Last modified by Bei Jinggeng on 2024/05/31 09:53

From version 64.2
edited by Xiaoling
on 2022/07/08 14:37
Change comment: There is no comment for this version
To version 32.13
edited by Xiaoling
on 2022/06/07 11:40
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
Content
... ... @@ -3,7 +3,9 @@
3 3  
4 4  
5 5  
6 +**Contents:**
6 6  
8 +{{toc/}}
7 7  
8 8  
9 9  
... ... @@ -10,736 +10,895 @@
10 10  
11 11  
12 12  
15 += 1. Introduction =
13 13  
14 -**Table of Contents:**
17 +== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
15 15  
19 +(((
20 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
21 +)))
16 16  
23 +(((
24 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
25 +)))
17 17  
27 +(((
28 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 +)))
18 18  
19 -
20 -
21 -= 1.  Introduction =
22 -
23 -== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
24 -
25 25  (((
26 -
32 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
33 +)))
27 27  
28 -Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
29 -
30 -It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
31 -
32 -The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33 -
34 -NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
35 -
36 -
35 +(((
36 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 37  )))
38 38  
39 +
39 39  [[image:1654503236291-817.png]]
40 40  
41 41  
42 -[[image:1657245163077-232.png]]
43 +[[image:1654503265560-120.png]]
43 43  
44 44  
45 45  
46 46  == 1.2 ​Features ==
47 47  
48 -
49 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
49 +* LoRaWAN 1.0.3 Class A
50 +* Ultra low power consumption
50 50  * Monitor Soil Moisture
51 51  * Monitor Soil Temperature
52 52  * Monitor Soil Conductivity
54 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
53 53  * AT Commands to change parameters
54 54  * Uplink on periodically
55 55  * Downlink to change configure
56 56  * IP66 Waterproof Enclosure
57 -* Ultra-Low Power consumption
58 -* AT Commands to change parameters
59 -* Micro SIM card slot for NB-IoT SIM
60 -* 8500mAh Battery for long term use
59 +* 4000mAh or 8500mAh Battery for long term use
61 61  
62 -== 1.3  Specification ==
61 +== 1.3 Specification ==
63 63  
63 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
64 64  
65 -(% style="color:#037691" %)**Common DC Characteristics:**
65 +[[image:image-20220606162220-5.png]]
66 66  
67 -* Supply Voltage: 2.1v ~~ 3.6v
68 -* Operating Temperature: -40 ~~ 85°C
69 69  
70 -(% style="color:#037691" %)**NB-IoT Spec:**
71 71  
72 -* - B1 @H-FDD: 2100MHz
73 -* - B3 @H-FDD: 1800MHz
74 -* - B8 @H-FDD: 900MHz
75 -* - B5 @H-FDD: 850MHz
76 -* - B20 @H-FDD: 800MHz
77 -* - B28 @H-FDD: 700MHz
69 +== ​1.4 Applications ==
78 78  
79 -(% style="color:#037691" %)**Probe Specification:**
71 +* Smart Agriculture
80 80  
81 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
73 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
74 +​
82 82  
83 -[[image:image-20220708101224-1.png]]
76 +== 1.5 Firmware Change log ==
84 84  
85 85  
79 +**LSE01 v1.0 :**  Release
86 86  
87 -== ​1.4  Applications ==
88 88  
89 -* Smart Agriculture
90 90  
91 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
92 -​
83 += 2. Configure LSE01 to connect to LoRaWAN network =
93 93  
94 -== 1. Pin Definitions ==
85 +== 2.1 How it works ==
95 95  
87 +(((
88 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
89 +)))
96 96  
97 -[[image:1657246476176-652.png]]
91 +(((
92 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
93 +)))
98 98  
99 99  
100 100  
101 -= 2.  Use NSE01 to communicate with IoT Server =
97 +== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
102 102  
103 -== 2. How it works ==
99 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
104 104  
105 105  
102 +[[image:1654503992078-669.png]]
103 +
104 +
105 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
106 +
107 +
108 +**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
109 +
110 +Each LSE01 is shipped with a sticker with the default device EUI as below:
111 +
112 +[[image:image-20220606163732-6.jpeg]]
113 +
114 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
115 +
116 +**Add APP EUI in the application**
117 +
118 +
119 +[[image:1654504596150-405.png]]
120 +
121 +
122 +
123 +**Add APP KEY and DEV EUI**
124 +
125 +[[image:1654504683289-357.png]]
126 +
127 +
128 +
129 +**Step 2**: Power on LSE01
130 +
131 +
132 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
133 +
134 +[[image:image-20220606163915-7.png]]
135 +
136 +
137 +**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
138 +
139 +[[image:1654504778294-788.png]]
140 +
141 +
142 +
143 +== 2.3 Uplink Payload ==
144 +
145 +(% class="wikigeneratedid" %)
146 +=== ===
147 +
148 +=== 2.3.1 MOD~=0(Default Mode) ===
149 +
150 +LSE01 will uplink payload via LoRaWAN with below payload format: 
151 +
106 106  (((
107 -The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
153 +Uplink payload includes in total 11 bytes.
