Changes for page NDDS75 -- NB-IoT Distance Detect Sensor User Manual
Last modified by Bei Jinggeng on 2024/05/31 09:53
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 23 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - NSE01NB-IoTSoil Moisture & EC Sensor User Manual1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -3,7 +3,9 @@ 3 3 4 4 5 5 6 +**Contents:** 6 6 8 +{{toc/}} 7 7 8 8 9 9 ... ... @@ -10,81 +10,61 @@ 10 10 11 11 12 12 15 += 1. Introduction = 13 13 14 - **TableofContents:**17 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 15 15 19 +((( 20 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 21 +))) 16 16 23 +((( 24 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 25 +))) 17 17 27 +((( 28 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 29 +))) 18 18 19 - 20 - 21 -= 1. Introduction = 22 - 23 -== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 24 - 25 25 ((( 26 - 32 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 33 +))) 27 27 28 -Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 29 - 30 -It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 31 - 32 -The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 33 - 34 -NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years. 35 - 36 - 35 +((( 36 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 37 37 ))) 38 38 39 + 39 39 [[image:1654503236291-817.png]] 40 40 41 41 42 -[[image:165 7245163077-232.png]]43 +[[image:1654503265560-120.png]] 43 43 44 44 45 45 46 46 == 1.2 Features == 47 47 48 - 49 -* NB-IoTBands: B1/B3/B8/B5/B20/B28 @H-FDD49 +* LoRaWAN 1.0.3 Class A 50 +* Ultra low power consumption 50 50 * Monitor Soil Moisture 51 51 * Monitor Soil Temperature 52 52 * Monitor Soil Conductivity 54 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 53 53 * AT Commands to change parameters 54 54 * Uplink on periodically 55 55 * Downlink to change configure 56 56 * IP66 Waterproof Enclosure 57 -* Ultra-Low Power consumption 58 -* AT Commands to change parameters 59 -* Micro SIM card slot for NB-IoT SIM 60 -* 8500mAh Battery for long term use 59 +* 4000mAh or 8500mAh Battery for long term use 61 61 62 -== 1.3 61 +== 1.3 Specification == 63 63 64 - 65 -(% style="color:#037691" %)**Common DC Characteristics:** 66 - 67 -* Supply Voltage: 2.1v ~~ 3.6v 68 -* Operating Temperature: -40 ~~ 85°C 69 - 70 -(% style="color:#037691" %)**NB-IoT Spec:** 71 - 72 -* - B1 @H-FDD: 2100MHz 73 -* - B3 @H-FDD: 1800MHz 74 -* - B8 @H-FDD: 900MHz 75 -* - B5 @H-FDD: 850MHz 76 -* - B20 @H-FDD: 800MHz 77 -* - B28 @H-FDD: 700MHz 78 - 79 -(% style="color:#037691" %)**Probe Specification:** 80 - 81 81 Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 82 82 83 -[[image:image-20220 708101224-1.png]]65 +[[image:image-20220606162220-5.png]] 84 84 85 85 86 86 87 -== 1.4 69 +== 1.4 Applications == 88 88 89 89 * Smart Agriculture 90 90 ... ... @@ -91,579 +91,700 @@ 91 91 (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 92 92 93 93 94 -== 1.5 Pin Definitions==76 +== 1.5 Firmware Change log == 95 95 96 96 97 - [[image:1657246476176-652.png]]79 +**LSE01 v1.0 :** Release 98 98 99 99 100 100 101 -= 2. UseNSE01 to communicatewithIoTServer=83 += 2. Configure LSE01 to connect to LoRaWAN network = 102 102 103 -== 2.1 85 +== 2.1 How it works == 104 104 87 +((( 88 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 89 +))) 105 105 106 106 ((( 107 - TheNSE01 isquippedwitha NB-IoT module,thepre-loadedfirmware inNSE01 will getnvironmentdatafromsensorsandsendthe value tolocal NB-IoT networkviatheNB-IoT module.The NB-IoT network willforwardthis valueto IoTserverviatheprotocol definedby NSE01.92 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 108 108 ))) 109 109 110 110 96 + 97 +== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 98 + 99 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 100 + 101 + 102 +[[image:1654503992078-669.png]] 103 + 104 + 105 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 106 + 107 + 108 +**Step 1**: Create a device in TTN with the OTAA keys from LSE01. 109 + 110 +Each LSE01 is shipped with a sticker with the default device EUI as below: 111 + 112 +[[image:image-20220606163732-6.jpeg]] 113 + 114 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 115 + 116 +**Add APP EUI in the application** 117 + 118 + 119 +[[image:1654504596150-405.png]] 120 + 121 + 122 + 123 +**Add APP KEY and DEV EUI** 124 + 125 +[[image:1654504683289-357.png]] 126 + 127 + 128 + 129 +**Step 2**: Power on LSE01 130 + 131 + 132 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 133 + 134 +[[image:image-20220606163915-7.png]] 135 + 136 + 137 +**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 138 + 139 +[[image:1654504778294-788.png]] 140 + 141 + 142 + 143 +== 2.3 Uplink Payload == 144 + 145 +(% class="wikigeneratedid" %) 146 +=== === 147 + 148 +=== 2.3.1 MOD~=0(Default Mode) === 149 + 150 +LSE01 will uplink payload via LoRaWAN with below payload format: 151 + 111 111 ((( 112 - The diagram below shows the workingflowinfaultfirmwareofNSE01:153 +Uplink payload includes in total 11 bytes. 