Changes for page NDDS75 -- NB-IoT Distance Detect Sensor User Manual
Last modified by Bei Jinggeng on 2024/05/31 09:53
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 23 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - NSE01NB-IoTSoil Moisture & EC Sensor User Manual1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -3,88 +3,74 @@ 3 3 4 4 5 5 6 - 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 14 **Table of Contents:** 15 15 8 +{{toc/}} 16 16 17 17 18 18 19 19 20 20 21 -= 1. Introduction = 22 22 23 -= =1.1 Whatis LoRaWAN Soil Moisture & EC Sensor==15 += 1. Introduction = 24 24 17 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 18 + 25 25 ((( 26 26 27 27 28 -Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 22 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 23 +))) 29 29 30 -It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 25 +((( 26 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 27 +))) 31 31 32 -The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 29 +((( 30 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 31 +))) 33 33 34 -NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years. 33 +((( 34 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 35 +))) 35 35 36 - 37 +((( 38 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 37 37 ))) 38 38 41 + 39 39 [[image:1654503236291-817.png]] 40 40 41 41 42 -[[image:165 7245163077-232.png]]45 +[[image:1654503265560-120.png]] 43 43 44 44 45 45 46 46 == 1.2 Features == 47 47 48 - 49 -* NB-IoTBands: B1/B3/B8/B5/B20/B28 @H-FDD51 +* LoRaWAN 1.0.3 Class A 52 +* Ultra low power consumption 50 50 * Monitor Soil Moisture 51 51 * Monitor Soil Temperature 52 52 * Monitor Soil Conductivity 56 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 53 53 * AT Commands to change parameters 54 54 * Uplink on periodically 55 55 * Downlink to change configure 56 56 * IP66 Waterproof Enclosure 57 -* Ultra-Low Power consumption 58 -* AT Commands to change parameters 59 -* Micro SIM card slot for NB-IoT SIM 60 -* 8500mAh Battery for long term use 61 +* 4000mAh or 8500mAh Battery for long term use 61 61 62 -== 1.3 Specification == 63 63 64 64 65 - (% style="color:#037691"%)**Common DC Characteristics:**65 +== 1.3 Specification == 66 66 67 -* Supply Voltage: 2.1v ~~ 3.6v 68 -* Operating Temperature: -40 ~~ 85°C 69 - 70 -(% style="color:#037691" %)**NB-IoT Spec:** 71 - 72 -* - B1 @H-FDD: 2100MHz 73 -* - B3 @H-FDD: 1800MHz 74 -* - B8 @H-FDD: 900MHz 75 -* - B5 @H-FDD: 850MHz 76 -* - B20 @H-FDD: 800MHz 77 -* - B28 @H-FDD: 700MHz 78 - 79 -(% style="color:#037691" %)**Probe Specification:** 80 - 81 81 Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 82 82 83 -[[image:image-20220 708101224-1.png]]69 +[[image:image-20220606162220-5.png]] 84 84 85 85 86 86 87 -== 1.4 73 +== 1.4 Applications == 88 88 89 89 * Smart Agriculture 90 90 ... ... @@ -91,579 +91,732 @@ 91 91 (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 92 92 93 93 94 -== 1.5 Pin Definitions==80 +== 1.5 Firmware Change log == 95 95 96 96 97 - [[image:1657246476176-652.png]]83 +**LSE01 v1.0 :** Release 98 98 99 99 100 100 101 -= 2. UseNSE01 to communicatewithIoTServer=87 += 2. Configure LSE01 to connect to LoRaWAN network = 102 102 103 -== 2.1 89 +== 2.1 How it works == 104 104 105 - 106 106 ((( 107 -The NSE01 isequippedwithaNB-IoT module,thepre-loadedfirmwareinNSE01willgetenvironmentdatafrom sensorsandsend thevaluetolocalNB-IoTnetworkviatheNB-IoTmodule.The NB-IoTnetworkwillforwardthisvaluetoIoTserver viatheprotocoldefinedbyNSE01.92 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 108 108 ))) 109 109 110 - 111 111 ((( 112 - Thediagrambelowshows theworkingflowindefaultfirmware ofNSE01:96 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 113 113 ))) 114 114 115 -[[image:image-20220708101605-2.png]] 116 116 117 -((( 118 - 119 -))) 120 120 101 +== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 121 121 103 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 122 122 123 -== 2.2 Configure the NSE01 == 124 124 106 +[[image:1654503992078-669.png]] 125 125 126 -=== 2.2.1 Test Requirement === 127 127 109 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 128 128 129 -To use NSE01 in your city, make sure meet below requirements: 130 130 131 -* Your local operator has already distributed a NB-IoT Network there. 