108 108  )))
109 109  
156 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
157 +|(((
158 +**Size**
110 110  
111 -(((
112 -The diagram below shows the working flow in default firmware of NSE01:
160 +**(bytes)**
161 +)))|**2**|**2**|**2**|**2**|**2**|**1**
162 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
163 +Temperature
164 +
165 +(Reserve, Ignore now)
166 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
167 +MOD & Digital Interrupt
168 +
169 +(Optional)
113 113  )))
114 114  
115 -[[image:image-20220708101605-2.png]]
116 116  
173 +
174 +=== 2.3.2 MOD~=1(Original value) ===
175 +
176 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
177 +
178 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
179 +|(((
180 +**Size**
181 +
182 +**(bytes)**
183 +)))|**2**|**2**|**2**|**2**|**2**|**1**
184 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
185 +Temperature
186 +
187 +(Reserve, Ignore now)
188 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
189 +MOD & Digital Interrupt
190 +
191 +(Optional)
192 +)))
193 +
194 +
195 +
196 +=== 2.3.3 Battery Info ===
197 +
117 117  (((
118 -
199 +Check the battery voltage for LSE01.
119 119  )))
120 120  
202 +(((
203 +Ex1: 0x0B45 = 2885mV
204 +)))
121 121  
206 +(((
207 +Ex2: 0x0B49 = 2889mV
208 +)))
122 122  
123 -== 2.2 ​ Configure the NSE01 ==
124 124  
125 125  
126 -=== 2.2.1 Test Requirement ===
212 +=== 2.3.4 Soil Moisture ===
127 127  
214 +(((
215 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
216 +)))
128 128  
129 -To use NSE01 in your city, make sure meet below requirements:
218 +(((
219 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
220 +)))
130 130  
131 -* Your local operator has already distributed a NB-IoT Network there.
132 -* The local NB-IoT network used the band that NSE01 supports.
133 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
222 +(((
223 +
224 +)))
134 134  
135 135  (((
136 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
227 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
137 137  )))
138 138  
139 139  
140 -[[image:1657249419225-449.png]]
141 141  
232 +=== 2.3.5 Soil Temperature ===
142 142  
234 +(((
235 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
236 +)))
143 143  
144 -=== 2.2.2 Insert SIM card ===
238 +(((
239 +**Example**:
240 +)))
145 145  
146 -Insert the NB-IoT Card get from your provider.
242 +(((
243 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
244 +)))
147 147  
148 -User need to take out the NB-IoT module and insert the SIM card like below:
246 +(((
247 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
248 +)))
149 149  
150 150  
151 -[[image:1657249468462-536.png]]
152 152  
252 +=== 2.3.6 Soil Conductivity (EC) ===
153 153  
254 +(((
255 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
256 +)))
154 154  
155 -=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
258 +(((
259 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
260 +)))
156 156  
157 157  (((
263 +Generally, the EC value of irrigation water is less than 800uS / cm.
264 +)))
265 +
158 158  (((
159 -User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
267 +
160 160  )))
269 +
270 +(((
271 +
161 161  )))
162 162  
274 +=== 2.3.7 MOD ===
163 163  
164 -**Connection:**
276 +Firmware version at least v2.1 supports changing mode.
165 165  
166 - (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
278 +For example, bytes[10]=90
167 167  
168 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
280 +mod=(bytes[10]>>7)&0x01=1.
