<
From version < 64.4 >
edited by Xiaoling
on 2022/07/08 14:44
To version < 45.3 >
edited by Xiaoling
on 2022/07/08 10:24
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -59,6 +59,8 @@
59 59  * Micro SIM card slot for NB-IoT SIM
60 60  * 8500mAh Battery for long term use
61 61  
62 +
63 +
62 62  == 1.3  Specification ==
63 63  
64 64  
... ... @@ -67,6 +67,7 @@
67 67  * Supply Voltage: 2.1v ~~ 3.6v
68 68  * Operating Temperature: -40 ~~ 85°C
69 69  
72 +
70 70  (% style="color:#037691" %)**NB-IoT Spec:**
71 71  
72 72  * - B1 @H-FDD: 2100MHz
... ... @@ -76,6 +76,7 @@
76 76  * - B20 @H-FDD: 800MHz
77 77  * - B28 @H-FDD: 700MHz
78 78  
82 +
79 79  (% style="color:#037691" %)**Probe Specification:**
80 80  
81 81  Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
... ... @@ -120,648 +120,912 @@
120 120  
121 121  
122 122  
123 -== 2.2 ​ Configure the NSE01 ==
127 +== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
124 124  
129 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
125 125  
126 -=== 2.2.1 Test Requirement ===
127 127  
132 +[[image:1654503992078-669.png]]
128 128  
129 -To use NSE01 in your city, make sure meet below requirements:
130 130  
131 -* Your local operator has already distributed a NB-IoT Network there.
132 -* The local NB-IoT network used the band that NSE01 supports.
133 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
135 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
134 134  
137 +
138 +(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
139 +
140 +Each LSE01 is shipped with a sticker with the default device EUI as below:
141 +
142 +[[image:image-20220606163732-6.jpeg]]
143 +
144 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
145 +
146 +**Add APP EUI in the application**
147 +
148 +
149 +[[image:1654504596150-405.png]]
150 +
151 +
152 +
153 +**Add APP KEY and DEV EUI**
154 +
155 +[[image:1654504683289-357.png]]
156 +
157 +
158 +
159 +(% style="color:blue" %)**Step 2**(%%): Power on LSE01
160 +
161 +
162 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
163 +
164 +[[image:image-20220606163915-7.png]]
165 +
166 +
167 +(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
168 +
169 +[[image:1654504778294-788.png]]
170 +
171 +
172 +
173 +== 2.3 Uplink Payload ==
174 +
175 +
176 +=== 2.3.1 MOD~=0(Default Mode) ===
177 +
178 +LSE01 will uplink payload via LoRaWAN with below payload format: 
179 +
135 135  (((
136 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
181 +Uplink payload includes in total 11 bytes.
137 137  )))
138 138  
184 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
185 +|(((
186 +**Size**
139 139  
140 -[[image:1657249419225-449.png]]
188 +**(bytes)**
189 +)))|**2**|**2**|**2**|**2**|**2**|**1**
190 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
191 +Temperature
141 141  
193 +(Reserve, Ignore now)
194 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
195 +MOD & Digital Interrupt
142 142  
197 +(Optional)
198 +)))
143 143  
144 -=== 2.2.2 Insert SIM card ===
200 +=== 2.3.2 MOD~=1(Original value) ===
145 145  
146 -Insert the NB-IoT Card get from your provider.
202 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
147 147  
148 -User need to take out the NB-IoT module and insert the SIM card like below:
204 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
205 +|(((
206 +**Size**
149 149  
208 +**(bytes)**
209 +)))|**2**|**2**|**2**|**2**|**2**|**1**
210 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
211 +Temperature
150 150  
151 -[[image:1657249468462-536.png]]
213 +(Reserve, Ignore now)
214 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
215 +MOD & Digital Interrupt
152 152  
217 +(Optional)
218 +)))
153 153  
220 +=== 2.3.3 Battery Info ===
154 154  
155 -=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
222 +(((
223 +Check the battery voltage for LSE01.