132 -* The local NB-IoT network used the band that NSE01 supports. 133 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 112 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSE01. 134 134 114 +Each LSE01 is shipped with a sticker with the default device EUI as below: 115 + 116 +[[image:image-20220606163732-6.jpeg]] 117 + 118 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 119 + 120 +**Add APP EUI in the application** 121 + 122 + 123 +[[image:1654504596150-405.png]] 124 + 125 + 126 + 127 +**Add APP KEY and DEV EUI** 128 + 129 +[[image:1654504683289-357.png]] 130 + 131 + 132 + 133 +(% style="color:blue" %)**Step 2**(%%): Power on LSE01 134 + 135 + 136 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 137 + 138 +[[image:image-20220606163915-7.png]] 139 + 140 + 141 +(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 142 + 143 +[[image:1654504778294-788.png]] 144 + 145 + 146 + 147 +== 2.3 Uplink Payload == 148 + 149 + 150 +=== 2.3.1 MOD~=0(Default Mode) === 151 + 152 +LSE01 will uplink payload via LoRaWAN with below payload format: 153 + 135 135 ((( 136 - Below figure shows our testing structure. Here we have NB-IoT networkcoverage byChina Mobile, the bandthey useis B8. The NSE01 willuseCoAP((%style="color:red"%)120.24.4.116:5683)(%%)or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red"%)120.24.4.116:1883)(%%)orTCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server155 +Uplink payload includes in total 11 bytes. 137 137 ))) 138 138 158 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 159 +|((( 160 +**Size** 139 139 140 -[[image:1657249419225-449.png]] 162 +**(bytes)** 163 +)))|**2**|**2**|**2**|**2**|**2**|**1** 164 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 165 +Temperature 141 141 167 +(Reserve, Ignore now) 168 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 169 +MOD & Digital Interrupt 142 142 171 +(Optional) 172 +))) 143 143 144 -=== 2.2.2 Insert SIM card === 145 145 146 -Insert the NB-IoT Card get from your provider. 147 147 148 -User need to take out the NB-IoT module and insert the SIM card like below: 149 149 150 150 151 - [[image:1657249468462-536.png]]178 +=== 2.3.2 MOD~=1(Original value) === 152 152 180 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 153 153 182 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 183 +|((( 184 +**Size** 154 154 155 -=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 186 +**(bytes)** 187 +)))|**2**|**2**|**2**|**2**|**2**|**1** 188 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 189 +Temperature 156 156 191 +(Reserve, Ignore now) 192 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 193 +MOD & Digital Interrupt 194 + 195 +(Optional) 196 +))) 197 + 198 + 199 + 200 + 201 + 202 +=== 2.3.3 Battery Info === 203 + 157 157 ((( 205 +Check the battery voltage for LSE01. 206 +))) 207 + 158 158 ((( 159 - User need to configure NSE01via serial port to set the (% style="color:blue"%)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USBtoTTL adapter to connect to NSE01 and use AT Commands to configure it, as below.209 +Ex1: 0x0B45 = 2885mV 160 160 ))) 211 + 212 +((( 213 +Ex2: 0x0B49 = 2889mV 161 161 ))) 162 162 163 163 164 -**Connection:** 165 165 166 - (%style="background-color:yellow"%)USB TTL GND <~-~-~-~-> GND218 +=== 2.3.4 Soil Moisture === 167 167 168 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 220 +((( 221 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 222 +))) 169 169 170 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 224 +((( 225 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 226 +))) 171 171 228 +((( 229 + 230 +))) 172 172 173 -In the PC, use below serial tool settings: 232 +((( 233 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 234 +))) 174 174 175 -* Baud: (% style="color:green" %)**9600** 176 -* Data bits:** (% style="color:green" %)8(%%)** 177 -* Stop bits: (% style="color:green" %)**1** 178 -* Parity: (% style="color:green" %)**None** 179 -* Flow Control: (% style="color:green" %)**None** 180 180 237 + 238 +=== 2.3.5 Soil Temperature === 239 + 181 181 ((( 182 - Makesure the switchisinFLASH position,thenpowerondevice byconnectingthejumperonNSE01.NSE01 willoutputsystem infooncepower onasbelow,wecan enter the(%style="color:green"%)**password:12345678**(%%)toaccessAT Commandinput.241 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 183 183 ))) 184 184 185 -[[image:image-20220708110657-3.png]] 244 +((( 245 +**Example**: 246 +))) 186 186 187 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 248 +((( 249 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 250 +))) 188 188 252 +((( 253 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 254 +))) 189 189 190 190 191 -=== 2.2.4 Use CoAP protocol to uplink data === 192 192 193 - (% style="color:red"%)Note:if you don't have CoAP server, you can refer thislinktoset up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]258 +=== 2.3.6 Soil Conductivity (EC) === 194 194 260 +((( 261 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 262 +))) 195 195 196 -**Use below commands:** 264 +((( 265 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 266 +))) 197 197 198 - *(% style="color:blue" %)**AT+PRO=1**(%%) ~/~/ Set to use CoAP protocol to uplink199 - * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683** (%%)~/~/to setCoAPserver address andport200 - * (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%)~/~/Set COAP resource path268 +((( 269 +Generally, the EC value of irrigation water is less than 800uS / cm. 270 +))) 201 201 202 -For parameter description, please refer to AT command set 272 +((( 273 + 274 +))) 203 203 204 -[[image:1657249793983-486.png]] 276 +((( 277 + 278 +))) 205 205 280 +=== 2.3.7 MOD === 206 206 207 - After configurethe serveraddress and(% style="color:green" %)**resetthe device**(%%) (via AT+ATZ ), NSE01willstart touplink sensorvaluestoCoAP server.282 +Firmware version at least v2.1 supports changing mode. 208 208 209 - [[image:1657249831934-534.png]]284 +For example, bytes[10]=90 210 210 286 +mod=(bytes[10]>>7)&0x01=1. 211 211 212 212 213 - === 2.2.5 Use UDP protocolto uplinkdata(Default protocol) ===289 +**Downlink Command:** 214 214 215 - Thisfeatureis supportedsincefirmware version v1.0.1291 +If payload = 0x0A00, workmode=0 216 216 293 +If** **payload =** **0x0A01, workmode=1 217 217 218 -* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 219 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 220 -* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 221 221 222 -[[image:1657249864775-321.png]] 223 223 297 +=== 2.3.8 Decode payload in The Things Network === 224 224 225 - [[image:1657249930215-289.png]]299 +While using TTN network, you can add the payload format to decode the payload. 226 226 227 227 302 +[[image:1654505570700-128.png]] 228 228 229 -=== 2.2.6 Use MQTT protocol to uplink data === 304 +((( 305 +The payload decoder function for TTN is here: 306 +))) 230 230 231 -This feature is supported since firmware version v110 308 +((( 309 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]] 310 +))) 232 232 233 233 234 -* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 235 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 236 -* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 237 -* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 238 -* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 239 -* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 240 -* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 313 +== 2.4 Uplink Interval == 241 241 242 - [[image:1657249978444-674.png]]315 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 243 243 244 244 245 -[[image:1657249990869-686.png]] 246 246 319 +== 2.5 Downlink Payload == 247 247 321 +By default, LSE50 prints the downlink payload to console port. 322 + 323 +[[image:image-20220606165544-8.png]] 