169 169  
170 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
171 171  
283 +**Downlink Command:**
172 172  
173 -In the PC, use below serial tool settings:
285 +If payload = 0x0A00, workmode=0
174 174  
175 -* Baud:  (% style="color:green" %)**9600**
176 -* Data bits:** (% style="color:green" %)8(%%)**
177 -* Stop bits: (% style="color:green" %)**1**
178 -* Parity:  (% style="color:green" %)**None**
179 -* Flow Control: (% style="color:green" %)**None**
287 +If** **payload =** **0x0A01, workmode=1
180 180  
289 +
290 +
291 +=== 2.3.8 ​Decode payload in The Things Network ===
292 +
293 +While using TTN network, you can add the payload format to decode the payload.
294 +
295 +
296 +[[image:1654505570700-128.png]]
297 +
181 181  (((
182 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
299 +The payload decoder function for TTN is here:
183 183  )))
184 184  
185 -[[image:image-20220708110657-3.png]]
302 +(((
303 +LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
304 +)))
186 186  
187 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
188 188  
189 189  
308 +== 2.4 Uplink Interval ==
190 190  
191 -=== 2.2.4 Use CoAP protocol to uplink data ===
310 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
192 192  
193 -(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
194 194  
195 195  
196 -**Use below commands:**
314 +== 2.5 Downlink Payload ==
197 197  
198 -* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
199 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
200 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
316 +By default, LSE50 prints the downlink payload to console port.
201 201  
202 -For parameter description, please refer to AT command set
318 +[[image:image-20220606165544-8.png]]
203 203  
204 -[[image:1657249793983-486.png]]
205 205  
321 +**Examples:**
206 206  
207 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
208 208  
209 -[[image:1657249831934-534.png]]
324 +* **Set TDC**
210 210  
326 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
211 211  
328 +Payload:    01 00 00 1E    TDC=30S
212 212  
213 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
330 +Payload:    01 00 00 3C    TDC=60S
214 214  
215 -This feature is supported since firmware version v1.0.1
216 216  
333 +* **Reset**
217 217  
218 -* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
219 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
220 -* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
335 +If payload = 0x04FF, it will reset the LSE01
221 221  
222 -[[image:1657249864775-321.png]]
223 223  
338 +* **CFM**
224 224  
225 -[[image:1657249930215-289.png]]
340 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
226 226  
227 227  
228 228  
229 -=== 2.2.6 Use MQTT protocol to uplink data ===
344 +== 2.6 ​Show Data in DataCake IoT Server ==
230 230  
231 -This feature is supported since firmware version v110
346 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
232 232  
233 233  
234 -* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
235 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
236 -* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
237 -* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
238 -* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
239 -* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
240 -* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
349 +**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
241 241  
242 -[[image:1657249978444-674.png]]
351 +**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
243 243  
244 244  
245 -[[image:1657249990869-686.png]]
354 +[[image:1654505857935-743.png]]
246 246  
247 247  
248 -(((
249 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
250 -)))
357 +[[image:1654505874829-548.png]]
251 251  
359 +Step 3: Create an account or log in Datacake.
252 252  
361 +Step 4: Search the LSE01 and add DevEUI.
253 253  
254 -=== 2.2.7 Use TCP protocol to uplink data ===
255 255  
256 -This feature is supported since firmware version v110
364 +[[image:1654505905236-553.png]]
257 257  
258 258  
259 -* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
260 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
367 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
261 261  
262 -[[image:1657250217799-140.png]]
369 +[[image:1654505925508-181.png]]
263 263  
264 264  
265 -[[image:1657250255956-604.png]]
266 266  
373 +== 2.7 Frequency Plans ==
267 267  
375 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
268 268  
269 -=== 2.2.8 Change Update Interval ===
270 270  
271 -User can use below command to change the (% style="color:green" %)**uplink interval**.
