Changes for page NDDS75 -- NB-IoT Distance Detect Sensor User Manual
Last modified by Bei Jinggeng on 2024/05/31 09:53
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 24 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - NSE01NB-IoTSoil Moisture & EC Sensor User Manual1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -3,7 +3,9 @@ 3 3 4 4 5 5 6 +**Contents:** 6 6 8 +{{toc/}} 7 7 8 8 9 9 ... ... @@ -10,769 +10,1004 @@ 10 10 11 11 12 12 15 += 1. Introduction = 13 13 14 - **TableofContents:**17 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 15 15 19 +((( 20 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 21 +))) 16 16 23 +((( 24 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 25 +))) 17 17 27 +((( 28 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 29 +))) 18 18 19 - 20 - 21 -= 1. Introduction = 22 - 23 -== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 24 - 25 25 ((( 26 - 32 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 33 +))) 27 27 28 -Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 29 - 30 -It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 31 - 32 -The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 33 - 34 -NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years. 35 - 36 - 35 +((( 36 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 37 37 ))) 38 38 39 + 39 39 [[image:1654503236291-817.png]] 40 40 41 41 42 -[[image:165 7245163077-232.png]]43 +[[image:1654503265560-120.png]] 43 43 44 44 45 45 46 46 == 1.2 Features == 47 47 48 - 49 -* NB-IoTBands: B1/B3/B8/B5/B20/B28 @H-FDD49 +* LoRaWAN 1.0.3 Class A 50 +* Ultra low power consumption 50 50 * Monitor Soil Moisture 51 51 * Monitor Soil Temperature 52 52 * Monitor Soil Conductivity 54 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 53 53 * AT Commands to change parameters 54 54 * Uplink on periodically 55 55 * Downlink to change configure 56 56 * IP66 Waterproof Enclosure 57 -* Ultra-Low Power consumption 58 -* AT Commands to change parameters 59 -* Micro SIM card slot for NB-IoT SIM 60 -* 8500mAh Battery for long term use 59 +* 4000mAh or 8500mAh Battery for long term use 61 61 62 -== 1.3 61 +== 1.3 Specification == 63 63 63 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 64 64 65 - (% style="color:#037691" %)**CommonDC Characteristics:**65 +[[image:image-20220606162220-5.png]] 66 66 67 -* Supply Voltage: 2.1v ~~ 3.6v 68 -* Operating Temperature: -40 ~~ 85°C 69 69 70 -(% style="color:#037691" %)**NB-IoT Spec:** 71 71 72 -* - B1 @H-FDD: 2100MHz 73 -* - B3 @H-FDD: 1800MHz 74 -* - B8 @H-FDD: 900MHz 75 -* - B5 @H-FDD: 850MHz 76 -* - B20 @H-FDD: 800MHz 77 -* - B28 @H-FDD: 700MHz 69 +== 1.4 Applications == 78 78 79 - (%style="color:#037691"%)**Probe Specification:**71 +* Smart Agriculture 80 80 81 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 73 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 74 + 82 82 83 - [[image:image-20220708101224-1.png]]76 +== 1.5 Firmware Change log == 84 84 85 85 79 +**LSE01 v1.0 :** Release 86 86 87 -== 1.4 Applications == 88 88 89 -* Smart Agriculture 90 90 91 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 92 - 83 += 2. Configure LSE01 to connect to LoRaWAN network = 93 93 94 -== 1.5PinDefinitions ==85 +== 2.1 How it works == 95 95 87 +((( 88 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 89 +))) 96 96 97 -[[image:1657246476176-652.png]] 91 +((( 92 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 93 +))) 98 98 99 99 100 100 101 -= 2. UseNSE01to communicatewithIoTServer =97 +== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 102 102 103 - ==2.1How it works==99 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 104 104 105 105 102 +[[image:1654503992078-669.png]] 103 + 104 + 105 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 106 + 107 + 108 +**Step 1**: Create a device in TTN with the OTAA keys from LSE01. 109 + 110 +Each LSE01 is shipped with a sticker with the default device EUI as below: 111 + 112 +[[image:image-20220606163732-6.jpeg]] 113 + 114 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 115 + 116 +**Add APP EUI in the application** 117 + 118 + 119 +[[image:1654504596150-405.png]] 120 + 121 + 122 + 123 +**Add APP KEY and DEV EUI** 124 + 125 +[[image:1654504683289-357.png]] 126 + 127 + 128 + 129 +**Step 2**: Power on LSE01 130 + 131 + 132 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 133 + 134 +[[image:image-20220606163915-7.png]] 135 + 136 + 137 +**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 138 + 139 +[[image:1654504778294-788.png]] 140 + 141 + 142 + 143 +== 2.3 Uplink Payload == 144 + 145 +(% class="wikigeneratedid" %) 146 +=== === 147 + 148 +=== 2.3.1 MOD~=0(Default Mode) === 149 + 150 +LSE01 will uplink payload via LoRaWAN with below payload format: 151 + 106 106 ((( 107 - The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware inNSE01 will get environment data from sensors and send the value to local NB-IoT networkviathe NB-IoT module. The NB-IoT network will forwardthis valueto IoTserverviathe protocoldefinedbyNSE01.153 +Uplink payload includes in total 11 bytes. 