324 + 325 + 248 248 ((( 249 - MQTT protocol has amuch higherpower consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.327 +**Examples:** 250 250 ))) 251 251 330 +((( 331 + 332 +))) 252 252 334 +* ((( 335 +**Set TDC** 336 +))) 253 253 254 -=== 2.2.7 Use TCP protocol to uplink data === 338 +((( 339 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 340 +))) 255 255 256 -This feature is supported since firmware version v110 342 +((( 343 +Payload: 01 00 00 1E TDC=30S 344 +))) 257 257 346 +((( 347 +Payload: 01 00 00 3C TDC=60S 348 +))) 258 258 259 -* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 260 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 350 +((( 351 + 352 +))) 261 261 262 -[[image:1657250217799-140.png]] 354 +* ((( 355 +**Reset** 356 +))) 263 263 358 +((( 359 +If payload = 0x04FF, it will reset the LSE01 360 +))) 264 264 265 -[[image:1657250255956-604.png]] 266 266 363 +* **CFM** 267 267 365 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 268 268 269 -=== 2.2.8 Change Update Interval === 270 270 271 -User can use below command to change the (% style="color:green" %)**uplink interval**. 272 272 273 - * (% style="color:blue" %)**AT+TDC=600** (%%)~/~/SetUpdate Intervalto 600s369 +== 2.6 Show Data in DataCake IoT Server == 274 274 275 275 ((( 276 - (%style="color:red"%)**NOTE:**372 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 277 277 ))) 278 278 279 279 ((( 280 - (%style="color:red" %)1. By default, the device will send an uplink message every 1 hour.376 + 281 281 ))) 282 282 379 +((( 380 +**Step 1**: Be sure that your device is programmed and properly connected to the network at this time. 381 +))) 283 283 383 +((( 384 +**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 385 +))) 284 284 285 -== 2.3 Uplink Payload == 286 286 287 - In thismode, uplink payload includes in total18bytes388 +[[image:1654505857935-743.png]] 288 288 289 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 290 -|=(% style="width: 50px;" %)((( 291 -**Size(bytes)** 292 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1** 293 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]] 294 294 295 - If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01uplink data.391 +[[image:1654505874829-548.png]] 296 296 393 +Step 3: Create an account or log in Datacake. 297 297 298 - [[image:image-20220708111918-4.png]]395 +Step 4: Search the LSE01 and add DevEUI. 299 299 300 300 301 - The payloadis ASCII string, representative same HEX:398 +[[image:1654505905236-553.png]] 302 302 303 -0x72403155615900640c7817075e0a8c02f900 where: 304 304 305 -* Device ID: 0x 724031556159 = 724031556159 306 -* Version: 0x0064=100=1.0.0 401 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 307 307 308 -* BAT: 0x0c78 = 3192 mV = 3.192V 309 -* Singal: 0x17 = 23 310 -* Soil Moisture: 0x075e= 1886 = 18.86 % 311 -* Soil Temperature:0x0a8c =2700=27 °C 312 -* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 313 -* Interrupt: 0x00 = 0 403 +[[image:1654505925508-181.png]] 314 314 315 -== 2.4 Payload Explanation and Sensor Interface == 316 316 317 317 318 -== =2.4.1 DeviceID===407 +== 2.7 Frequency Plans == 319 319 320 - Bydefault,theDevice IDequalto the last6bytesofIMEI.409 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 321 321 322 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 323 323 324 - **Example:**412 +=== 2.7.1 EU863-870 (EU868) === 325 325 326 - AT+DEUI=A84041F15612414 +(% style="color:#037691" %)** Uplink:** 327 327 328 - TheDevice ID is stored in a none-erasearea,Upgradethe firmwareorrun AT+FDR won't erase Device ID.416 +868.1 - SF7BW125 to SF12BW125 329 329 418 +868.3 - SF7BW125 to SF12BW125 and SF7BW250 330 330 420 +868.5 - SF7BW125 to SF12BW125 331 331 332 - ===2.4.2VersionInfo ===422 +867.1 - SF7BW125 to SF12BW125 333 333 334 - Specifythesoftware version: 0x64=100,means firmware version1.00.424 +867.3 - SF7BW125 to SF12BW125 335 335 336 - For example: 0x0064:this device is NSE01with firmware version1.0.0.426 +867.5 - SF7BW125 to SF12BW125 337 337 428 +867.7 - SF7BW125 to SF12BW125 338 338 430 +867.9 - SF7BW125 to SF12BW125 339 339 340 - === 2.4.3Battery Info ===432 +868.8 - FSK 341 341 342 -((( 343 -Check the battery voltage for LSE01. 