378 +=== 2.7.1 EU863-870 (EU868) ===
272 272  
273 -* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
380 +(% style="color:#037691" %)** Uplink:**
274 274  
275 -(((
276 -(% style="color:red" %)**NOTE:**
277 -)))
382 +868.1 - SF7BW125 to SF12BW125
278 278  
279 -(((
280 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
281 -)))
384 +868.3 - SF7BW125 to SF12BW125 and SF7BW250
282 282  
386 +868.5 - SF7BW125 to SF12BW125
283 283  
388 +867.1 - SF7BW125 to SF12BW125
284 284  
285 -== 2.3  Uplink Payload ==
390 +867.3 - SF7BW125 to SF12BW125
286 286  
287 -In this mode, uplink payload includes in total 18 bytes
392 +867.5 - SF7BW125 to SF12BW125
288 288  
289 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
290 -|=(% style="width: 50px;" %)(((
291 -**Size(bytes)**
292 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
293 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]]
394 +867.7 - SF7BW125 to SF12BW125
294 294  
295 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
396 +867.9 - SF7BW125 to SF12BW125
296 296  
398 +868.8 - FSK
297 297  
298 -[[image:image-20220708111918-4.png]]
299 299  
401 +(% style="color:#037691" %)** Downlink:**
300 300  
301 -The payload is ASCII string, representative same HEX:
403 +Uplink channels 1-9 (RX1)
302 302  
303 -0x72403155615900640c7817075e0a8c02f900 where:
405 +869.525 - SF9BW125 (RX2 downlink only)
304 304  
305 -* Device ID: 0x 724031556159 = 724031556159
306 -* Version: 0x0064=100=1.0.0
307 307  
308 -* BAT: 0x0c78 = 3192 mV = 3.192V
309 -* Singal: 0x17 = 23
310 -* Soil Moisture: 0x075e= 1886 = 18.86  %
311 -* Soil Temperature:0x0a8c =2700=27 °C
312 -* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
313 -* Interrupt: 0x00 = 0
314 314  
315 -== 2. Payload Explanation and Sensor Interface ==
409 +=== 2.7.2 US902-928(US915) ===
316 316  
411 +Used in USA, Canada and South America. Default use CHE=2
317 317  
318 -=== 2.4.1  Device ID ===
413 +(% style="color:#037691" %)**Uplink:**
319 319  
320 -By default, the Device ID equal to the last 6 bytes of IMEI.
415 +903.9 - SF7BW125 to SF10BW125
321 321  
322 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
417 +904.1 - SF7BW125 to SF10BW125
323 323  
324 -**Example:**
419 +904.3 - SF7BW125 to SF10BW125
325 325  
326 -AT+DEUI=A84041F15612
421 +904.5 - SF7BW125 to SF10BW125
327 327  
328 -The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
423 +904.7 - SF7BW125 to SF10BW125
329 329  
425 +904.9 - SF7BW125 to SF10BW125
330 330  
427 +905.1 - SF7BW125 to SF10BW125
331 331  
332 -=== 2.4.2  Version Info ===
429 +905.3 - SF7BW125 to SF10BW125
333 333  
334 -Specify the software version: 0x64=100, means firmware version 1.00.
335 335  
336 -For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
432 +(% style="color:#037691" %)**Downlink:**
337 337  
434 +923.3 - SF7BW500 to SF12BW500
338 338  
436 +923.9 - SF7BW500 to SF12BW500
339 339  
340 -=== 2.4. Battery Info ===
438 +924.5 - SF7BW500 to SF12BW500
341 341  
342 -(((
343 -Check the battery voltage for LSE01.
344 -)))
440 +925.1 - SF7BW500 to SF12BW500
345 345  
346 -(((
347 -Ex1: 0x0B45 = 2885mV
348 -)))
442 +925.7 - SF7BW500 to SF12BW500
349 349  
350 -(((
351 -Ex2: 0x0B49 = 2889mV
352 -)))
444 +926.3 - SF7BW500 to SF12BW500
353 353  
446 +926.9 - SF7BW500 to SF12BW500
354 354  
448 +927.5 - SF7BW500 to SF12BW500
355 355  
356 -=== 2.4.4  Signal Strength ===
450 +923.3 - SF12BW500(RX2 downlink only)
357 357  
358 -NB-IoT Network signal Strength.
