="color:green" %)**None** 192 -* Flow Control: (% style="color:green" %)**None** 296 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 193 193 194 -((( 195 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 196 -))) 298 +Payload: 01 00 00 1E TDC=30S 197 197 198 - [[image:image-20220708110657-3.png]]300 +Payload: 01 00 00 3C TDC=60S 199 199 200 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 201 201 303 +* **Reset** 202 202 305 +If payload = 0x04FF, it will reset the LSE01 203 203 204 -=== 2.2.4 Use CoAP protocol to uplink data === 205 205 206 - (%style="color:red" %)Note: if you don't haveCoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]308 +* **CFM** 207 207 310 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 208 208 209 -**Use below commands:** 210 210 211 -* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 212 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 213 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 214 214 215 - Forparameterdescription,pleaserefer toATcommand set314 +== 2.6 Show Data in DataCake IoT Server == 216 216 217 -[[ima ge:1657249793983-486.png]]316 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 218 218 219 219 220 - Afterconfigure theserveraddressand(% style="color:green" %)**reset thedevice**(%%) (via AT+ATZ ), NSE01willstart to uplinksensorvaluesto CoAP server.319 +**Step 1**: Be sure that your device is programmed and properly connected to the network at this time. 221 221 222 - [[image:1657249831934-534.png]]321 +**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 223 223 224 224 324 +[[image:1654505857935-743.png]] 225 225 226 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 227 227 228 - This feature is supported since firmwareversion v1.0.1327 +[[image:1654505874829-548.png]] 229 229 329 +Step 3: Create an account or log in Datacake. 230 230 231 -* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 232 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 233 -* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 331 +Step 4: Search the LSE01 and add DevEUI. 234 234 235 -[[image:1657249864775-321.png]] 236 236 334 +[[image:1654505905236-553.png]] 237 237 238 -[[image:1657249930215-289.png]] 239 239 337 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 240 240 339 +[[image:1654505925508-181.png]] 241 241 242 -=== 2.2.6 Use MQTT protocol to uplink data === 243 243 244 -This feature is supported since firmware version v110 245 245 343 +== 2.7 Frequency Plans == 246 246 247 -* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 248 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 249 -* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 250 -* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 251 -* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 252 -* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 253 -* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 345 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 254 254 255 -[[image:1657249978444-674.png]] 256 256 348 +=== 2.7.1 EU863-870 (EU868) === 257 257 258 - [[image:1657249990869-686.png]]350 +(% style="color:#037691" %)** Uplink:** 259 259 352 +868.1 - SF7BW125 to SF12BW125 260 260 261 -((( 262 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 263 -))) 354 +868.3 - SF7BW125 to SF12BW125 and SF7BW250 264 264 356 +868.5 - SF7BW125 to SF12BW125 265 265 358 +867.1 - SF7BW125 to SF12BW125 266 266 267 - === 2.2.7UseTCP protocolto uplink data ===360 +867.3 - SF7BW125 to SF12BW125 268 268 269 - Thisfeatureissupported since firmware versionv110362 +867.5 - SF7BW125 to SF12BW125 270 270 364 +867.7 - SF7BW125 to SF12BW125 271 271 272 -* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 273 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 366 +867.9 - SF7BW125 to SF12BW125 274 274 275 - [[image:1657250217799-140.png]]368 +868.8 - FSK 276 276 277 277 278 - [[image:1657250255956-604.png]]371 +(% style="color:#037691" %)** Downlink:** 279 279 373 +Uplink channels 1-9 (RX1) 280 280 375 +869.525 - SF9BW125 (RX2 downlink only) 281 281 282 -=== 2.2.8 Change Update Interval === 283 283 284 -User can use below command to change the (% style="color:green" %)**uplink interval**. 