344 -))) 345 345 346 -((( 347 -Ex1: 0x0B45 = 2885mV 348 -))) 435 +(% style="color:#037691" %)** Downlink:** 349 349 350 -((( 351 -Ex2: 0x0B49 = 2889mV 352 -))) 437 +Uplink channels 1-9 (RX1) 353 353 439 +869.525 - SF9BW125 (RX2 downlink only) 354 354 355 355 356 -=== 2.4.4 Signal Strength === 357 357 358 - NB-IoTNetworksignalStrength.443 +=== 2.7.2 US902-928(US915) === 359 359 360 - **Ex1:0x1d=29**445 +Used in USA, Canada and South America. Default use CHE=2 361 361 362 -(% style="color: blue" %)**0**(%%) -113dBm or less447 +(% style="color:#037691" %)**Uplink:** 363 363 364 - (%style="color:blue"%)**1**(%%)-111dBm449 +903.9 - SF7BW125 to SF10BW125 365 365 366 - (%style="color:blue"%)**2...30**(%%)-109dBm... -53dBm451 +904.1 - SF7BW125 to SF10BW125 367 367 368 - (% style="color:blue" %)**31**(%%)-51dBmorgreater453 +904.3 - SF7BW125 to SF10BW125 369 369 370 - (% style="color:blue" %)**99**(%%)Notknownor not detectable455 +904.5 - SF7BW125 to SF10BW125 371 371 457 +904.7 - SF7BW125 to SF10BW125 372 372 459 +904.9 - SF7BW125 to SF10BW125 373 373 374 - ===2.4.5SoilMoisture ===461 +905.1 - SF7BW125 to SF10BW125 375 375 376 -((( 377 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 378 -))) 463 +905.3 - SF7BW125 to SF10BW125 379 379 380 -((( 381 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 382 -))) 383 383 384 -((( 385 - 386 -))) 466 +(% style="color:#037691" %)**Downlink:** 387 387 388 -((( 389 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 390 -))) 468 +923.3 - SF7BW500 to SF12BW500 391 391 470 +923.9 - SF7BW500 to SF12BW500 392 392 472 +924.5 - SF7BW500 to SF12BW500 393 393 394 - ===2.4.6SoilTemperature===474 +925.1 - SF7BW500 to SF12BW500 395 395 396 -((( 397 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 398 -))) 476 +925.7 - SF7BW500 to SF12BW500 399 399 400 -((( 401 -**Example**: 402 -))) 478 +926.3 - SF7BW500 to SF12BW500 403 403 404 -((( 405 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 406 -))) 480 +926.9 - SF7BW500 to SF12BW500 407 407 408 -((( 409 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 410 -))) 482 +927.5 - SF7BW500 to SF12BW500 411 411 484 +923.3 - SF12BW500(RX2 downlink only) 412 412 413 413 414 -=== 2.4.7 Soil Conductivity (EC) === 415 415 416 -((( 417 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 418 -))) 488 +=== 2.7.3 CN470-510 (CN470) === 419 419 420 -((( 421 -For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 422 -))) 490 +Used in China, Default use CHE=1 423 423 424 -((( 425 -Generally, the EC value of irrigation water is less than 800uS / cm. 426 -))) 492 +(% style="color:#037691" %)**Uplink:** 427 427 428 -((( 429 - 430 -))) 494 +486.3 - SF7BW125 to SF12BW125 431 431 432 -((( 433 - 434 -))) 496 +486.5 - SF7BW125 to SF12BW125 435 435 436 - === 2.4.8DigitalInterrupt===498 +486.7 - SF7BW125 to SF12BW125 437 437 438 - Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods.Whenthere is a trigger, the NSE01will send a packettothe server.500 +486.9 - SF7BW125 to SF12BW125 439 439 440 - Thecommandis:502 +487.1 - SF7BW125 to SF12BW125 441 441 442 - (% style="color:blue" %)**AT+INTMOD=3**(%%)~/~/(more info aboutINMOD please refer [[**AT CommandManual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**504 +487.3 - SF7BW125 to SF12BW125 443 443 506 +487.5 - SF7BW125 to SF12BW125 444 444 445 - The lower four bits of this data field shows if this packet is generated by interrupt or not.