359 359  
360 -**Ex1: 0x1d = 29**
361 361  
362 -(% style="color:blue" %)**0**(%%)  -113dBm or less
454 +=== 2.7.3 CN470-510 (CN470) ===
363 363  
364 -(% style="color:blue" %)**1**(%%)  -111dBm
456 +Used in China, Default use CHE=1
365 365  
366 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
458 +(% style="color:#037691" %)**Uplink:**
367 367  
368 -(% style="color:blue" %)**31**  (%%) -51dBm or greater
460 +486.3 - SF7BW125 to SF12BW125
369 369  
370 -(% style="color:blue" %)**99**   (%%) Not known or not detectable
462 +486.5 - SF7BW125 to SF12BW125
371 371  
464 +486.7 - SF7BW125 to SF12BW125
372 372  
466 +486.9 - SF7BW125 to SF12BW125
373 373  
374 -=== 2.4. Soil Moisture ===
468 +487.1 - SF7BW125 to SF12BW125
375 375  
376 -(((
377 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
378 -)))
470 +487.3 - SF7BW125 to SF12BW125
379 379  
380 -(((
381 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
382 -)))
472 +487.5 - SF7BW125 to SF12BW125
383 383  
384 -(((
385 -
386 -)))
474 +487.7 - SF7BW125 to SF12BW125
387 387  
388 -(((
389 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
390 -)))
391 391  
477 +(% style="color:#037691" %)**Downlink:**
392 392  
479 +506.7 - SF7BW125 to SF12BW125
393 393  
394 -=== 2.4.6  Soil Temperature ===
481 +506.9 - SF7BW125 to SF12BW125
395 395  
396 -(((
397 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
398 -)))
483 +507.1 - SF7BW125 to SF12BW125
399 399  
400 -(((
401 -**Example**:
402 -)))
485 +507.3 - SF7BW125 to SF12BW125
403 403  
404 -(((
405 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
406 -)))
487 +507.5 - SF7BW125 to SF12BW125
407 407  
408 -(((
409 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
410 -)))
489 +507.7 - SF7BW125 to SF12BW125
411 411  
491 +507.9 - SF7BW125 to SF12BW125
412 412  
493 +508.1 - SF7BW125 to SF12BW125
413 413  
414 -=== 2.4.7  Soil Conductivity (EC) ===
495 +505.3 - SF12BW125 (RX2 downlink only)
415 415  
416 -(((
417 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
418 -)))
419 419  
420 -(((
421 -For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
422 -)))
423 423  
424 -(((
425 -Generally, the EC value of irrigation water is less than 800uS / cm.
426 -)))
499 +=== 2.7.4 AU915-928(AU915) ===
427 427  
428 -(((
429 -
430 -)))
501 +Default use CHE=2
431 431  
432 -(((
433 -
434 -)))
503 +(% style="color:#037691" %)**Uplink:**
435 435  
436 -=== 2.4.8  Digital Interrupt ===
505 +916.8 - SF7BW125 to SF12BW125
437 437  
438 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
507 +917.0 - SF7BW125 to SF12BW125
439 439  
440 -The command is:
509 +917.2 - SF7BW125 to SF12BW125
441 441  
442 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
511 +917.4 - SF7BW125 to SF12BW125
443 443  
513 +917.6 - SF7BW125 to SF12BW125
444 444  
445 -The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up.
515 +917.8 - SF7BW125 to SF12BW125
446 446  
517 +918.0 - SF7BW125 to SF12BW125
447 447  
448 -Example:
519 +918.2 - SF7BW125 to SF12BW125
449 449  
450 -0x(00): Normal uplink packet.
451 451  
452 -0x(01): Interrupt Uplink Packet.
522 +(% style="color:#037691" %)**Downlink:**
453 453  
524 +923.3 - SF7BW500 to SF12BW500
454 454  
526 +923.9 - SF7BW500 to SF12BW500
455 455  
456 -=== 2.4. ​+5V Output ===
528 +924.5 - SF7BW500 to SF12BW500
457 457  
458 -NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
530 +925.1 - SF7BW500 to SF12BW500
459 459  
532 +925.7 - SF7BW500 to SF12BW500
460 460  
461 -The 5V output time can be controlled by AT Command.
534 +926.3 - SF7BW500 to SF12BW500
462 462  
463 -(% style="color:blue" %)**AT+5VT=1000**
536 +926.9 - SF7BW500 to SF12BW500
464 464  
465 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
538 +927.5 - SF7BW500 to SF12BW500
466 466  
540 +923.3 - SF12BW500(RX2 downlink only)
467 467  
468 468  
469 -== 2.5  Downlink Payload ==
470 470  
471 -By default, NSE01 prints the downlink payload to console port.