224 +)))
156 156  
157 157  (((
227 +Ex1: 0x0B45 = 2885mV
228 +)))
229 +
158 158  (((
159 -User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
231 +Ex2: 0x0B49 = 2889mV
160 160  )))
233 +
234 +
235 +
236 +=== 2.3.4 Soil Moisture ===
237 +
238 +(((
239 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
161 161  )))
162 162  
242 +(((
243 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
244 +)))
163 163  
164 -**Connection:**
246 +(((
247 +
248 +)))
165 165  
166 - (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
250 +(((
251 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
252 +)))
167 167  
168 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
169 169  
170 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
171 171  
256 +=== 2.3.5 Soil Temperature ===
172 172  
173 -In the PC, use below serial tool settings:
258 +(((
259 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
260 +)))
174 174  
175 -* Baud:  (% style="color:green" %)**9600**
176 -* Data bits:** (% style="color:green" %)8(%%)**
177 -* Stop bits: (% style="color:green" %)**1**
178 -* Parity:  (% style="color:green" %)**None**
179 -* Flow Control: (% style="color:green" %)**None**
262 +(((
263 +**Example**:
264 +)))
180 180  
181 181  (((
182 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
267 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
183 183  )))
184 184  
185 -[[image:image-20220708110657-3.png]]
270 +(((
271 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
272 +)))
186 186  
187 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
188 188  
189 189  
276 +=== 2.3.6 Soil Conductivity (EC) ===
190 190  
191 -=== 2.2.4 Use CoAP protocol to uplink data ===
278 +(((
279 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
280 +)))
192 192  
193 -(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
282 +(((
283 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
284 +)))
194 194  
286 +(((
287 +Generally, the EC value of irrigation water is less than 800uS / cm.
288 +)))
195 195  
196 -**Use below commands:**
290 +(((
291 +
292 +)))
197 197  
198 -* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
199 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
200 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
294 +(((
295 +
296 +)))
201 201  
202 -For parameter description, please refer to AT command set
298 +=== 2.3.7 MOD ===
203 203  
204 -[[image:1657249793983-486.png]]
300 +Firmware version at least v2.1 supports changing mode.
205 205  
302 +For example, bytes[10]=90
206 206  
207 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
304 +mod=(bytes[10]>>7)&0x01=1.
208 208  
209 -[[image:1657249831934-534.png]]
210 210  
307 +**Downlink Command:**
211 211  
309 +If payload = 0x0A00, workmode=0
212 212  
213 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
311 +If** **payload =** **0x0A01, workmode=1
214 214  
215 -This feature is supported since firmware version v1.0.1
216 216  
217 217  
218 -* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
219 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
220 -* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
315 +=== 2.3.8 ​Decode payload in The Things Network ===
221 221  
222 -[[image:1657249864775-321.png]]
317 +While using TTN network, you can add the payload format to decode the payload.
223 223  
224 224  
225 -[[image:1657249930215-289.png]]
320 +[[image:1654505570700-128.png]]
226 226  
322 +(((
323 +The payload decoder function for TTN is here:
324 +)))
227 227  
326 +(((
327 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
328 +)))
228 228  
229 -=== 2.2.6 Use MQTT protocol to uplink data ===
230 230  
231 -This feature is supported since firmware version v110
331 +== 2.4 Uplink Interval ==
232 232  
333 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
233 233  
234 -* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
235 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
236 -* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
237 -* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
238 -* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
239 -* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
240 -* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
241 241  
242 -[[image:1657249978444-674.png]]
243 243  
337 +== 2.5 Downlink Payload ==
244 244  
245 -[[image:1657249990869-686.png]]
339 +By default, LSE50 prints the downlink payload to console port.