108 108 ))) 109 109 156 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 157 +|((( 158 +**Size** 110 110 160 +**(bytes)** 161 +)))|**2**|**2**|**2**|**2**|**2**|**1** 162 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 163 +Temperature 164 + 165 +(Reserve, Ignore now) 166 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 167 +MOD & Digital Interrupt 168 + 169 +(Optional) 170 +))) 171 + 172 + 173 + 174 +=== 2.3.2 MOD~=1(Original value) === 175 + 176 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 177 + 178 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 179 +|((( 180 +**Size** 181 + 182 +**(bytes)** 183 +)))|**2**|**2**|**2**|**2**|**2**|**1** 184 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 185 +Temperature 186 + 187 +(Reserve, Ignore now) 188 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 189 +MOD & Digital Interrupt 190 + 191 +(Optional) 192 +))) 193 + 194 + 195 + 196 +=== 2.3.3 Battery Info === 197 + 111 111 ((( 112 - Thediagram below showstheworkingflow in defaultfirmwareofNSE01:199 +Check the battery voltage for LSE01. 113 113 ))) 114 114 115 -[[image:image-20220708101605-2.png]] 202 +((( 203 +Ex1: 0x0B45 = 2885mV 204 +))) 116 116 117 117 ((( 207 +Ex2: 0x0B49 = 2889mV 208 +))) 209 + 210 + 211 + 212 +=== 2.3.4 Soil Moisture === 213 + 214 +((( 215 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 216 +))) 217 + 218 +((( 219 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 220 +))) 221 + 222 +((( 118 118 119 119 ))) 120 120 226 +((( 227 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 228 +))) 121 121 122 122 123 -== 2.2 Configure the NSE01 == 124 124 232 +=== 2.3.5 Soil Temperature === 125 125 126 -=== 2.2.1 Test Requirement === 234 +((( 235 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 236 +))) 127 127 238 +((( 239 +**Example**: 240 +))) 128 128 129 -To use NSE01 in your city, make sure meet below requirements: 242 +((( 243 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 244 +))) 130 130 131 - * Your local operator has already distributed a NB-IoT Network there.132 - *ThelocalNB-IoTnetworkusedthebandthatNSE01supports.133 - * Your operator is able to distribute the data received in their NB-IoT network to your IoT server.246 +((( 247 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 248 +))) 134 134 250 + 251 + 252 +=== 2.3.6 Soil Conductivity (EC) === 253 + 135 135 ((( 136 - Below figureshows our testingstructure.Here we have NB-IoTnetwork coverage by ChinaMobile, the bandthey useis B8. The NSE01 willuse CoAP((% style="color:red" %)120.24.4.116:5683)(%%)orrawUDP((%style="color:red" %)120.24.4.116:5601)(%%) orMQTT((% style="color:red" %)120.24.4.116:1883)(%%)orTCP((%style="color:red"%)120.24.4.116:5600)(%%)protocoltosenddatato thetest server255 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 137 137 ))) 138 138 258 +((( 259 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 260 +))) 139 139 140 -[[image:1657249419225-449.png]] 262 +((( 263 +Generally, the EC value of irrigation water is less than 800uS / cm. 264 +))) 141 141 266 +((( 267 + 268 +))) 142 142 270 +((( 271 + 272 +))) 143 143 144 -=== 2. 2.2Insert SIMcard===274 +=== 2.3.7 MOD === 145 145 146 - Insert theNB-IoTCardgetfromyourprovider.276 +Firmware version at least v2.1 supports changing mode. 147 147 148 - Userneed to take out the NB-IoTmoduleand inserttheSIM card like below:278 +For example, bytes[10]=90 149 149 280 +mod=(bytes[10]>>7)&0x01=1. 150 150 151 -[[image:1657249468462-536.png]] 152 152 283 +**Downlink Command:** 153 153 285 +If payload = 0x0A00, workmode=0 154 154 155 - ===2.2.3 ConnectUSB– TTL to NSE01toconfigureit===287 +If** **payload =** **0x0A01, workmode=1 156 156 289 + 290 + 291 +=== 2.3.8 Decode payload in The Things Network === 292 + 293 +While using TTN network, you can add the payload format to decode the payload. 294 + 295 + 296 +[[image:1654505570700-128.png]] 297 + 157 157 ((( 299 +The payload decoder function for TTN is here: 300 +))) 301 + 158 158 ((( 159 - User need to configure NSE01viaserialportto set the (% style="color:blue"%)**Server Address** / **Uplink Topic** (%%)toefinewhereandhow-to uplink packets. NSE01support AT Commands, usercan use a USB toTTL adapterct tond use AT Commands toconfigureit, as below.303 +LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 160 160 ))) 161 -))) 162 162 163 163 164 -**Connection:** 165 165 166 - (%style="background-color:yellow"%)USB TTL GND <~-~-~-~-> GND308 +== 2.4 Uplink Interval == 167 167 168 - (%style="background-color:yellow"%)USBTTLTXD<~-~-~-~->UART_RXD310 