285 285 286 - * (% style="color:blue" %)**AT+TDC=600**%%)~/~/Set Update Interval to 600s379 +=== 2.7.2 US902-928(US915) === 287 287 288 -((( 289 -(% style="color:red" %)**NOTE:** 290 -))) 381 +Used in USA, Canada and South America. Default use CHE=2 291 291 292 -((( 293 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 294 -))) 383 +(% style="color:#037691" %)**Uplink:** 295 295 385 +903.9 - SF7BW125 to SF10BW125 296 296 387 +904.1 - SF7BW125 to SF10BW125 297 297 298 - == 2.3UplinkPayload==389 +904.3 - SF7BW125 to SF10BW125 299 299 300 - Inthismode,uplink payload includes intotal18 bytes391 +904.5 - SF7BW125 to SF10BW125 301 301 302 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 303 -|=(% style="width: 50px;" %)((( 304 -**Size(bytes)** 305 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1** 306 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 393 +904.7 - SF7BW125 to SF10BW125 307 307 308 - Ifweusethe MQTT client tosubscribe to this MQTT topic, we can see the following information when the NSE01uplink data.395 +904.9 - SF7BW125 to SF10BW125 309 309 397 +905.1 - SF7BW125 to SF10BW125 310 310 311 - [[image:image-20220708111918-4.png]]399 +905.3 - SF7BW125 to SF10BW125 312 312 313 313 314 - Thepayload is ASCII string,representative same HEX:402 +(% style="color:#037691" %)**Downlink:** 315 315 316 - 0x72403155615900640c7817075e0a8c02f900 where:404 +923.3 - SF7BW500 to SF12BW500 317 317 318 -* Device ID: 0x 724031556159 = 724031556159 319 -* Version: 0x0064=100=1.0.0 406 +923.9 - SF7BW500 to SF12BW500 320 320 321 -* BAT: 0x0c78 = 3192 mV = 3.192V 322 -* Singal: 0x17 = 23 323 -* Soil Moisture: 0x075e= 1886 = 18.86 % 324 -* Soil Temperature:0x0a8c =2700=27 °C 325 -* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 326 -* Interrupt: 0x00 = 0 408 +924.5 - SF7BW500 to SF12BW500 327 327 410 +925.1 - SF7BW500 to SF12BW500 328 328 329 - ==2.4PayloadExplanation andSensorInterface==412 +925.7 - SF7BW500 to SF12BW500 330 330 414 +926.3 - SF7BW500 to SF12BW500 331 331 332 - ===2.4.1 DeviceID===416 +926.9 - SF7BW500 to SF12BW500 333 333 334 - Bydefault,theDevice ID equaltothe last 6 bytes of IMEI.418 +927.5 - SF7BW500 to SF12BW500 335 335 336 - Usercanuse(%style="color:blue" %)**AT+DEUI**(%%) to set Device ID420 +923.3 - SF12BW500(RX2 downlink only) 337 337 338 -**Example:** 339 339 340 -AT+DEUI=A84041F15612 341 341 342 - TheDeviceID is stored in a none-erasearea,Upgrade the firmware or run AT+FDR won't erase Device ID.424 +=== 2.7.3 CN470-510 (CN470) === 343 343 426 +Used in China, Default use CHE=1 344 344 428 +(% style="color:#037691" %)**Uplink:** 345 345 346 - === 2.4.2VersionInfo ===430 +486.3 - SF7BW125 to SF12BW125 347 347 348 - Specifythesoftware version: 0x64=100,means firmware version1.00.432 +486.5 - SF7BW125 to SF12BW125 349 349 350 - For example: 0x00 64:this device is NSE01with firmware version1.0.0.434 +486.7 - SF7BW125 to SF12BW125 351 351 436 +486.9 - SF7BW125 to SF12BW125 352 352 438 +487.1 - SF7BW125 to SF12BW125 353 353 354 - === 2.4.3atteryInfo===440 +487.3 - SF7BW125 to SF12BW125 355 355 356 -((( 357 -Check the battery voltage for LSE01. 