246 246  
341 +[[image:image-20220606165544-8.png]]
247 247  
343 +
248 248  (((
249 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
345 +(% style="color:blue" %)**Examples:**
250 250  )))
251 251  
348 +(((
349 +
350 +)))
252 252  
352 +* (((
353 +(% style="color:blue" %)**Set TDC**
354 +)))
253 253  
254 -=== 2.2.7 Use TCP protocol to uplink data ===
356 +(((
357 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
358 +)))
255 255  
256 -This feature is supported since firmware version v110
360 +(((
361 +Payload:    01 00 00 1E    TDC=30S
362 +)))
257 257  
364 +(((
365 +Payload:    01 00 00 3C    TDC=60S
366 +)))
258 258  
259 -* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
260 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
368 +(((
369 +
370 +)))
261 261  
262 -[[image:1657250217799-140.png]]
372 +* (((
373 +(% style="color:blue" %)**Reset**
374 +)))
263 263  
376 +(((
377 +If payload = 0x04FF, it will reset the LSE01
378 +)))
264 264  
265 -[[image:1657250255956-604.png]]
266 266  
381 +* (% style="color:blue" %)**CFM**
267 267  
383 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
268 268  
269 -=== 2.2.8 Change Update Interval ===
270 270  
271 -User can use below command to change the (% style="color:green" %)**uplink interval**.
272 272  
273 -* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
387 +== 2.6 Show Data in DataCake IoT Server ==
274 274  
275 275  (((
276 -(% style="color:red" %)**NOTE:**
390 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
277 277  )))
278 278  
279 279  (((
280 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
394 +
281 281  )))
282 282  
397 +(((
398 +(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
399 +)))
283 283  
401 +(((
402 +(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
403 +)))
284 284  
285 -== 2.3  Uplink Payload ==
286 286  
287 -In this mode, uplink payload includes in total 18 bytes
406 +[[image:1654505857935-743.png]]
288 288  
289 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
290 -|=(% style="width: 50px;" %)(((
291 -**Size(bytes)**
292 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
293 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]]
294 294  
295 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
409 +[[image:1654505874829-548.png]]
296 296  
297 297  
298 -[[image:image-20220708111918-4.png]]
412 +(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
299 299  
414 +(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
300 300  
301 -The payload is ASCII string, representative same HEX:
302 302  
303 -0x72403155615900640c7817075e0a8c02f900 where:
417 +[[image:1654505905236-553.png]]
304 304  
305 -* Device ID: 0x 724031556159 = 724031556159
306 -* Version: 0x0064=100=1.0.0
307 307  
308 -* BAT: 0x0c78 = 3192 mV = 3.192V
309 -* Singal: 0x17 = 23
310 -* Soil Moisture: 0x075e= 1886 = 18.86  %
311 -* Soil Temperature:0x0a8c =2700=27 °C
312 -* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
313 -* Interrupt: 0x00 = 0
420 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
314 314  
315 -== 2.4  Payload Explanation and Sensor Interface ==
422 +[[image:1654505925508-181.png]]
316 316  
317 317  
318 -=== 2.4.1  Device ID ===
319 319  
320 -By default, the Device ID equal to the last 6 bytes of IMEI.
426 +== 2.7 Frequency Plans ==
321 321  
322 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
428 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
323 323  
324 -**Example:**
325 325  
326 -AT+DEUI=A84041F15612
431 +=== 2.7.1 EU863-870 (EU868) ===
327 327  
328 -The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
433 +(% style="color:#037691" %)** Uplink:**
329 329  
435 +868.1 - SF7BW125 to SF12BW125
330 330  
437 +868.3 - SF7BW125 to SF12BW125 and SF7BW250
331 331  
332 -=== 2.4.2  Version Info ===
439 +868.5 - SF7BW125 to SF12BW125
333 333  
334 -Specify the software version: 0x64=100, means firmware version 1.00.
441 +867.1 - SF7BW125 to SF12BW125
335 335  
336 -For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
443 +867.3 - SF7BW125 to SF12BW125
337 337  
445 +867.5 - SF7BW125 to SF12BW125
338 338  
447 +867.7 - SF7BW125 to SF12BW125
339 339  
340 -=== 2.4.3  Battery Info ===
449 +867.9 - SF7BW125 to SF12BW125
341 341  
342 -(((
343 -Check the battery voltage for LSE01.
344 -)))
451 +868.8 - FSK
345 345  
346 -(((
347 -Ex1: 0x0B45 = 2885mV
348 -)))
349 349  
350 -(((
351 -Ex2: 0x0B49 = 2889mV
352 -)))
454 +(% style="color:#037691" %)** Downlink:**
353 353  
456 +Uplink channels 1-9 (RX1)
354 354  
458 +869.525 - SF9BW125 (RX2 downlink only)
355 355  
356 -=== 2.4.4  Signal Strength ===
357 357  
358 -NB-IoT Network signal Strength.