[[Clickhere>>||anchor="H"]]forthe hardware and softwareset up.508 +487.7 - SF7BW125 to SF12BW125 446 446 447 447 448 - Example:511 +(% style="color:#037691" %)**Downlink:** 449 449 450 -0 x(00):Normaluplinkpacket.513 +506.7 - SF7BW125 to SF12BW125 451 451 452 -0 x(01):InterruptUplinkPacket.515 +506.9 - SF7BW125 to SF12BW125 453 453 517 +507.1 - SF7BW125 to SF12BW125 454 454 519 +507.3 - SF7BW125 to SF12BW125 455 455 456 - === 2.4.9+5VOutput===521 +507.5 - SF7BW125 to SF12BW125 457 457 458 - NSE01willenable +5Voutput beforeall sampling and disable the +5v after all sampling.523 +507.7 - SF7BW125 to SF12BW125 459 459 525 +507.9 - SF7BW125 to SF12BW125 460 460 461 - The5Voutputtimecan be controlledby AT Command.527 +508.1 - SF7BW125 to SF12BW125 462 462 463 -( %style="color:blue" %)**AT+5VT=1000**529 +505.3 - SF12BW125 (RX2 downlink only) 464 464 465 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 466 466 467 467 533 +=== 2.7.4 AU915-928(AU915) === 468 468 469 - == 2.5Downlink Payload==535 +Default use CHE=2 470 470 471 - Bydefault, NSE01 prints the downlinkpayload to console port.537 +(% style="color:#037691" %)**Uplink:** 472 472 473 - [[image:image-20220708133731-5.png]]539 +916.8 - SF7BW125 to SF12BW125 474 474 541 +917.0 - SF7BW125 to SF12BW125 475 475 543 +917.2 - SF7BW125 to SF12BW125 476 476 477 -((( 478 -(% style="color:blue" %)**Examples:** 479 -))) 545 +917.4 - SF7BW125 to SF12BW125 480 480 481 -((( 482 - 483 -))) 547 +917.6 - SF7BW125 to SF12BW125 484 484 485 -* ((( 486 -(% style="color:blue" %)**Set TDC** 487 -))) 549 +917.8 - SF7BW125 to SF12BW125 488 488 489 -((( 490 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 491 -))) 551 +918.0 - SF7BW125 to SF12BW125 492 492 493 -((( 494 -Payload: 01 00 00 1E TDC=30S 495 -))) 553 +918.2 - SF7BW125 to SF12BW125 496 496 497 -((( 498 -Payload: 01 00 00 3C TDC=60S 499 -))) 500 500 501 -((( 502 - 503 -))) 556 +(% style="color:#037691" %)**Downlink:** 504 504 505 -* ((( 506 -(% style="color:blue" %)**Reset** 507 -))) 558 +923.3 - SF7BW500 to SF12BW500 508 508 509 -((( 510 -If payload = 0x04FF, it will reset the NSE01 511 -))) 560 +923.9 - SF7BW500 to SF12BW500 512 512 562 +924.5 - SF7BW500 to SF12BW500 513 513 514 - *(%style="color:blue"%)**INTMOD**564 +925.1 - SF7BW500 to SF12BW500 515 515 516 - DownlinkPayload:06000003,SetAT+INTMOD=3566 +925.7 - SF7BW500 to SF12BW500 517 517 568 +926.3 - SF7BW500 to SF12BW500 518 518 570 +926.9 - SF7BW500 to SF12BW500 519 519 520 - ==2.6LEDIndicator==572 +927.5 - SF7BW500 to SF12BW500 521 521 522 -((( 523 -The NSE01 has an internal LED which is to show the status of different state. 574 +923.3 - SF12BW500(RX2 downlink only) 524 524 525 525 526 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 527 -* Then the LED will be on for 1 second means device is boot normally. 528 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 529 -* For each uplink probe, LED will be on for 500ms. 530 -))) 531 531 578 +=== 2.7.5 AS920-923 & AS923-925 (AS923) === 532 532 580 +(% style="color:#037691" %)**Default Uplink channel:** 533 533 582 +923.2 - SF7BW125 to SF10BW125 534 534 535 - ==2.7InstallationinSoil ==584 +923.4 - SF7BW125 to SF10BW125 536 536 537 -__**Measurement the soil surface**__ 538 538 539 - Choosethe proper measuring position. Avoid the probe to touch rocks or hard things. Split thesurface soilaccordingto the measuredeep. Keepthe measured as originaldensity. Verticalsert the probe into the soil to be measured. Makesure not shake wheninserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]587 +(% style="color:#037691" %)**Additional Uplink Channel**: 540 540 541 - [[image:1657259653666-883.png]]589 +(OTAA mode, channel added by JoinAccept message) 542 542 591 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 543 543 544 -((( 545 - 593 +922.2 - SF7BW125 to SF10BW125 546 546 547 -((( 548 -Dig a hole with diameter > 20CM. 549 -))) 595 +922.4 - SF7BW125 to SF10BW125 550 550 551 -((( 552 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 553 -))) 554 -))) 597 +922.6 - SF7BW125 to SF10BW125 555 555 556 - [[image:1654506665940-119.png]]599 +922.8 - SF7BW125 to SF10BW125 557 557 558 -((( 559 - 560 -))) 601 +923.0 - SF7BW125 to SF10BW125 561 561 603 +922.0 - SF7BW125 to SF10BW125 562 562 563 -== 2.8 Firmware Change Log == 564 564 606 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 565 565 566 - DownloadURL&FirmwareChange log608 +923.6 - SF7BW125 to SF10BW125 567 567 568 - [[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]610 +923.8 - SF7BW125 to