358 -))) 442 +487.5 - SF7BW125 to SF12BW125 359 359 360 -((( 361 -Ex1: 0x0B45 = 2885mV 362 -))) 444 +487.7 - SF7BW125 to SF12BW125 363 363 364 -((( 365 -Ex2: 0x0B49 = 2889mV 366 -))) 367 367 447 +(% style="color:#037691" %)**Downlink:** 368 368 449 +506.7 - SF7BW125 to SF12BW125 369 369 370 - === 2.4.4SignalStrength===451 +506.9 - SF7BW125 to SF12BW125 371 371 372 - NB-IoTNetworksignalStrength.453 +507.1 - SF7BW125 to SF12BW125 373 373 374 - **Ex1:0x1d=29**455 +507.3 - SF7BW125 to SF12BW125 375 375 376 - (% style="color:blue" %)**0**(%%)113dBmorless457 +507.5 - SF7BW125 to SF12BW125 377 377 378 - (%style="color:blue"%)**1**(%%)-111dBm459 +507.7 - SF7BW125 to SF12BW125 379 379 380 - (%style="color:blue"%)**2...30**(%%)-109dBm... -53dBm461 +507.9 - SF7BW125 to SF12BW125 381 381 382 - (% style="color:blue" %)**31**(%%)-51dBmorgreater463 +508.1 - SF7BW125 to SF12BW125 383 383 384 - (%style="color:blue"%)**99**(%%)Not known ornot detectable465 +505.3 - SF12BW125 (RX2 downlink only) 385 385 386 386 387 387 388 -=== 2. 4.5Soil Moisture===469 +=== 2.7.4 AU915-928(AU915) === 389 389 390 -((( 391 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 392 -))) 471 +Default use CHE=2 393 393 394 -((( 395 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 396 -))) 473 +(% style="color:#037691" %)**Uplink:** 397 397 398 -((( 399 - 400 -))) 475 +916.8 - SF7BW125 to SF12BW125 401 401 402 -((( 403 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 404 -))) 477 +917.0 - SF7BW125 to SF12BW125 405 405 479 +917.2 - SF7BW125 to SF12BW125 406 406 481 +917.4 - SF7BW125 to SF12BW125 407 407 408 - === 2.4.6oilTemperature===483 +917.6 - SF7BW125 to SF12BW125 409 409 410 -((( 411 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 412 -))) 485 +917.8 - SF7BW125 to SF12BW125 413 413 414 -((( 415 -**Example**: 416 -))) 487 +918.0 - SF7BW125 to SF12BW125 417 417 418 -((( 419 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 420 -))) 489 +918.2 - SF7BW125 to SF12BW125 421 421 422 -((( 423 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 424 -))) 425 425 492 +(% style="color:#037691" %)**Downlink:** 426 426 494 +923.3 - SF7BW500 to SF12BW500 427 427 428 - ===2.4.7SoilConductivity(EC) ===496 +923.9 - SF7BW500 to SF12BW500 429 429 430 -((( 431 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 432 -))) 498 +924.5 - SF7BW500 to SF12BW500 433 433 434 -((( 435 -For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 436 -))) 500 +925.1 - SF7BW500 to SF12BW500 437 437 438 -((( 439 -Generally, the EC value of irrigation water is less than 800uS / cm. 440 -))) 502 +925.7 - SF7BW500 to SF12BW500 441 441 442 -((( 443 - 444 -))) 504 +926.3 - SF7BW500 to SF12BW500 445 445 446 -((( 447 - 448 -))) 506 +926.9 - SF7BW500 to SF12BW500 449 449 450 - ===2.4.8DigitalInterrupt===508 +927.5 - SF7BW500 to SF12BW500 451 451 452 - DigitalInterruptrefers to pin(% style="color:blue" %)**GPIO_EXTI**(%%),andthere are different trigger methods. When there is a trigger, the NSE01will send a packettothe server.510 +923.3 - SF12BW500(RX2 downlink only) 453 453 454 -The command is: 455 455 456 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 457 457 514 +=== 2.7.5 AS920-923 & AS923-925 (AS923) === 458 458 459 - Thelower four bitsofthis data field shows if this packet is generatedby interruptor not. Click here for the hardware and softwareset up.516 +(% style="color:#037691" %)**Default Uplink channel:** 460 460 518 +923.2 - SF7BW125 to SF10BW125 461 461 462 - Example:520 +923.4 - SF7BW125 to SF10BW125 463 463 464 -0x(00): Normal uplink packet. 