359 359  
360 -**Ex1: 0x1d = 29**
462 +=== 2.7.2 US902-928(US915) ===
361 361  
362 -(% style="color:blue" %)**0**(%%)  -113dBm or less
464 +Used in USA, Canada and South America. Default use CHE=2
363 363  
364 -(% style="color:blue" %)**1**(%%)  -111dBm
466 +(% style="color:#037691" %)**Uplink:**
365 365  
366 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
468 +903.9 - SF7BW125 to SF10BW125
367 367  
368 -(% style="color:blue" %)**31**  (%%) -51dBm or greater
470 +904.1 - SF7BW125 to SF10BW125
369 369  
370 -(% style="color:blue" %)**99**   (%%) Not known or not detectable
472 +904.3 - SF7BW125 to SF10BW125
371 371  
474 +904.5 - SF7BW125 to SF10BW125
372 372  
476 +904.7 - SF7BW125 to SF10BW125
373 373  
374 -=== 2.4. Soil Moisture ===
478 +904.9 - SF7BW125 to SF10BW125
375 375  
376 -(((
377 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
378 -)))
480 +905.1 - SF7BW125 to SF10BW125
379 379  
380 -(((
381 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
382 -)))
482 +905.3 - SF7BW125 to SF10BW125
383 383  
384 -(((
385 -
386 -)))
387 387  
388 -(((
389 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
390 -)))
485 +(% style="color:#037691" %)**Downlink:**
391 391  
487 +923.3 - SF7BW500 to SF12BW500
392 392  
489 +923.9 - SF7BW500 to SF12BW500
393 393  
394 -=== 2.4. Soil Temperature ===
491 +924.5 - SF7BW500 to SF12BW500
395 395  
396 -(((
397 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
398 -)))
493 +925.1 - SF7BW500 to SF12BW500
399 399  
400 -(((
401 -**Example**:
402 -)))
495 +925.7 - SF7BW500 to SF12BW500
403 403  
404 -(((
405 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
406 -)))
497 +926.3 - SF7BW500 to SF12BW500
407 407  
408 -(((
409 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
410 -)))
499 +926.9 - SF7BW500 to SF12BW500
411 411  
501 +927.5 - SF7BW500 to SF12BW500
412 412  
503 +923.3 - SF12BW500(RX2 downlink only)
413 413  
414 -=== 2.4.7  Soil Conductivity (EC) ===
415 415  
416 -(((
417 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
418 -)))
419 419  
420 -(((
421 -For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
422 -)))
507 +=== 2.7.3 CN470-510 (CN470) ===
423 423  
424 -(((
425 -Generally, the EC value of irrigation water is less than 800uS / cm.
426 -)))
509 +Used in China, Default use CHE=1
427 427  
428 -(((
429 -
430 -)))
511 +(% style="color:#037691" %)**Uplink:**
431 431  
432 -(((
433 -
434 -)))
513 +486.3 - SF7BW125 to SF12BW125
435 435  
436 -=== 2.4.8  Digital Interrupt ===
515 +486.5 - SF7BW125 to SF12BW125
437 437  
438 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
517 +486.7 - SF7BW125 to SF12BW125
439 439  
440 -The command is:
519 +486.9 - SF7BW125 to SF12BW125
441 441  
442 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
521 +487.1 - SF7BW125 to SF12BW125
443 443  
523 +487.3 - SF7BW125 to SF12BW125
444 444  
445 -The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up.
525 +487.5 - SF7BW125 to SF12BW125
446 446  
527 +487.7 - SF7BW125 to SF12BW125
447 447  
448 -Example:
449 449  
450 -0x(00): Normal uplink packet.
530 +(% style="color:#037691" %)**Downlink:**
451 451  
452 -0x(01): Interrupt Uplink Packet.