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 169 169 170 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 171 171 172 172 173 - InthePC, use belowserialtoolsettings:314 +== 2.5 Downlink Payload == 174 174 175 -* Baud: (% style="color:green" %)**9600** 176 -* Data bits:** (% style="color:green" %)8(%%)** 177 -* Stop bits: (% style="color:green" %)**1** 178 -* Parity: (% style="color:green" %)**None** 179 -* Flow Control: (% style="color:green" %)**None** 316 +By default, LSE50 prints the downlink payload to console port. 180 180 318 +[[image:image-20220606165544-8.png]] 319 + 320 + 181 181 ((( 182 - Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on asbelow, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.322 +**Examples:** 183 183 ))) 184 184 185 -[[image:image-20220708110657-3.png]] 325 +((( 326 + 327 +))) 186 186 187 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 329 +* ((( 330 +**Set TDC** 331 +))) 188 188 333 +((( 334 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 335 +))) 189 189 337 +((( 338 +Payload: 01 00 00 1E TDC=30S 339 +))) 190 190 191 -=== 2.2.4 Use CoAP protocol to uplink data === 341 +((( 342 +Payload: 01 00 00 3C TDC=60S 343 +))) 192 192 193 -(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 345 +((( 346 + 347 +))) 194 194 349 +* ((( 350 +**Reset** 351 +))) 195 195 196 -**Use below commands:** 353 +((( 354 +If payload = 0x04FF, it will reset the LSE01 355 +))) 197 197 198 -* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 199 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 200 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 201 201 202 - Forparameter description, please refer to AT command set358 +* **CFM** 203 203 204 - [[image:1657249793983-486.png]]360 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 205 205 206 206 207 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 208 208 209 - [[image:1657249831934-534.png]]364 +== 2.6 Show Data in DataCake IoT Server == 210 210 366 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 211 211 212 212 213 - ===2.2.5UseUDPprotocoltouplinkdata(Defaultprotocol)===369 +**Step 1**: Be sure that your device is programmed and properly connected to the network at this time. 214 214 215 -T hisfeatureissupportedsincefirmwareversionv1.0.1371 +**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 216 216 217 217 218 -* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 219 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 220 -* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 374 +[[image:1654505857935-743.png]] 221 221 222 -[[image:1657249864775-321.png]] 223 223 377 +[[image:1654505874829-548.png]] 224 224 225 - [[image:1657249930215-289.png]]379 +Step 3: Create an account or log in Datacake. 226 226 381 +Step 4: Search the LSE01 and add DevEUI. 227 227 228 228 229 - ===2.2.6Use MQTTprotocol to uplink data ===384 +[[image:1654505905236-553.png]] 230 230 231 -This feature is supported since firmware version v110 232 232 387 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 233 233 234 -* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 235 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 236 -* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 237 -* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 238 -* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 239 -* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 240 -* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 389 +[[image:1654505925508-181.png]] 241 241 242 -[[image:1657249978444-674.png]] 243 243 244 244 245 - [[image:1657249990869-686.png]]393 +== 2.7 Frequency Plans == 246 246 395 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 247 247 248 -((( 249 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 250 -))) 251 251 398 +=== 2.7.1 EU863-870 (EU868) === 252 252 400 +(% style="color:#037691" %)** Uplink:** 253 253 254 - === 2.2.7UseTCP protocolto uplink data ===402 +868.1 - SF7BW125 to SF12BW125 255 255 256 - Thisfeatureissupportedsincefirmware versionv110404 +868.3 - SF7BW125 to SF12BW125 and SF7BW250 257 257 406 +868.5 - SF7BW125 to SF12BW125 258 258 259 -* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 260 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 408 +867.1 - SF7BW125 to SF12BW125 261 261 262 - [[image:1657250217799-140.png]]410 +867.3 - SF7BW125 to SF12BW125 263 263 412 +867.5 - SF7BW125 to SF12BW125 264 264 265 - [[image:1657250255956-604.png]]414 +867.7 - SF7BW125 to SF12BW125 266 266 416 +867.9 - SF7BW125 to SF12BW125 267 267 418 +868.8 - FSK 268 268 269 -=== 2.2.8 Change Update Interval === 270 270 271 - User can use below command to change the(% style="color:green" %)**uplinkinterval**.421 +(% style="color:#037691" %)** Downlink:** 272 272 273 - * (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ SetUpdateIntervalto600s423 +Uplink channels 1-9 (RX1) 274 274 275 -((( 276 -(% style="color:red" %)**NOTE:** 277 -))) 425 +869.525 - SF9BW125 (RX2 downlink only) 278 278 279 -((( 280 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 281 -))) 282 282 283 283 429 +=== 2.7.2 US902-928(US915) === 284 284 285 - ==2.3UplinkPayload==431 +Used in USA, Canada and South America. Default use CHE=2 286 286 287 - Inthismode, uplink payload includes in total8bytes433 +(% style="color:#037691" %)**Uplink:** 288 288 289 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 290 -|=(% style="width: 50px;" %)((( 291 -**Size(bytes)** 292 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1** 293 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]] 435 +903.9 - SF7BW125 to SF10BW125 294 294 295 - Ifweusethe MQTT client tosubscribe to this MQTT topic, we can see the following information when the NSE01uplink data.437 +904.1 - SF7BW125 to SF10BW125 296 296 439 +904.3 - SF7BW125 to SF10BW125 297 297 298 - [[image:image-20220708111918-4.png]]441 +904.5 - SF7BW125 to SF10BW125 299 299 443 +904.7 - SF7BW125 to SF10BW125 300 300 301 - Thepayloadis ASCIIstring,representative same HEX:445 +904.9 - SF7BW125 to SF10BW125 302 302 303 -0 x72403155615900640c7817075e0a8c02f900 where:447 +905.1 - SF7BW125 to SF10BW125 304 304 305 -* Device ID: 0x 724031556159 = 724031556159 306 -* Version: 0x0064=100=1.0.0 449 +905.3 - SF7BW125 to SF10BW125 307 307 308 -* BAT: 0x0c78 = 3192 mV = 3.192V 309 -* Singal: 0x17 = 23 310 -* Soil Moisture: 0x075e= 1886 = 18.86 % 311 -* Soil Temperature:0x0a8c =2700=27 °C 312 -* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 313 -* Interrupt: 0x00 = 0 314 314 315 - ==2.4 Payload Explanation and SensorInterface ==452 +(% style="color:#037691" %)**Downlink:** 316 316 454 +923.3 - SF7BW500 to SF12BW500 317 317 318 - ===2.4.1 DeviceID===456 +923.9 - SF7BW500 to SF12BW500 319 319 320 - Bydefault,theDevice ID equaltothe last 6 bytes of IMEI.458 +924.5 - SF7BW500 to SF12BW500 321 321 322 - Usercanuse(% style="color:blue"%)**AT+DEUI**(%%) to set Device ID460 +925.1 - SF7BW500 to SF12BW500 323 323 324 - **Example:**462 +925.7 - SF7BW500 to SF12BW500 325 325 326 - AT+DEUI=A84041F15612464 +926.3 - SF7BW500 to SF12BW500 327 327 328 - TheDevice ID is stored in a none-erasearea,Upgradethe firmwareorrun AT+FDR won't erase Device ID.466 +926.9 - SF7BW500 to SF12BW500 329 329 468 +927.5 - SF7BW500 to SF12BW500 330 330 470 +923.3 - SF12BW500(RX2 downlink only) 331 331 332 -=== 2.4.2 Version Info === 333 333 334 -Specify the software version: 0x64=100, means firmware version 1.00. 335 335 336 - Forexample:0x0064 : this device isNSE01with firmware version 1.0.0.474 +=== 2.7.3 CN470-510 (CN470) === 337 337 476 +Used in China, Default use CHE=1 338 338 478 +(% style="color:#037691" %)**Uplink:** 339 339 340 - === 2.4.3atteryInfo===480 +486.3 - SF7BW125 to SF12BW125 341 341 342 -((( 343 -Check the battery voltage for LSE01. 344 -))) 482 +486.5 - SF7BW125 to SF12BW125 345 345 346 -((( 347 -Ex1: 0x0B45 = 2885mV 348 -))) 484 +486.7 - SF7BW125 to SF12BW125 349 349 350 -((( 351 -Ex2: 0x0B49 = 2889mV 352 -))) 486 +486.9 - SF7BW125 to SF12BW125 353 353 488 +487.1 - SF7BW125 to SF12BW125 354 354 490 +487.3 - SF7BW125 to SF12BW125 355 355 356 - === 2.4.4SignalStrength===492 +487.5 - SF7BW125 to SF12BW125 357 357 358 - NB-IoTNetworksignalStrength.494 +487.7 - SF7BW125 to SF12BW125 359 359 360 -**Ex1: 0x1d = 29** 361 361 362 -(% style="color: blue" %)**0**(%%) -113dBmorless497 +(% style="color:#037691" %)**Downlink:** 363 363 364 - (%style="color:blue"%)**1**(%%)-111dBm499 +506.7 - SF7BW125 to SF12BW125 365 365 366 - (%style="color:blue"%)**2...30**(%%)-109dBm... -53dBm501 +506.9 - SF7BW125 to SF12BW125 367 367 368 - (% style="color:blue" %)**31**(%%)-51dBmorgreater503 +507.1 - SF7BW125 to SF12BW125 369 369 370 - (%style="color:blue"%)**99**(%%) Notknownor not detectable505 +507.3 - SF7BW125 to SF12BW125 371 371 507 +507.5 - SF7BW125 to SF12BW125 372 372 509 +507.7 - SF7BW125 to SF12BW125 373 373 374 - ===2.4.5SoilMoisture ===511 +507.9 - SF7BW125 to SF12BW125 375 375 376 -((( 377 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 378 -))) 513 +508.1 - SF7BW125 to SF12BW125 379 379 380 -((( 381 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 382 -))) 515 +505.3 - SF12BW125 (RX2 downlink only) 383 383 384 -((( 385 - 386 -))) 387 387 388 -((( 389 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 390 -))) 391 391 519 +=== 2.7.4 AU915-928(AU915) === 392 392 521 +Default use CHE=2 393 393 394 - ===2.4.6 SoilTemperature===523 +(% style="color:#037691" %)**Uplink:** 395 395 396 -((( 397 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 398 -))) 525 +916.8 - SF7BW125 to SF12BW125 399 399 400 -((( 401 -**Example**: 402 -))) 527 +917.0 - SF7BW125 to SF12BW125 403 403 404 -((( 405 