SF10BW125 569 569 612 +924.0 - SF7BW125 to SF10BW125 570 570 571 - UpgradeInstruction:[[Upgrade_Firmware>>||anchor="H"]]614 +924.2 - SF7BW125 to SF10BW125 572 572 616 +924.4 - SF7BW125 to SF10BW125 573 573 618 +924.6 - SF7BW125 to SF10BW125 574 574 575 -== 2.9 Battery Analysis == 576 576 577 - ===2.9.1 BatteryType===621 +(% style="color:#037691" %)** Downlink:** 578 578 623 +Uplink channels 1-8 (RX1) 579 579 580 - TheNSE01battery is a combination of an 8500mAhLi/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate(<2% per year). This type of battery is commonly used in IoT devices such as water meter.625 +923.2 - SF10BW125 (RX2) 581 581 582 582 583 -The battery is designed to last for several years depends on the actually use environment and update interval. 584 584 629 +=== 2.7.6 KR920-923 (KR920) === 585 585 586 - Thebattery relateddocumentsas below:631 +Default channel: 587 587 588 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 589 -* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 590 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 633 +922.1 - SF7BW125 to SF12BW125 591 591 635 +922.3 - SF7BW125 to SF12BW125 636 + 637 +922.5 - SF7BW125 to SF12BW125 638 + 639 + 640 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 641 + 642 +922.1 - SF7BW125 to SF12BW125 643 + 644 +922.3 - SF7BW125 to SF12BW125 645 + 646 +922.5 - SF7BW125 to SF12BW125 647 + 648 +922.7 - SF7BW125 to SF12BW125 649 + 650 +922.9 - SF7BW125 to SF12BW125 651 + 652 +923.1 - SF7BW125 to SF12BW125 653 + 654 +923.3 - SF7BW125 to SF12BW125 655 + 656 + 657 +(% style="color:#037691" %)**Downlink:** 658 + 659 +Uplink channels 1-7(RX1) 660 + 661 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 662 + 663 + 664 + 665 +=== 2.7.7 IN865-867 (IN865) === 666 + 667 +(% style="color:#037691" %)** Uplink:** 668 + 669 +865.0625 - SF7BW125 to SF12BW125 670 + 671 +865.4025 - SF7BW125 to SF12BW125 672 + 673 +865.9850 - SF7BW125 to SF12BW125 674 + 675 + 676 +(% style="color:#037691" %) **Downlink:** 677 + 678 +Uplink channels 1-3 (RX1) 679 + 680 +866.550 - SF10BW125 (RX2) 681 + 682 + 683 + 684 + 685 +== 2.8 LED Indicator == 686 + 687 +The LSE01 has an internal LED which is to show the status of different state. 688 + 689 +* Blink once when device power on. 690 +* Solid ON for 5 seconds once device successful Join the network. 691 +* Blink once when device transmit a packet. 692 + 693 +== 2.9 Installation in Soil == 694 + 695 +**Measurement the soil surface** 696 + 697 + 698 +[[image:1654506634463-199.png]] 699 + 592 592 ((( 593 -[[image:image-20220708140453-6.png]] 701 +((( 702 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 594 594 ))) 704 +))) 595 595 596 596 707 +[[image:1654506665940-119.png]] 597 597 598 -=== 2.9.2 Power consumption Analyze === 709 +((( 710 +Dig a hole with diameter > 20CM. 711 +))) 599 599 600 600 ((( 601 - Draginobattery powered productare allrunsinLow Powermode. Wehavean update battery calculator whichbase onthemeasurementof the realdevice. User canuse this calculatorto checkthebatterylife andcalculatethe batterylifeif want to use different transmit interval.714 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 602 602 ))) 603 603 604 604 718 +== 2.10 Firmware Change Log == 719 + 605 605 ((( 606 - Instructiontouseasbelow:721 +**Firmware download link:** 607 607 ))) 608 608 609 609 ((( 610 - (% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:[[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]725 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 611 611 ))) 612 612 728 +((( 729 + 730 +))) 613 613 614 614 ((( 615 - (% style="color:blue" %)**Step2: **(%%)Openithoose733 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 616 616 ))) 617 617 618 - *(((619 - ProductModel736 +((( 737 + 620 620 ))) 621 -* ((( 622 -Uplink Interval 739 + 740 +((( 741 +**V1.0.