532 +506.7 - SF7BW125 to SF12BW125
453 453  
534 +506.9 - SF7BW125 to SF12BW125
454 454  
536 +507.1 - SF7BW125 to SF12BW125
455 455  
456 -=== 2.4.9  ​+5V Output ===
538 +507.3 - SF7BW125 to SF12BW125
457 457  
458 -NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
540 +507.5 - SF7BW125 to SF12BW125
459 459  
542 +507.7 - SF7BW125 to SF12BW125
460 460  
461 -The 5V output time can be controlled by AT Command.
544 +507.9 - SF7BW125 to SF12BW125
462 462  
463 -(% style="color:blue" %)**AT+5VT=1000**
546 +508.1 - SF7BW125 to SF12BW125
464 464  
465 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
548 +505.3 - SF12BW125 (RX2 downlink only)
466 466  
467 467  
468 468  
469 -== 2.5  Downlink Payload ==
552 +=== 2.7.4 AU915-928(AU915) ===
470 470  
471 -By default, NSE01 prints the downlink payload to console port.
554 +Default use CHE=2
472 472  
473 -[[image:image-20220708133731-5.png]]
556 +(% style="color:#037691" %)**Uplink:**
474 474  
558 +916.8 - SF7BW125 to SF12BW125
475 475  
476 -(((
477 -(% style="color:blue" %)**Examples:**
478 -)))
560 +917.0 - SF7BW125 to SF12BW125
479 479  
480 -(((
481 -
482 -)))
562 +917.2 - SF7BW125 to SF12BW125
483 483  
484 -* (((
485 -(% style="color:blue" %)**Set TDC**
486 -)))
564 +917.4 - SF7BW125 to SF12BW125
487 487  
488 -(((
489 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
490 -)))
566 +917.6 - SF7BW125 to SF12BW125
491 491  
492 -(((
493 -Payload:    01 00 00 1E    TDC=30S
494 -)))
568 +917.8 - SF7BW125 to SF12BW125
495 495  
496 -(((
497 -Payload:    01 00 00 3C    TDC=60S
498 -)))
570 +918.0 - SF7BW125 to SF12BW125
499 499  
500 -(((
501 -
502 -)))
572 +918.2 - SF7BW125 to SF12BW125
503 503  
504 -* (((
505 -(% style="color:blue" %)**Reset**
506 -)))
507 507  
508 -(((
509 -If payload = 0x04FF, it will reset the NSE01
510 -)))
575 +(% style="color:#037691" %)**Downlink:**
511 511  
577 +923.3 - SF7BW500 to SF12BW500
512 512  
513 -* (% style="color:blue" %)**INTMOD**
579 +923.9 - SF7BW500 to SF12BW500
514 514  
515 -Downlink Payload: 06000003, Set AT+INTMOD=3
581 +924.5 - SF7BW500 to SF12BW500
516 516  
583 +925.1 - SF7BW500 to SF12BW500
517 517  
585 +925.7 - SF7BW500 to SF12BW500
518 518  
519 -== 2.6  ​LED Indicator ==
587 +926.3 - SF7BW500 to SF12BW500
520 520  
521 -(((
522 -The NSE01 has an internal LED which is to show the status of different state.
589 +926.9 - SF7BW500 to SF12BW500
523 523  
591 +927.5 - SF7BW500 to SF12BW500
524 524  
525 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
526 -* Then the LED will be on for 1 second means device is boot normally.
527 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
528 -* For each uplink probe, LED will be on for 500ms.
529 -)))
593 +923.3 - SF12BW500(RX2 downlink only)
530 530  
531 531  
532 532  
597 +=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
533 533  
534 -== 2.7  Installation in Soil ==
599 +(% style="color:#037691" %)**Default Uplink channel:**
535 535  
536 -__**Measurement the soil surface**__
601 +923.2 - SF7BW125 to SF10BW125
537 537  
538 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
603 +923.4 - SF7BW125 to SF10BW125
539 539  
540 -[[image:1657259653666-883.png]] ​
541 541  
606 +(% style="color:#037691" %)**Additional Uplink Channel**:
542 542  
543 -(((
544 -
608 +(OTAA mode, channel added by JoinAccept message)
545 545  
546 -(((
547 -Dig a hole with diameter > 20CM.