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 406 -))) 529 +917.2 - SF7BW125 to SF12BW125 407 407 408 -((( 409 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 410 -))) 531 +917.4 - SF7BW125 to SF12BW125 411 411 533 +917.6 - SF7BW125 to SF12BW125 412 412 535 +917.8 - SF7BW125 to SF12BW125 413 413 414 - === 2.4.7SoilConductivity(EC) ===537 +918.0 - SF7BW125 to SF12BW125 415 415 416 -((( 417 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 418 -))) 539 +918.2 - SF7BW125 to SF12BW125 419 419 420 -((( 421 -For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 422 -))) 423 423 424 -((( 425 -Generally, the EC value of irrigation water is less than 800uS / cm. 426 -))) 542 +(% style="color:#037691" %)**Downlink:** 427 427 428 -((( 429 - 430 -))) 544 +923.3 - SF7BW500 to SF12BW500 431 431 432 -((( 433 - 434 -))) 546 +923.9 - SF7BW500 to SF12BW500 435 435 436 - ===2.4.8DigitalInterrupt===548 +924.5 - SF7BW500 to SF12BW500 437 437 438 - Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods.Whenthere is a trigger, the NSE01will send a packettothe server.550 +925.1 - SF7BW500 to SF12BW500 439 439 440 - Thecommandis:552 +925.7 - SF7BW500 to SF12BW500 441 441 442 - (% style="color:blue" %)**AT+INTMOD=3**(%%)~/~/(more info aboutINMOD please refer [[**AT CommandManual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**554 +926.3 - SF7BW500 to SF12BW500 443 443 556 +926.9 - SF7BW500 to SF12BW500 444 444 445 - The lower four bits of this data field shows if this packet is generated by interrupt or not.[[Clickhere>>||anchor="H"]]forthe hardware and softwareset up.558 +927.5 - SF7BW500 to SF12BW500 446 446 560 +923.3 - SF12BW500(RX2 downlink only) 447 447 448 -Example: 449 449 450 -0x(00): Normal uplink packet. 451 451 452 -0 x(01):InterruptUplinkPacket.564 +=== 2.7.5 AS920-923 & AS923-925 (AS923) === 453 453 566 +(% style="color:#037691" %)**Default Uplink channel:** 454 454 568 +923.2 - SF7BW125 to SF10BW125 455 455 456 - ===2.4.9+5VOutput===570 +923.4 - SF7BW125 to SF10BW125 457 457 458 -NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 459 459 573 +(% style="color:#037691" %)**Additional Uplink Channel**: 460 460 461 -T he5V output time canbe controlled by ATCommand.575 +(OTAA mode, channel added by JoinAccept message) 462 462 463 -(% style="color: blue" %)**AT+5VT=1000**577 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 464 464 465 - Meansset5Vvalidtime tohave 1000ms.So the real 5V output will actually have1000ms + sampling time for other sensors.579 +922.2 - SF7BW125 to SF10BW125 466 466 581 +922.4 - SF7BW125 to SF10BW125 467 467 583 +922.6 - SF7BW125 to SF10BW125 468 468 469 - ==2.5DownlinkPayload ==585 +922.8 - SF7BW125 to SF10BW125 470 470 471 - Bydefault,NSE01prints the downlinkpayload to console port.587 +923.0 - SF7BW125 to SF10BW125 472 472 473 - [[image:image-20220708133731-5.png]]589 +922.0 - SF7BW125 to SF10BW125 474 474 475 475 476 -((( 477 -(% style="color:blue" %)**Examples:** 478 -))) 592 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 479 479 480 -((( 481 - 482 -))) 594 +923.6 - SF7BW125 to SF10BW125 483 483 484 -* ((( 485 -(% style="color:blue" %)**Set TDC** 486 -))) 596 +923.8 - SF7BW125 to SF10BW125 487 487 488 -((( 489 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 490 -))) 598 +924.0 - SF7BW125 to SF10BW125 491 491 492 -((( 493 -Payload: 01 00 00 1E TDC=30S 494 -))) 600 +924.2 - SF7BW125 to SF10BW125 495 495 496 -((( 497 -Payload: 01 00 00 3C TDC=60S 498 -))) 602 +924.4 - SF7BW125 to SF10BW125 499 499 500 -((( 501 - 502 -))) 604 +924.6 - SF7BW125 to SF10BW125 503 503 504 -* ((( 505 -(% style="color:blue" %)**Reset** 506 -))) 507 507 508 -((( 509 -If payload = 0x04FF, it will reset the NSE01 510 -))) 607 +(% style="color:#037691" %)** Downlink:** 511 511 609 +Uplink channels 1-8 (RX1) 512 512 513 - *(%style="color:blue"%)**INTMOD**611 +923.2 - SF10BW125 (RX2) 514 514 515 -Downlink Payload: 06000003, Set AT+INTMOD=3 516 516 517 517 615 +=== 2.7.6 KR920-923 (KR920) === 518 518 519 - == 2.6 LEDIndicator==617 +Default channel: 520 520 521 -((( 522 -The NSE01 has an internal LED which is to show the status of different state. 619 +922.1 - SF7BW125 to SF12BW125 523 523 621 +922.3 - SF7BW125 to SF12BW125 524 524 525 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 526 -* Then the LED will be on for 1 second means device is boot normally. 527 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 528 -* For each uplink probe, LED will be on for 500ms. 529 -))) 623 +922.5 - SF7BW125 to SF12BW125 530 530 531 531 626 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 532 532 628 +922.1 - SF7BW125 to SF12BW125 533 533 534 - ==2.7InstallationinSoil ==630 +922.3 - SF7BW125 to SF12BW125 535 535 536 - __**Measurementthesoilsurface**__632 +922.5 - SF7BW125 to SF12BW125 537 537 538 - Choose the proper measuring position.Avoidthe probe to touch rocks or hard things.Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]634 +922.7 - SF7BW125 to SF12BW125 539 539 540 - [[image:1657259653666-883.png]]636 +922.9 - SF7BW125 to SF12BW125 541 541 638 +923.1 - SF7BW125 to SF12BW125 542 542 543 -((( 544 - 640 +923.3 - SF7BW125 to SF12BW125 545 545 546 -((( 547 -Dig a hole with diameter > 20CM. 548 -))) 549 549 550 -((( 551 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 552 -))) 553 -))) 643 +(% style="color:#037691" %)**Downlink:** 554 554 555 - [[image:1654506665940-119.png]]645 +Uplink channels 1-7(RX1) 556 556 557 -((( 558 - 559 -))) 647 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 560 560 561 561 562 -== 2.8 Firmware Change Log == 563 563 651 +=== 2.7.7 IN865-867 (IN865) === 564 564 565 - Download URL & FirmwareChangelog653 +(% style="color:#037691" %)** Uplink:** 566 566 567 - [[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]655 +865.0625 - SF7BW125 to SF12BW125 568 568 657 +865.4025 - SF7BW125 to SF12BW125 569 569 570 - UpgradeInstruction:[[Upgrade_Firmware>>||anchor="H"]]659 +865.9850 - SF7BW125 to SF12BW125 571 571 572 572 662 +(% style="color:#037691" %) **Downlink:** 573 573 574 - ==2.9 Battery Analysis==664 +Uplink channels 1-3 (RX1) 575 575 576 - === 2.9.1BatteryType ===666 +866.550 - SF10BW125 (RX2) 577 577 578 578 579 -The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 580 580 581 581 582 - Thebatteryisdesignedto lastforseveral years depends on the actually use environment and update interval.671 +== 2.8 LED Indicator == 583 583 673 +The LSE01 has an internal LED which is to show the status of different state. 584 584 585 -The battery related documents as below: 675 +* Blink once when device power on. 676 +* Solid ON for 5 seconds once device successful Join the network. 677 +* Blink once when device transmit a packet. 586 586 587 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 588 -* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 589 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 590 590 680 + 681 +== 2.9 Installation in Soil == 682 + 683 +**Measurement the soil surface** 684 + 685 + 686 +[[image:1654506634463-199.png]] 687 + 591 591 ((( 592 -[[image:image-20220708140453-6.png]] 689 +((( 690 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 593 593 ))) 692 +))) 594 594 595 595 695 +[[image:1654506665940-119.png]] 596 596 597 -=== 2.9.2 Power consumption Analyze === 697 +((( 698 +Dig a hole with diameter > 20CM. 699 +))) 598 598 599 599 ((( 600 - Draginobattery powered productare allrunsinLow Powermode. Wehavean update battery calculator whichbase onthemeasurementof the realdevice. User canuse this calculatorto checkthebatterylife andcalculatethe batterylifeif want to use different transmit interval.702 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 601 601 ))) 602 602 603 603 706 +== 2.10 Firmware Change Log == 707 + 604 604 ((( 605 - Instructiontouseasbelow:709 +**Firmware download link:** 606 606 ))) 607 607 608 608 ((( 609 - (% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:[[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]713 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 610 610 ))) 611 611 716 +((( 717 + 718 +))) 612 612 613 613 ((( 614 - (% style="color:blue" %)**Step2: **(%%)Openithoose721 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 615 615 ))) 616 616 617 - *(((618 - ProductModel724 +((( 725 + 619 619 ))) 620 -* ((( 621 -Uplink Interval 727 + 728 +((( 729 +**V1.0.** 622 622 ))) 623 -* ((( 624 -Working Mode 625 -))) 626 626 627 627 ((( 628 - And theLifeexpectation in difference casewill be shown on the right.733 +Release 629 629 ))) 630 630 631 -[[image:image-20220708141352-7.jpeg]] 632 632 737 +== 2.11 Battery Analysis == 633 633 739 +=== 2.11.1 Battery Type === 634 634 635 -=== 2.9.3 Battery Note === 741 +((( 742 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 743 +))) 636 636 637 637 ((( 638 -The Li-SICObattery is designedfor small current/ longperiod application. It isnotgood to use a high current,short period transmit method. Therecommendedminimum period for use ofthis batteryis5minutes. Ifyou useshorterperiod time to transmitLoRa,thenthe battery life may be decreased.746 +The battery is designed to last for more than 5 years for the LSN50. 