465 465 466 - 0x(01):Interrupt UplinkPacket.523 +(% style="color:#037691" %)**Additional Uplink Channel**: 467 467 525 +(OTAA mode, channel added by JoinAccept message) 468 468 527 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 469 469 470 - ===2.4.9+5VOutput===529 +922.2 - SF7BW125 to SF10BW125 471 471 472 - NSE01willenable +5Voutput beforeall sampling and disable the +5v after all sampling.531 +922.4 - SF7BW125 to SF10BW125 473 473 533 +922.6 - SF7BW125 to SF10BW125 474 474 475 - The5Voutput time can be controlledby AT Command.535 +922.8 - SF7BW125 to SF10BW125 476 476 477 - (%style="color:blue"%)**AT+5VT=1000**537 +923.0 - SF7BW125 to SF10BW125 478 478 479 - Meansset5Vvalidtime tohave 1000ms.So the real 5V output will actually have1000ms + sampling time for other sensors.539 +922.0 - SF7BW125 to SF10BW125 480 480 481 481 542 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 482 482 483 - ==2.5DownlinkPayload ==544 +923.6 - SF7BW125 to SF10BW125 484 484 485 - Bydefault,NSE01prints the downlinkpayload to console port.546 +923.8 - SF7BW125 to SF10BW125 486 486 487 - [[image:image-20220708133731-5.png]]548 +924.0 - SF7BW125 to SF10BW125 488 488 550 +924.2 - SF7BW125 to SF10BW125 489 489 490 -((( 491 -(% style="color:blue" %)**Examples:** 492 -))) 552 +924.4 - SF7BW125 to SF10BW125 493 493 494 -((( 495 - 496 -))) 554 +924.6 - SF7BW125 to SF10BW125 497 497 498 -* ((( 499 -(% style="color:blue" %)**Set TDC** 500 -))) 501 501 502 -((( 503 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 504 -))) 557 +(% style="color:#037691" %)** Downlink:** 505 505 506 -((( 507 -Payload: 01 00 00 1E TDC=30S 508 -))) 559 +Uplink channels 1-8 (RX1) 509 509 510 -((( 511 -Payload: 01 00 00 3C TDC=60S 512 -))) 561 +923.2 - SF10BW125 (RX2) 513 513 514 -((( 515 - 516 -))) 517 517 518 -* ((( 519 -(% style="color:blue" %)**Reset** 520 -))) 521 521 522 -((( 523 -If payload = 0x04FF, it will reset the NSE01 524 -))) 565 +=== 2.7.6 KR920-923 (KR920) === 525 525 567 +Default channel: 526 526 527 - *(%style="color:blue"%)**INTMOD**569 +922.1 - SF7BW125 to SF12BW125 528 528 529 - Downlink Payload: 06000003,SetAT+INTMOD=3571 +922.3 - SF7BW125 to SF12BW125 530 530 573 +922.5 - SF7BW125 to SF12BW125 531 531 532 532 533 - ==2.6LEDIndicator==576 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 534 534 535 -((( 536 -The NSE01 has an internal LED which is to show the status of different state. 578 +922.1 - SF7BW125 to SF12BW125 537 537 580 +922.3 - SF7BW125 to SF12BW125 538 538 539 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 540 -* Then the LED will be on for 1 second means device is boot normally. 541 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 542 -* For each uplink probe, LED will be on for 500ms. 543 -))) 582 +922.5 - SF7BW125 to SF12BW125 544 544 584 +922.7 - SF7BW125 to SF12BW125 545 545 586 +922.9 - SF7BW125 to SF12BW125 546 546 588 +923.1 - SF7BW125 to SF12BW125 547 547 548 - ==2.7InstallationinSoil ==590 +923.3 - SF7BW125 to SF12BW125 549 549 550 -__**Measurement the soil surface**__ 551 551 552 - Choosethe proper measuring position. Avoid the probe to touch rocks or hard things. Split thesurface soilaccording to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]593 +(% style="color:#037691" %)**Downlink:** 553 553 554 - [[image:1657259653666-883.png]] 595 +Uplink channels 1-7(RX1) 555 555 597 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 556 556 557 -((( 558 - 559 559 560 -((( 561 -Dig a hole with diameter > 20CM. 562 -))) 563 563 564 -((( 565 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 566 -))) 567 -))) 601 +=== 2.7.7 IN865-867 (IN865) === 568 568 569 - [[image:1654506665940-119.png]]603 +(% style="color:#037691" %)** Uplink:** 570 570 571 -((( 572 - 573 -))) 605 +865.0625 - SF7BW125 to SF12BW125 574 574 607 +865.4025 - SF7BW125 to SF12BW125 575 575 576 - == 2.8FirmwareChange Log==609 +865.9850 - SF7BW125 to SF12BW125 577 577 578 578 579 - DownloadURL& Firmware Changelog612 +(% style="color:#037691" %) **Downlink:** 580 580 581 - [[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]614 +Uplink channels 1-3 (RX1) 582 582 616 +866.550 - SF10BW125 (RX2) 583 583 584 -Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]] 585 585 586 586 587 587 588 -== 2. 9BatteryAnalysis==621 +== 2.8 LED Indicator == 589 589 590 - ===2.9.1BatteryType===623 +The LSE01 has an internal LED which is to show the status of different state. 