548 -)))
610 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
549 549  
550 -(((
551 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
552 -)))
553 -)))
612 +922.2 - SF7BW125 to SF10BW125
554 554  
555 -[[image:1654506665940-119.png]]
614 +922.4 - SF7BW125 to SF10BW125
556 556  
557 -(((
558 -
559 -)))
616 +922.6 - SF7BW125 to SF10BW125
560 560  
618 +922.8 - SF7BW125 to SF10BW125
561 561  
562 -== 2. Firmware Change Log ==
620 +923.0 - SF7BW125 to SF10BW125
563 563  
622 +922.0 - SF7BW125 to SF10BW125
564 564  
565 -Download URL & Firmware Change log
566 566  
567 -[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
625 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
568 568  
627 +923.6 - SF7BW125 to SF10BW125
569 569  
570 -Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]]
629 +923.8 - SF7BW125 to SF10BW125
571 571  
631 +924.0 - SF7BW125 to SF10BW125
572 572  
633 +924.2 - SF7BW125 to SF10BW125
573 573  
574 -== 2. Battery Analysis ==
635 +924.4 - SF7BW125 to SF10BW125
575 575  
576 -=== 2.9.1  Battery Type ===
637 +924.6 - SF7BW125 to SF10BW125
577 577  
578 578  
579 -The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
640 +(% style="color:#037691" %)** Downlink:**
580 580  
642 +Uplink channels 1-8 (RX1)
581 581  
582 -The battery is designed to last for several years depends on the actually use environment and update interval. 
644 +923.2 - SF10BW125 (RX2)
583 583  
584 584  
585 -The battery related documents as below:
586 586  
587 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
588 -* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
589 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
648 +=== 2.7.6 KR920-923 (KR920) ===
590 590  
650 +Default channel:
651 +
652 +922.1 - SF7BW125 to SF12BW125
653 +
654 +922.3 - SF7BW125 to SF12BW125
655 +
656 +922.5 - SF7BW125 to SF12BW125
657 +
658 +
659 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
660 +
661 +922.1 - SF7BW125 to SF12BW125
662 +
663 +922.3 - SF7BW125 to SF12BW125
664 +
665 +922.5 - SF7BW125 to SF12BW125
666 +
667 +922.7 - SF7BW125 to SF12BW125
668 +
669 +922.9 - SF7BW125 to SF12BW125
670 +
671 +923.1 - SF7BW125 to SF12BW125
672 +
673 +923.3 - SF7BW125 to SF12BW125
674 +
675 +
676 +(% style="color:#037691" %)**Downlink:**
677 +
678 +Uplink channels 1-7(RX1)
679 +
680 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
681 +
682 +
683 +
684 +=== 2.7.7 IN865-867 (IN865) ===
685 +
686 +(% style="color:#037691" %)** Uplink:**
687 +
688 +865.0625 - SF7BW125 to SF12BW125
689 +
690 +865.4025 - SF7BW125 to SF12BW125
691 +
692 +865.9850 - SF7BW125 to SF12BW125
693 +
694 +
695 +(% style="color:#037691" %) **Downlink:**
696 +
697 +Uplink channels 1-3 (RX1)
698 +
699 +866.550 - SF10BW125 (RX2)
700 +
701 +
702 +
703 +
704 +== 2.8 LED Indicator ==
705 +
706 +The LSE01 has an internal LED which is to show the status of different state.
707 +
708 +* Blink once when device power on.
709 +* Solid ON for 5 seconds once device successful Join the network.
710 +* Blink once when device transmit a packet.
711 +
712 +== 2.9 Installation in Soil ==
713 +
714 +**Measurement the soil surface**
715 +
716 +
717 +[[image:1654506634463-199.png]] ​
718 +
591 591  (((
592 -[[image:image-20220708140453-6.png]]
720 +(((
721 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
593 593  )))
723 +)))
594 594  
595 595  
596 596  
597 -=== 2.9.2  Power consumption Analyze ===
727 +[[image:1654506665940-119.png]]
598 598  
599 599  (((
600 -Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
730 +Dig a hole with diameter > 20CM.