639 639 ))) 640 640 749 +((( 750 +((( 751 +The battery-related documents are as below: 752 +))) 753 +))) 641 641 755 +* ((( 756 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 757 +))) 758 +* ((( 759 +[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 760 +))) 761 +* ((( 762 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 763 +))) 642 642 643 - ===2.9.4 Replacethe battery ===765 + [[image:image-20220606171726-9.png]] 644 644 767 + 768 + 769 +=== 2.11.2 Battery Note === 770 + 645 645 ((( 646 -The defaultbatterypackofNSE01includesaER26500 plussupercapacitor. Ifusercan'tfind this pack locally,theycanfindER26500 orquivalence withoutthe SPC1520 capacitor, which will alsowork inmostcase. TheSPCcanlarge thebatterylifeforhigh frequency use(update periodbelow5minutes).772 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 647 647 ))) 648 648 649 649 650 650 651 -= 3. AccessNB-IoTModule =777 +=== 2.11.3 Replace the battery === 652 652 653 653 ((( 654 - Userscan directlyaccesstheAT command setoftheNB-IoTmodule.780 +If Battery is lower than 2.7v, user should replace the battery of LSE01. 655 655 ))) 656 656 657 657 ((( 658 - The AT Commandsetcanrefer theBC35-G NB-IoTModuleATCommand: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]]784 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 659 659 ))) 660 660 661 -[[image:1657261278785-153.png]] 787 +((( 788 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 789 +))) 662 662 663 663 664 664 665 -= 4.793 += 3. Using the AT Commands = 666 666 667 -== 4.1795 +== 3.1 Access AT Commands == 668 668 669 -See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 670 670 798 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 671 671 672 - AT+<CMD>? : Helpon<CMD>800 +[[image:1654501986557-872.png||height="391" width="800"]] 673 673 674 -AT+<CMD> : Run <CMD> 675 675 676 - AT+<CMD>=<value>: Setthevalue803 +Or if you have below board, use below connection: 677 677 678 -AT+<CMD>=? : Get the value 679 679 806 +[[image:1654502005655-729.png||height="503" width="801"]] 680 680 808 + 809 + 810 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 811 + 812 + 813 + [[image:1654502050864-459.png||height="564" width="806"]] 814 + 815 + 816 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]] 817 + 818 + 819 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 820 + 821 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 822 + 823 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 824 + 825 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 826 + 827 + 681 681 (% style="color:#037691" %)**General Commands**(%%) 682 682 683 -AT 830 +(% style="background-color:#dcdcdc" %)**AT**(%%) : Attention 684 684 685 -AT? 832 +(% style="background-color:#dcdcdc" %)**AT?**(%%) : Short Help 686 686 687 -ATZ 834 +(% style="background-color:#dcdcdc" %)**ATZ**(%%) : MCU Reset 688 688 689 -AT+TDC 836 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%) : Application Data Transmission Interval 690 690 691 -AT+CFG : Print all configurations 692 692 693 - AT+CFGMOD: Workingmode selection839 +(% style="color:#037691" %)**Keys, IDs and EUIs management** 694 694 695 -AT+I NTMOD:Setthe trigger interruptmode841 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%) : Application EUI 696 696 697 -AT+ 5VTSetextend the timeof5V power843 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%) : Application Key 698 698 699 -AT+P ROChooseagreement845 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%) : Application Session Key 700 700 701 -AT+ WEIGREGet weightorsetweight to 0847 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%) : Device Address 702 702 703 -AT+ WEIGAPGet or SettheGapValue of weight849 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%) : Device EUI 704 704 705 -AT+ RXDL: Extendthe sendingandreceivingtime851 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%) : Network ID (You can enter this command change only after successful network connection) 706 706 707 -AT+ CNTFACGettcountingparameters853 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%) : Network Session Key Joining and sending date on LoRa network 708 708 709 -AT+ SERVADDR:ServerAddress855 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%) : Confirm Mode 710 710 857 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 711 711 712 -(% style="color:# 037691" %)**COAPManagement**859 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%) : Join LoRa? Network 713 713 714 -AT+ URIsourceparameters861 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%) : LoRa? Network Join Mode 715 715 863 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 716 716 717 -(% style="color:# 037691" %)**UDPManagement**865 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%) : Print Last Received Data in Raw Format 718 718 719 -AT+C FM:Uploadconfirmationmode (onlyvalid forUDP)867 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%) : Print Last Received Data in Binary Format 720 720 869 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 721 721 722 -(% style="color:# 037691" %)**MQTTManagement**871 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%) : Send Hexadecimal Data 723 723 724 -AT+CLIENT : Get or Set MQTT client 725 725 726 - AT+UNAMEGetSetMQTT Username874 +(% style="color:#037691" %)**LoRa Network Management** 727 727 728 -AT+ PWDGetor SetMQTT