591 591 625 +* Blink once when device power on. 626 +* Solid ON for 5 seconds once device successful Join the network. 627 +* Blink once when device transmit a packet. 592 592 593 -The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 594 594 595 595 596 - Thebatteryis designed to lastfor severalyears depends onthe actually use environmentandupdateinterval.631 +== 2.9 Installation in Soil == 597 597 633 +**Measurement the soil surface** 598 598 599 -The battery related documents as below: 600 600 601 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 602 -* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 603 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 636 +[[image:1654506634463-199.png]] 604 604 605 605 ((( 606 -[[image:image-20220708140453-6.png]] 639 +((( 640 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 607 607 ))) 642 +))) 608 608 609 609 645 +[[image:1654506665940-119.png]] 610 610 611 -=== 2.9.2 Power consumption Analyze === 647 +((( 648 +Dig a hole with diameter > 20CM. 649 +))) 612 612 613 613 ((( 614 - Draginobattery powered productare allrunsinLow Powermode. Wehavean update battery calculator whichbase onthemeasurementof the realdevice. User canuse this calculatorto checkthebatterylife andcalculatethe batterylifeif want to use different transmit interval.652 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 615 615 ))) 616 616 617 617 656 +== 2.10 Firmware Change Log == 657 + 618 618 ((( 619 - Instructiontouseasbelow:659 +**Firmware download link:** 620 620 ))) 621 621 622 622 ((( 623 - (% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:[[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]663 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 624 624 ))) 625 625 666 +((( 667 + 668 +))) 626 626 627 627 ((( 628 - (% style="color:blue" %)**Step2: **(%%)Openithoose671 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 629 629 ))) 630 630 631 - *(((632 - ProductModel674 +((( 675 + 633 633 ))) 634 -* ((( 635 -Uplink Interval 677 + 678 +((( 679 +**V1.0.** 636 636 ))) 637 -* ((( 638 -Working Mode 639 -))) 640 640 641 641 ((( 642 - And theLifeexpectation in difference casewill be shown on the right.683 +Release 643 643 ))) 644 644 645 -[[image:image-20220708141352-7.jpeg]] 646 646 687 +== 2.11 Battery Analysis == 647 647 689 +=== 2.11.1 Battery Type === 648 648 649 -=== 2.9.3 Battery Note === 691 +((( 692 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 693 +))) 650 650 651 651 ((( 652 -The Li-SICObattery is designedfor small current/ longperiod application. It isnotgood to use a high current,short period transmit method. Therecommendedminimum period for use ofthis batteryis5minutes. Ifyou useshorterperiod time to transmitLoRa,thenthe battery life may be decreased.696 +The battery is designed to last for more than 5 years for the LSN50. 653 653 ))) 654 654 699 +((( 700 +((( 701 +The battery-related documents are as below: 702 +))) 703 +))) 655 655 705 +* ((( 706 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 707 +))) 708 +* ((( 709 +[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 710 +))) 711 +* ((( 712 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 713 +))) 656 656 657 - ===2.9.4 Replacethe battery ===715 + [[image:image-20220606171726-9.png]] 658 658 717 + 718 + 719 +=== 2.11.2 Battery Note === 720 + 659 659 ((( 660 -The defaultbatterypackofNSE01includesaER26500 plussupercapacitor. Ifusercan'tfind this pack locally,theycanfindER26500 orquivalence withoutthe SPC1520 capacitor, which will alsowork inmostcase. TheSPCcanlarge thebatterylifeforhigh frequency use(update periodbelow5minutes).722 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 661 661 ))) 662 662 663 663 664 664 665 -= 3. AccessNB-IoTModule =727 +=== 2.11.3 Replace the battery === 666 666 667 667 ((( 668 - Userscan directlyaccesstheAT command setoftheNB-IoTmodule.730 +If Battery is lower than 2.7v, user should replace the battery of LSE01. 