544 +=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
472 472  
473 -[[image:image-20220708133731-5.png]]
546 +(% style="color:#037691" %)**Default Uplink channel:**
474 474  
548 +923.2 - SF7BW125 to SF10BW125
475 475  
476 -(((
477 -(% style="color:blue" %)**Examples:**
478 -)))
550 +923.4 - SF7BW125 to SF10BW125
479 479  
480 -(((
481 -
482 -)))
483 483  
484 -* (((
485 -(% style="color:blue" %)**Set TDC**
486 -)))
553 +(% style="color:#037691" %)**Additional Uplink Channel**:
487 487  
488 -(((
489 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
490 -)))
555 +(OTAA mode, channel added by JoinAccept message)
491 491  
492 -(((
493 -Payload:    01 00 00 1E    TDC=30S
494 -)))
557 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
495 495  
496 -(((
497 -Payload:    01 00 00 3C    TDC=60S
498 -)))
559 +922.2 - SF7BW125 to SF10BW125
499 499  
500 -(((
501 -
502 -)))
561 +922.4 - SF7BW125 to SF10BW125
503 503  
504 -* (((
505 -(% style="color:blue" %)**Reset**
506 -)))
563 +922.6 - SF7BW125 to SF10BW125
507 507  
508 -(((
509 -If payload = 0x04FF, it will reset the NSE01
510 -)))
565 +922.8 - SF7BW125 to SF10BW125
511 511  
567 +923.0 - SF7BW125 to SF10BW125
512 512  
513 -* (% style="color:blue" %)**INTMOD**
569 +922.0 - SF7BW125 to SF10BW125
514 514  
515 -Downlink Payload: 06000003, Set AT+INTMOD=3
516 516  
572 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
517 517  
574 +923.6 - SF7BW125 to SF10BW125
518 518  
519 -== 2. ​LED Indicator ==
576 +923.8 - SF7BW125 to SF10BW125
520 520  
521 -(((
522 -The NSE01 has an internal LED which is to show the status of different state.
578 +924.0 - SF7BW125 to SF10BW125
523 523  
580 +924.2 - SF7BW125 to SF10BW125
524 524  
525 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
526 -* Then the LED will be on for 1 second means device is boot normally.
527 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
528 -* For each uplink probe, LED will be on for 500ms.
529 -)))
582 +924.4 - SF7BW125 to SF10BW125
530 530  
584 +924.6 - SF7BW125 to SF10BW125
531 531  
532 532  
587 +(% style="color:#037691" %)** Downlink:**
533 533  
534 -== 2.7  Installation in Soil ==
589 +Uplink channels 1-8 (RX1)
535 535  
536 -__**Measurement the soil surface**__
591 +923.2 - SF10BW125 (RX2)
537 537  
538 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
539 539  
540 -[[image:1657259653666-883.png]] ​
541 541  
595 +=== 2.7.6 KR920-923 (KR920) ===
542 542  
543 -(((
544 -
597 +Default channel:
545 545  
546 -(((
547 -Dig a hole with diameter > 20CM.
548 -)))
599 +922.1 - SF7BW125 to SF12BW125
549 549  
550 -(((
551 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
552 -)))
553 -)))
601 +922.3 - SF7BW125 to SF12BW125
554 554  
555 -[[image:1654506665940-119.png]]
603 +922.5 - SF7BW125 to SF12BW125
556 556  
557 -(((
558 -
559 -)))
560 560  
606 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
561 561  
562 -== 2. Firmware Change Log ==
608 +922.1 - SF7BW125 to SF12BW125
563 563  
610 +922.3 - SF7BW125 to SF12BW125
564 564  
565 -Download URL & Firmware Change log
612 +922.5 - SF7BW125 to SF12BW125
566 566  
567 -[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
614 +922.7 - SF7BW125 to SF12BW125
568 568  
616 +922.9 - SF7BW125 to SF12BW125
569 569  
570 -Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]]
618 +923.1 - SF7BW125 to SF12BW125
571 571  
620 +923.3 - SF7BW125 to SF12BW125
572 572  
573 573  
574 -== 2.9  ​Battery Analysis ==
623 +(% style="color:#037691" %)**Downlink:**
575 575  
576 -=== 2.9.1  ​Battery Type ===
625 +Uplink channels 1-7(RX1)
577 577  
627 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
578 578  
579 -The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
580 580  
581 581  
582 -The battery is designed to last for several years depends on the actually use environment and update interval. 
631 +=== 2.7.7 IN865-867 (IN865) ===
583 583  
633 +(% style="color:#037691" %)** Uplink:**
584 584  
585 -The battery related documents as below:
635 +865.0625 - SF7BW125 to SF12BW125
586 586  
587 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
588 -* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
589 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
637 +865.4025 - SF7BW125 to SF12BW125
590 590  
639 +865.9850 - SF7BW125 to SF12BW125
640 +
641 +
642 +(% style="color:#037691" %) **Downlink:**
643 +
644 +Uplink channels 1-3 (RX1)
645 +
646 +866.550 - SF10BW125 (RX2)
647 +
648 +
649 +
650 +
651 +== 2.8 LED Indicator ==
652 +
653 +The LSE01 has an internal LED which is to show the status of different state.