601 601  )))
602 602  
733 +(((
734 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
735 +)))
603 603  
737 +
738 +== 2.10 ​Firmware Change Log ==
739 +
604 604  (((
605 -Instruction to use as below:
741 +**Firmware download link:**
606 606  )))
607 607  
608 608  (((
609 -(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
745 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
610 610  )))
611 611  
748 +(((
749 +
750 +)))
612 612  
613 613  (((
614 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose
753 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
615 615  )))
616 616  
617 -* (((
618 -Product Model
756 +(((
757 +
619 619  )))
620 -* (((
621 -Uplink Interval
759 +
760 +(((
761 +**V1.0.**
622 622  )))
623 -* (((
624 -Working Mode
625 -)))
626 626  
627 627  (((
628 -And the Life expectation in difference case will be shown on the right.
765 +Release
629 629  )))
630 630  
631 -[[image:image-20220708141352-7.jpeg]]
632 632  
769 +== 2.11 ​Battery Analysis ==
633 633  
771 +=== 2.11.1 ​Battery Type ===
634 634  
635 -=== 2.9.3  ​Battery Note ===
773 +(((
774 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
775 +)))
636 636  
637 637  (((
638 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
778 +The battery is designed to last for more than 5 years for the LSN50.
639 639  )))
640 640  
781 +(((
782 +(((
783 +The battery-related documents are as below:
784 +)))
785 +)))
641 641  
787 +* (((
788 +[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
789 +)))
790 +* (((
791 +[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
792 +)))
793 +* (((
794 +[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
795 +)))
642 642  
643 -=== 2.9.4  Replace the battery ===
797 + [[image:image-20220610172436-1.png]]
644 644  
799 +
800 +
801 +=== 2.11.2 ​Battery Note ===
802 +
645 645  (((
646 -The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
804 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
647 647  )))
648 648  
649 649  
650 650  
651 -= 3. ​ Access NB-IoT Module =
809 +=== 2.11.3 Replace the battery ===
652 652  
653 653  (((
654 -Users can directly access the AT command set of the NB-IoT module.
812 +If Battery is lower than 2.7v, user should replace the battery of LSE01.
655 655  )))
656 656  
657 657  (((
658 -The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
816 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
659 659  )))
660 660  
661 -[[image:1657261278785-153.png]]
819 +(((
820 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
821 +)))
662 662  
663 663  
664 664  
665 -= 4.  Using the AT Commands =
825 += 3. Using the AT Commands =
666 666  
667 -== 4.1  Access AT Commands ==
827 +== 3.1 Access AT Commands ==
668 668  
669 -See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
670 670  
830 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
671 671  
672 -AT+<CMD>?  : Help on <CMD>
832 +[[image:1654501986557-872.png||height="391" width="800"]]
673 673  
674 -AT+<CMD>         : Run <CMD>
675 675  
676 -AT+<CMD>=<value> : Set the value
835 +Or if you have below board, use below connection:
677 677  
678 -AT+<CMD>=?  : Get the value
679 679  
838 +[[image:1654502005655-729.png||height="503" width="801"]]
680 680  
840 +
841 +
842 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
843 +
844 +
845 + [[image:1654502050864-459.png||height="564" width="806"]]
846 +
847 +
848 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
849 +
850 +
851 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
852 +
853 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
854 +
855 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
856 +
857 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
858 +
859 +
681 681  (% style="color:#037691" %)**General Commands**(%%)      
682 682  
683 -AT  : Attention       
862 +(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
684 684  
685 -AT?  : Short Help     
864 +(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
686 686  
687 -ATZ  : MCU Reset    
866 +(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
688 688  
689 -AT+TDC  : Application Data Transmission Interval
868 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
690 690  
691 -AT+CFG  : Print all configurations
692 692  
693 -AT+CFGMOD           : Working mode selection
871 +(% style="color:#037691" %)**Keys, IDs and EUIs management**
694 694  
695 -AT+INTMOD            : Set the trigger interrupt mode
873 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
696 696  
697 -AT+5VT  : Set extend the time of 5V power  
875 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
698 698  
699 -AT+PRO  : Choose agreement
877 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
700 700  
701 -AT+WEIGRE  : Get weight or set weight to 0
879 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
702 702  
703 -AT+WEIGAP  : Get or Set the GapValue of weight
881 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
704 704  
705 -AT+RXDL  : Extend the sending and receiving time
883 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
706 706  
707 -AT+CNTFAC  : Get or set counting parameters