669 669 ))) 670 670 671 671 ((( 672 - The AT Commandsetcanrefer theBC35-G NB-IoTModuleATCommand: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]]734 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 673 673 ))) 674 674 675 -[[image:1657261278785-153.png]] 737 +((( 738 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 739 +))) 676 676 677 677 678 678 679 -= 4.743 += 3. Using the AT Commands = 680 680 681 -== 4.1745 +== 3.1 Access AT Commands == 682 682 683 -See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 684 684 748 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 685 685 686 - AT+<CMD>? : Helpon<CMD>750 +[[image:1654501986557-872.png||height="391" width="800"]] 687 687 688 -AT+<CMD> : Run <CMD> 689 689 690 - AT+<CMD>=<value>: Setthevalue753 +Or if you have below board, use below connection: 691 691 692 -AT+<CMD>=? : Get the value 693 693 756 +[[image:1654502005655-729.png||height="503" width="801"]] 694 694 758 + 759 + 760 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 761 + 762 + 763 + [[image:1654502050864-459.png||height="564" width="806"]] 764 + 765 + 766 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]] 767 + 768 + 769 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 770 + 771 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 772 + 773 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 774 + 775 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 776 + 777 + 695 695 (% style="color:#037691" %)**General Commands**(%%) 696 696 697 -AT 780 +(% style="background-color:#dcdcdc" %)**AT**(%%) : Attention 698 698 699 -AT? 782 +(% style="background-color:#dcdcdc" %)**AT?**(%%) : Short Help 700 700 701 -ATZ 784 +(% style="background-color:#dcdcdc" %)**ATZ**(%%) : MCU Reset 702 702 703 -AT+TDC 786 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%) : Application Data Transmission Interval 704 704 705 -AT+CFG : Print all configurations 706 706 707 - AT+CFGMOD: Workingmode selection789 +(% style="color:#037691" %)**Keys, IDs and EUIs management** 708 708 709 -AT+I NTMOD:Setthe trigger interruptmode791 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%) : Application EUI 710 710 711 -AT+ 5VTSetextend the timeof5V power793 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%) : Application Key 712 712 713 -AT+P ROChooseagreement795 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%) : Application Session Key 714 714 715 -AT+ WEIGREGet weightorsetweight to 0797 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%) : Device Address 716 716 717 -AT+ WEIGAPGet or SettheGapValue of weight799 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%) : Device EUI 718 718 719 -AT+ RXDL: Extendthe sendingandreceivingtime801 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%) : Network ID (You can enter this command change only after successful network connection) 720 720 721 -AT+ CNTFACGettcountingparameters803 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%) : Network Session Key Joining and sending date on LoRa network 722 722 723 -AT+ SERVADDR:ServerAddress805 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%) : Confirm Mode 724 724 807 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 725 725 726 -(% style="color:# 037691" %)**COAPManagement**809 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%) : Join LoRa? Network 727 727 728 -AT+ URIsourceparameters811 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%) : LoRa? Network Join Mode 729 729 813 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 730 730 731 -(% style="color:# 037691" %)**UDPManagement**815 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%) : Print