** 623 623 ))) 624 -* ((( 625 -Working Mode 626 -))) 627 627 628 628 ((( 629 - And theLifeexpectation in difference casewill be shown on the right.745 +Release 630 630 ))) 631 631 632 -[[image:image-20220708141352-7.jpeg]] 633 633 749 +== 2.11 Battery Analysis == 634 634 751 +=== 2.11.1 Battery Type === 635 635 636 -=== 2.9.3 Battery Note === 753 +((( 754 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 755 +))) 637 637 638 638 ((( 639 -The Li-SICObattery is designedfor small current/ longperiod application. It isnotgood to use a high current,short period transmit method. Therecommendedminimum period for use ofthis batteryis5minutes. Ifyou useshorterperiod time to transmitLoRa,thenthe battery life may be decreased.758 +The battery is designed to last for more than 5 years for the LSN50. 640 640 ))) 641 641 761 +((( 762 +((( 763 +The battery-related documents are as below: 764 +))) 765 +))) 642 642 767 +* ((( 768 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 769 +))) 770 +* ((( 771 +[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 772 +))) 773 +* ((( 774 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 775 +))) 643 643 644 - ===2.9.4 Replacethe battery ===777 + [[image:image-20220610172436-1.png]] 645 645 779 + 780 + 781 +=== 2.11.2 Battery Note === 782 + 646 646 ((( 647 -The defaultbatterypackofNSE01includesaER26500 plussupercapacitor. Ifusercan'tfind this pack locally,theycanfindER26500 orquivalence withoutthe SPC1520 capacitor, which will alsowork inmostcase. TheSPCcanlarge thebatterylifeforhigh frequency use(update periodbelow5minutes).784 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 648 648 ))) 649 649 650 650 651 651 652 -= 3. AccessNB-IoTModule =789 +=== 2.11.3 Replace the battery === 653 653 654 654 ((( 655 - Userscan directlyaccesstheAT command setoftheNB-IoTmodule.792 +If Battery is lower than 2.7v, user should replace the battery of LSE01. 656 656 ))) 657 657 658 658 ((( 659 - The AT Commandsetcanrefer theBC35-G NB-IoTModuleATCommand: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]]796 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 660 660 ))) 661 661 662 -[[image:1657261119050-993.png]] 799 +((( 800 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 801 +))) 663 663 664 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image002.jpg]] 665 665 666 666 805 += 3. Using the AT Commands = 667 667 668 668 == 3.1 Access AT Commands == 669 669 ... ... @@ -686,7 +686,7 @@ 686 686 [[image:1654502050864-459.png||height="564" width="806"]] 687 687 688 688 689 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>http s://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]828 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]] 690 690 691 691 692 692 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> ... ... @@ -844,14 +844,19 @@ 844 844 845 845 ((( 846 846 Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 986 +))) 847 847 848 -* (% style="color:#037691" %)**AT+CHE=2** 849 -* (% style="color:#037691" %)**ATZ** 988 +(% class="box infomessage" %) 989 +((( 990 +**AT+CHE=2** 850 850 ))) 851 851 993 +(% class="box infomessage" %) 852 852 ((( 853 - 995 +**ATZ** 996 +))) 854 854 998 +((( 855 855 to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 856 856 ))) 857 857 ... ... @@ -866,22 +866,18 @@ 866 866 [[image:image-20220606154825-4.png]] 867 867 868 868 869 -== 4.2 Can I calibrate LSE01 to different soil types? == 870 870 871 -LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]]. 872 - 873 - 874 874 = 5. Trouble Shooting = 875 875 876 -== 5.1 Why I can 't join TTN in US915 / AU915 bands? ==1016 +== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 877 877 878 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main. End DeviceATCommandsand Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.1018 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 879 879 880 880 881 -== 5.2 AT Command input doesn 't work ==1021 +== 5.2 AT Command input doesn’t work == 882 882 883 883 ((( 884 -In the case if user can see the console output but can 't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.1024 +In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 885 885 ))) 886 886 887 887
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -102.7 KB - Content