654 +
655 +* Blink once when device power on.
656 +* Solid ON for 5 seconds once device successful Join the network.
657 +* Blink once when device transmit a packet.
658 +
659 +
660 +
661 +== 2.9 Installation in Soil ==
662 +
663 +**Measurement the soil surface**
664 +
665 +
666 +[[image:1654506634463-199.png]] ​
667 +
591 591  (((
592 -[[image:image-20220708140453-6.png]]
669 +(((
670 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
593 593  )))
672 +)))
594 594  
595 595  
675 +[[image:1654506665940-119.png]]
596 596  
597 -=== 2.9.2  Power consumption Analyze ===
677 +(((
678 +Dig a hole with diameter > 20CM.
679 +)))
598 598  
599 599  (((
600 -Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
682 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
601 601  )))
602 602  
603 603  
686 +== 2.10 ​Firmware Change Log ==
687 +
604 604  (((
605 -Instruction to use as below:
689 +**Firmware download link:**
606 606  )))
607 607  
608 608  (((
609 -(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
693 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
610 610  )))
611 611  
696 +(((
697 +
698 +)))
612 612  
613 613  (((
614 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose
701 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
615 615  )))
616 616  
617 -* (((
618 -Product Model
704 +(((
705 +
619 619  )))
620 -* (((
621 -Uplink Interval
707 +
708 +(((
709 +**V1.0.**
622 622  )))
623 -* (((
624 -Working Mode
625 -)))
626 626  
627 627  (((
628 -And the Life expectation in difference case will be shown on the right.
713 +Release
629 629  )))
630 630  
631 -[[image:image-20220708141352-7.jpeg]]
632 632  
717 +== 2.11 ​Battery Analysis ==
633 633  
719 +=== 2.11.1 ​Battery Type ===
634 634  
635 -=== 2.9.3  ​Battery Note ===
721 +(((
722 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
723 +)))
636 636  
637 637  (((
638 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
726 +The battery is designed to last for more than 5 years for the LSN50.
639 639  )))
640 640  
729 +(((
730 +(((
731 +The battery-related documents are as below:
732 +)))
733 +)))
641 641  
735 +* (((
736 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
737 +)))
738 +* (((
739 +[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
740 +)))
741 +* (((
742 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
743 +)))
642 642  
643 -=== 2.9.4  Replace the battery ===
745 + [[image:image-20220606171726-9.png]]
644 644  
747 +
748 +
749 +=== 2.11.2 ​Battery Note ===
750 +
645 645  (((
646 -The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
752 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
647 647  )))
648 648  
649 649  
650 650  
651 -= 3. ​ Access NB-IoT Module =
757 +=== 2.11.3 Replace the battery ===
652 652  
653 653  (((
654 -Users can directly access the AT command set of the NB-IoT module.
760 +If Battery is lower than 2.7v, user should replace the battery of LSE01.
655 655  )))
656 656  
657 657  (((
658 -The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
764 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
659 659  )))
660 660  
661 -[[image:1657261278785-153.png]]
767 +(((
768 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
769 +)))
662 662  
663 663  
664 664  
665 -= 4.  Using the AT Commands =
773 += 3. Using the AT Commands =
666 666  
667 -== 4.1  Access AT Commands ==
775 +== 3.1 Access AT Commands ==
668 668  
669 -See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
670 670  
778 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
671 671  
672 -AT+<CMD>?  : Help on <CMD>
780 +[[image:1654501986557-872.png||height="391" width="800"]]
673 673  
674 -AT+<CMD>         : Run <CMD>
675 675  
676 -AT+<CMD>=<value> : Set the value
783 +Or if you have below board, use below connection:
677 677  
678 -AT+<CMD>=?  : Get the value
679 679  
786 +[[image:1654502005655-729.png||height="503" width="801"]]
680 680  
788 +
789 +
790 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
791 +
792 +
793 + [[image:1654502050864-459.png||height="564" width="806"]]
794 +
795 +
796 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
797 +
798 +
799 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
800 +
801 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
802 +
803 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
804 +
805 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
806 +
807 +
681 681  (% style="color:#037691" %)**General Commands**(%%)      
682 682  
683 -AT  : Attention       
810 +(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
684 684  
685 -AT?  : Short Help     
812 +(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
686 686  
687 -ATZ  : MCU Reset    
814 +(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
688 688  
689 -AT+TDC  : Application Data Transmission Interval
816 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
690 690  
691 -AT+CFG  : Print all configurations
692 692  
693 -AT+CFGMOD           : Working mode selection
819 +(% style="color:#037691" %)**Keys, IDs and EUIs management**
694 694  
695 -AT+INTMOD            : Set the trigger interrupt mode
821 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
696 696  
697 -AT+5VT  : Set extend the time of 5V power  
823 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
698 698  
699 -AT+PRO  : Choose agreement
825 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
700 700  