Last Received Data in Raw Format 732 732 733 -AT+C FM:Uploadconfirmationmode (onlyvalid forUDP)817 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%) : Print Last Received Data in Binary Format 734 734 819 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 735 735 736 -(% style="color:# 037691" %)**MQTTManagement**821 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%) : Send Hexadecimal Data 737 737 738 -AT+CLIENT : Get or Set MQTT client 739 739 740 - AT+UNAMEGetSetMQTT Username824 +(% style="color:#037691" %)**LoRa Network Management** 741 741 742 -AT+ PWDGetor SetMQTT password826 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%) : Adaptive Rate 743 743 744 -AT+ PUBTOPICGetorSetMQTTpublishtopic828 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%) : LoRa Class(Currently only support class A 745 745 746 -AT+ SUBTOPIC :GetorSetMQTT subscriptiontopic830 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%) : Duty Cycle Setting 747 747 832 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 748 748 749 -(% style="color:# 037691" %)**Information**834 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink 750 750 751 -AT+F DRctoryDataReset836 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%) : Frame Counter Uplink 752 752 753 -AT+ PWORDSerialAccessPassword838 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%) : Join Accept Delay1 754 754 840 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 755 755 842 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 756 756 757 -= 5.FAQ=844 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%) : Receive Delay1 758 758 759 -= =5.1HowtoUpgradeFirmware==846 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%) : Receive Delay2 760 760 848 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 761 761 850 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 851 + 852 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 853 + 854 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 855 + 856 + 857 +(% style="color:#037691" %)**Information** 858 + 859 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 860 + 861 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 862 + 863 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 864 + 865 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 866 + 867 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 868 + 869 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 870 + 871 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 872 + 873 + 874 += 4. FAQ = 875 + 876 +== 4.1 How to change the LoRa Frequency Bands/Region? == 877 + 762 762 ((( 763 -User can upgrade the firmware for 1) bug fix, 2) new feature release. 879 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 880 +When downloading the images, choose the required image file for download. 764 764 ))) 765 765 766 766 ((( 767 - Pleasesee this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]884 + 768 768 ))) 769 769 770 770 ((( 771 - (%style="color:red"%)Notice,NSE01andLSE01share thememotherboard.Theyuse thesameconnection andmethodto update.888 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 772 772 ))) 773 773 891 +((( 892 + 893 +))) 774 774 895 +((( 896 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 897 +))) 775 775 776 -= 6. Trouble Shooting = 899 +((( 900 + 901 +))) 777 777 778 -== 6.1 Connection problem when uploading firmware == 903 +((( 904 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 905 +))) 779 779 907 +[[image:image-20220606154726-3.png]] 780 780 781 -(% class="wikigeneratedid" %) 909 + 910 +When you use the TTN network, the US915 frequency bands use are: 911 + 912 +* 903.9 - SF7BW125 to SF10BW125 913 +* 904.1 - SF7BW125 to SF10BW125 914 +* 904.3 - SF7BW125 to SF10BW125 915 +* 904.5 - SF7BW125 to SF10BW125 916 +* 904.7 - SF7BW125 to SF10BW125 917 +* 904.9 - SF7BW125 to SF10BW125 918 +* 905.1 - SF7BW125 to SF10BW125 919 +* 905.3 - SF7BW125 to SF10BW125 920 +* 904.6 - SF8BW500 921 + 782 782 ((( 783 - (%style="font-size:14px"%)**Pleasesee:**(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color:rgb(255,255,255);font-size:14px;"]]923 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 784 784 ))) 785 785 926 +(% class="box infomessage" %) 927 +((( 928 +**AT+CHE=2** 929 +))) 786 786 931 +(% class="box infomessage" %) 932 +((( 933 +**ATZ** 934 +))) 787 787 788 -== 6.2 AT Command input doesn't work == 936 +((( 937 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 938 +))) 789 789 790 790 ((( 791 - Inthe case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.941 + 792 792 ))) 793 793 944 +((( 945 +The **AU915** band is similar. Below are the AU915 Uplink Channels. 946 +))) 794 794 948 +[[image:image-20220606154825-4.png]] 795 795 796 -= 7. Order Info = 797 797 798 798 799 - PartNumber**:** (% style="color:#4f81bd"%)**NSE01**952 += 5. Trouble Shooting = 800 800 954 +== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 801 801 956 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 957 + 958 + 959 +== 5.2 AT Command input doesn’t work == 960 + 961 +((( 962 +In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 963 +))) 964 + 965 + 966 +== 5.3 Device rejoin in at the second uplink packet == 967 + 968 +(% style="color:#4f81bd" %)**Issue describe as below:** 969 + 970 +[[image:1654500909990-784.png]] 971 + 972 + 973 +(% style="color:#4f81bd" %)**Cause for this issue:** 974 + 975 +((( 976 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 977 +))) 978 + 979 + 980 +(% style="color:#4f81bd" %)**Solution: ** 981 + 982 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 983 + 984 +[[image:1654500929571-736.png||height="458" width="832"]] 985 + 986 + 987 += 6. Order Info = 988 + 989 + 990 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 991 + 992 + 993 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 994 + 995 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 996 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 997 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 998 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 999 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1000 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1001 +* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1002 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1003 + 1004 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1005 + 1006 +* (% style="color:red" %)**4**(%%): 4000mAh battery 1007 +* (% style="color:red" %)**8**(%%): 8500mAh battery 1008 + 802 802 (% class="wikigeneratedid" %) 803 803 ((( 804 804 805 805 ))) 806 806 807 -= 8.1014 += 7. Packing Info = 808 808 809 809 ((( 810 810 811 811 812 812 (% style="color:#037691" %)**Package Includes**: 1020 +))) 813 813 814 - 815 -* NSE01 NB-IoT Soil Moisture & EC Sensor x 1 816 -* External antenna x 1 1022 +* ((( 1023 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 817 817 ))) 818 818 819 819 ((( ... ... @@ -820,20 +820,30 @@ 820 820 821 821 822 822 (% style="color:#037691" %)**Dimension and weight**: 1030 +))) 823 823 824 - 825 -* Size: 195 x 125 x 55 mm 826 -* Weight: 420g 1032 +* ((( 1033 +Device Size: cm 827 827 ))) 1035 +* ((( 1036 +Device Weight: g 1037 +))) 1038 +* ((( 1039 +Package Size / pcs : cm 1040 +))) 1041 +* ((( 1042 +Weight / pcs : g 828 828 829 -((( 830 - 831 831 832 - 833 833 834 834 ))) 835 835 836 -= 9.1048 += 8. Support = 837 837 838 838 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 839 839 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1052 + 1053 + 1054 +~)~)~) 1055 +~)~)~) 1056 +~)~)~)
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -102.7 KB - Content