password876 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%) : Adaptive Rate 729 729 730 -AT+ PUBTOPICGetorSetMQTTpublishtopic878 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%) : LoRa Class(Currently only support class A 731 731 732 -AT+ SUBTOPIC :GetorSetMQTT subscriptiontopic880 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%) : Duty Cycle Setting 733 733 882 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 734 734 735 -(% style="color:# 037691" %)**Information**884 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink 736 736 737 -AT+F DRctoryDataReset886 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%) : Frame Counter Uplink 738 738 739 -AT+ PWORDSerialAccessPassword888 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%) : Join Accept Delay1 740 740 890 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 741 741 892 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 742 742 743 -= 5.FAQ=894 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%) : Receive Delay1 744 744 745 -= =5.1HowtoUpgradeFirmware==896 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%) : Receive Delay2 746 746 898 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 747 747 900 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 901 + 902 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 903 + 904 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 905 + 906 + 907 +(% style="color:#037691" %)**Information** 908 + 909 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 910 + 911 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 912 + 913 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 914 + 915 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 916 + 917 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 918 + 919 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 920 + 921 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 922 + 923 + 924 += 4. FAQ = 925 + 926 +== 4.1 How to change the LoRa Frequency Bands/Region? == 927 + 748 748 ((( 749 -User can upgrade the firmware for 1) bug fix, 2) new feature release. 929 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 930 +When downloading the images, choose the required image file for download. 750 750 ))) 751 751 752 752 ((( 753 - Pleasesee this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]934 + 754 754 ))) 755 755 756 756 ((( 757 - Notice,NSE01andLSE01sharethesamemother board.Theyuse thesameconnection andmethodto update.938 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 758 758 ))) 759 759 941 +((( 942 + 943 +))) 760 760 761 761 ((( 946 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 947 +))) 948 + 949 +((( 762 762 763 763 ))) 764 764 953 +((( 954 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 955 +))) 956 + 957 +[[image:image-20220606154726-3.png]] 958 + 959 + 960 +When you use the TTN network, the US915 frequency bands use are: 961 + 962 +* 903.9 - SF7BW125 to SF10BW125 963 +* 904.1 - SF7BW125 to SF10BW125 964 +* 904.3 - SF7BW125 to SF10BW125 965 +* 904.5 - SF7BW125 to SF10BW125 966 +* 904.7 - SF7BW125 to SF10BW125 967 +* 904.9 - SF7BW125 to SF10BW125 968 +* 905.1 - SF7BW125 to SF10BW125 969 +* 905.3 - SF7BW125 to SF10BW125 970 +* 904.6 - SF8BW500 971 + 972 +((( 973 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 974 +))) 975 + 976 +(% class="box infomessage" %) 977 +((( 978 +**AT+CHE=2** 979 +))) 980 + 981 +(% class="box infomessage" %) 982 +((( 983 +**ATZ** 984 +))) 985 + 986 +((( 987 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 988 +))) 989 + 990 +((( 991 + 992 +))) 993 + 994 +((( 995 +The **AU915** band is similar. Below are the AU915 Uplink Channels. 996 +))) 997 + 998 +[[image:image-20220606154825-4.png]] 999 + 1000 + 1001 + 765 765 = 5. Trouble Shooting = 766 766 767 -== 5.1 Why I can 't join TTN in US915 / AU915 bands? ==1004 +== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 768 768 769 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main. End DeviceATCommandsand Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.1006 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 770 770 771 771 772 -== 5.2 AT Command input doesn 't work ==1009 +== 5.2 AT Command input doesn’t work == 773 773 774 774 ((( 775 -In the case if user can see the console output but can 't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.1012 +In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 776 776 ))) 777 777 778 778 ... ... @@ -854,6 +854,7 @@ 854 854 * ((( 855 855 Weight / pcs : g 856 856 1094 + 857 857 858 858 ))) 859 859 ... ... @@ -861,3 +861,8 @@ 861 861 862 862 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 863 863 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1102 + 1103 + 1104 +~)~)~) 1105 +~)~)~) 1106 +~)~)~)
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -102.7 KB - Content