701 -AT+WEIGRE  : Get weight or set weight to 0
827 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
702 702  
703 -AT+WEIGAP  : Get or Set the GapValue of weight
829 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
704 704  
705 -AT+RXDL  : Extend the sending and receiving time
831 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
706 706  
707 -AT+CNTFAC  : Get or set counting parameters
833 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
708 708  
709 -AT+SERVADDR  : Server Address
835 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
710 710  
837 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
711 711  
712 -(% style="color:#037691" %)**COAP Management**      
839 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
713 713  
714 -AT+URI            : Resource parameters
841 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
715 715  
843 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
716 716  
717 -(% style="color:#037691" %)**UDP Management**
845 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
718 718  
719 -AT+CFM          : Upload confirmation mode (only valid for UDP)
847 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
720 720  
849 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
721 721  
722 -(% style="color:#037691" %)**MQTT Management**
851 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
723 723  
724 -AT+CLIENT               : Get or Set MQTT client
725 725  
726 -AT+UNAME  : Get or Set MQTT Username
854 +(% style="color:#037691" %)**LoRa Network Management**
727 727  
728 -AT+PWD                  : Get or Set MQTT password
856 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
729 729  
730 -AT+PUBTOPI : Get or Set MQTT publish topic
858 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
731 731  
732 -AT+SUBTOPIC  : Get or Set MQTT subscription topic
860 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
733 733  
862 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
734 734  
735 -(% style="color:#037691" %)**Information**          
864 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
736 736  
737 -AT+FDR  : Factory Data Reset
866 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
738 738  
739 -AT+PWOR : Serial Access Password
868 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
740 740  
870 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
741 741  
872 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
742 742  
874 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
875 +
876 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
877 +
878 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
879 +
880 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
881 +
882 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
883 +
884 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
885 +
886 +
887 +(% style="color:#037691" %)**Information** 
888 +
889 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
890 +
891 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
892 +
893 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
894 +
895 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
896 +
897 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
898 +
899 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
900 +
901 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
902 +
903 +
743 743  = ​4. FAQ =
744 744  
745 745  == 4.1 ​How to change the LoRa Frequency Bands/Region? ==
... ... @@ -790,14 +790,19 @@
790 790  
791 791  (((
792 792  Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
954 +)))
793 793  
794 -* (% style="color:#037691" %)**AT+CHE=2**
795 -* (% style="color:#037691" %)**ATZ**
956 +(% class="box infomessage" %)
957 +(((
958 +**AT+CHE=2**
796 796  )))
797 797  
961 +(% class="box infomessage" %)
798 798  (((
799 -
963 +**ATZ**
964 +)))
800 800  
966 +(((
801 801  to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
802 802  )))
803 803  
... ... @@ -812,22 +812,18 @@
812 812  [[image:image-20220606154825-4.png]]
813 813  
814 814  
815 -== 4.2 ​Can I calibrate LSE01 to different soil types? ==
816 816  
817 -LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
818 -
819 -
820 820  = 5. Trouble Shooting =
821 821  
822 -== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
984 +== 5.1 ​Why I cant join TTN in US915 / AU915 bands? ==
823 823  
824 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
986 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
825 825  
826 826  
827 -== 5.2 AT Command input doesn't work ==
989 +== 5.2 AT Command input doesnt work ==
828 828  
829 829  (((
830 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
992 +In the case if user can see the console output but cant type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesnt send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
831 831  )))
832 832  
833 833  
... ... @@ -909,6 +909,7 @@
909 909  * (((
910 910  Weight / pcs : g
911 911  
1074 +
912 912  
913 913  )))
914 914  
... ... @@ -916,3 +916,8 @@
916 916  
917 917  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
918 918  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1082 +
1083 +
1084 +~)~)~)
1085 +~)~)~)
1086 +~)~)~)
1657245163077-232.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
image-20220610172436-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -370.3 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -102.7 KB
Content