885 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
708 708  
709 -AT+SERVADDR  : Server Address
887 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
710 710  
889 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
711 711  
712 -(% style="color:#037691" %)**COAP Management**      
891 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
713 713  
714 -AT+URI            : Resource parameters
893 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
715 715  
895 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
716 716  
717 -(% style="color:#037691" %)**UDP Management**
897 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
718 718  
719 -AT+CFM          : Upload confirmation mode (only valid for UDP)
899 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
720 720  
901 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
721 721  
722 -(% style="color:#037691" %)**MQTT Management**
903 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
723 723  
724 -AT+CLIENT               : Get or Set MQTT client
725 725  
726 -AT+UNAME  : Get or Set MQTT Username
906 +(% style="color:#037691" %)**LoRa Network Management**
727 727  
728 -AT+PWD                  : Get or Set MQTT password
908 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
729 729  
730 -AT+PUBTOPI : Get or Set MQTT publish topic
910 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
731 731  
732 -AT+SUBTOPIC  : Get or Set MQTT subscription topic
912 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
733 733  
914 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
734 734  
735 -(% style="color:#037691" %)**Information**          
916 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
736 736  
737 -AT+FDR  : Factory Data Reset
918 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
738 738  
739 -AT+PWOR : Serial Access Password
920 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
740 740  
922 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
741 741  
924 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
742 742  
743 -= ​5.  FAQ =
926 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
744 744  
745 -== 5.1 How to Upgrade Firmware ==
928 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
746 746  
930 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
747 747  
932 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
933 +
934 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
935 +
936 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
937 +
938 +
939 +(% style="color:#037691" %)**Information** 
940 +
941 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
942 +
943 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
944 +
945 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
946 +
947 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
948 +
949 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
950 +
951 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
952 +
953 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
954 +
955 +
956 += ​4. FAQ =
957 +
958 +== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
959 +
748 748  (((
749 -User can upgrade the firmware for 1) bug fix, 2) new feature release.
961 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
962 +When downloading the images, choose the required image file for download. ​
750 750  )))
751 751  
752 752  (((
753 -Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
966 +
754 754  )))
755 755  
756 756  (((
757 -Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
970 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
758 758  )))
759 759  
973 +(((
974 +
975 +)))
760 760  
761 761  (((
978 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
979 +)))
980 +
981 +(((
762 762  
763 763  )))
764 764  
985 +(((
986 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
987 +)))
988 +
989 +[[image:image-20220606154726-3.png]]
990 +
991 +
992 +When you use the TTN network, the US915 frequency bands use are:
993 +
994 +* 903.9 - SF7BW125 to SF10BW125
995 +* 904.1 - SF7BW125 to SF10BW125
996 +* 904.3 - SF7BW125 to SF10BW125
997 +* 904.5 - SF7BW125 to SF10BW125
998 +* 904.7 - SF7BW125 to SF10BW125
999 +* 904.9 - SF7BW125 to SF10BW125
1000 +* 905.1 - SF7BW125 to SF10BW125
1001 +* 905.3 - SF7BW125 to SF10BW125
1002 +* 904.6 - SF8BW500
1003 +
1004 +(((
1005 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
1006 +
1007 +* (% style="color:#037691" %)**AT+CHE=2**
1008 +* (% style="color:#037691" %)**ATZ**
1009 +)))
1010 +
1011 +(((
1012 +
1013 +
1014 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
1015 +)))
1016 +
1017 +(((
1018 +
1019 +)))
1020 +
1021 +(((
1022 +The **AU915** band is similar. Below are the AU915 Uplink Channels.
1023 +)))
1024 +
1025 +[[image:image-20220606154825-4.png]]
1026 +
1027 +
1028 +== 4.2 ​Can I calibrate LSE01 to different soil types? ==
1029 +
1030 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1031 +
1032 +
765 765  = 5. Trouble Shooting =
766 766  
767 767  == 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
1657249419225-449.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -102.7 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0