113 113 ))) 114 114 115 -[[image:image-20220708101605-2.png]] 156 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 157 +|((( 158 +**Size** 116 116 117 -((( 118 - 160 +**(bytes)** 161 +)))|**2**|**2**|**2**|**2**|**2**|**1** 162 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 163 +Temperature 164 + 165 +(Reserve, Ignore now) 166 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 167 +MOD & Digital Interrupt 168 + 169 +(Optional) 119 119 ))) 120 120 121 121 122 122 123 -== 2.2 Configurethe NSE01==174 +=== 2.3.2 MOD~=1(Original value) === 124 124 176 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 125 125 126 -=== 2.2.1 Test Requirement === 178 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 179 +|((( 180 +**Size** 127 127 182 +**(bytes)** 183 +)))|**2**|**2**|**2**|**2**|**2**|**1** 184 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 185 +Temperature 128 128 129 -To use NSE01 in your city, make sure meet below requirements: 187 +(Reserve, Ignore now) 188 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 189 +MOD & Digital Interrupt 130 130 131 -* Your local operator has already distributed a NB-IoT Network there. 132 -* The local NB-IoT network used the band that NSE01 supports. 133 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 191 +(Optional) 192 +))) 134 134 194 + 195 + 196 +=== 2.3.3 Battery Info === 197 + 135 135 ((( 136 - Below figure shows our testing structure. Here we have NB-IoT networkcoverage by China Mobile,the bandthey use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red"%)120.24.4.116:5601)(%%)or MQTT((% style="color:red"%)120.24.4.116:1883)(%%)orTCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server199 +Check the battery voltage for LSE01. 137 137 ))) 138 138 202 +((( 203 +Ex1: 0x0B45 = 2885mV 204 +))) 139 139 140 -[[image:1657249419225-449.png]] 206 +((( 207 +Ex2: 0x0B49 = 2889mV 208 +))) 141 141 142 142 143 143 144 -=== 2. 2.2InsertSIM card===212 +=== 2.3.4 Soil Moisture === 145 145 146 -Insert the NB-IoT Card get from your provider. 214 +((( 215 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 216 +))) 147 147 148 -User need to take out the NB-IoT module and insert the SIM card like below: 218 +((( 219 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 220 +))) 149 149 222 +((( 223 + 224 +))) 150 150 151 -[[image:1657249468462-536.png]] 226 +((( 227 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 228 +))) 152 152 153 153 154 154 155 -=== 2. 2.3ConnectUSB –TTLto NSE01 to configureit===232 +=== 2.3.5 Soil Temperature === 156 156 157 157 ((( 235 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 236 +))) 237 + 158 158 ((( 159 - User need to configure NSE01 viaserialport to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.239 +**Example**: 160 160 ))) 241 + 242 +((( 243 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 161 161 ))) 162 162 246 +((( 247 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 248 +))) 163 163 164 -**Connection:** 165 165 166 - (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 167 167 168 - (%style="background-color:yellow"%)USBTTL TXD <~-~-~-~-> UART_RXD252 +=== 2.3.6 Soil Conductivity (EC) === 169 169 170 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 254 +((( 255 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 256 +))) 171 171 258 +((( 259 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 260 +))) 172 172 173 -In the PC, use below serial tool settings: 262 +((( 263 +Generally, the EC value of irrigation water is less than 800uS / cm. 264 +))) 174 174 175 -* Baud: (% style="color:green" %)**9600** 176 -* Data bits:** (% style="color:green" %)8(%%)** 177 -* Stop bits: (% style="color:green" %)**1** 178 -* Parity: (% style="color:green" %)**None** 179 -* Flow Control: (% style="color:green" %)**None** 266 +((( 267 + 268 +))) 180 180 181 181 ((( 182 - Makesure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.271 + 183 183 ))) 184 184 185 - [[image:image-20220708110657-3.png]]274 +=== 2.3.7 MOD === 186 186 187 - (% style="color:red"%)Note: thevalid AT Commandscanbefoundat:(%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]276 +Firmware version at least v2.1 supports changing mode. 188 188 278 +For example, bytes[10]=90 189 189 280 +mod=(bytes[10]>>7)&0x01=1. 190 190 191 -=== 2.2.4 Use CoAP protocol to uplink data === 192 192 193 - (% style="color:red" %)Note: if you don't have CoAP server, you can refer thislinkto set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]283 +**Downlink Command:** 194 194 285 +If payload = 0x0A00, workmode=0 195 195 196 -** Usebelow commands:**287 +If** **payload =** **0x0A01, workmode=1 197 197 198 -* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 199 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 200 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 201 201 202 -For parameter description, please refer to AT command set 203 203 204 - [[image:1657249793983-486.png]]291 +=== 2.3.8 Decode payload in The Things Network === 205 205 293 +While using TTN network, you can add the payload format to decode the payload. 206 206 207 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 208 208 209 -[[image:16572 49831934-534.png]]296 +[[image:1654505570700-128.png]] 210 210 298 +The payload decoder function for TTN is here: 211 211 300 +LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 212 212 213 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 214 214 215 -This feature is supported since firmware version v1.0.1 216 216 304 +== 2.4 Uplink Interval == 217 217 218 -* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 219 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 220 -* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 306 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 221 221 222 -[[image:1657249864775-321.png]] 223 223 224 224 225 - [[image:1657249930215-289.png]]310 +== 2.5 Downlink Payload == 226 226 312 +By default, LSE50 prints the downlink payload to console port. 227 227 314 +[[image:image-20220606165544-8.png]] 228 228 229 -=== 2.2.6 Use MQTT protocol to uplink data === 230 230 231 - This feature is supportedsince firmware version v110317 +**Examples:** 232 232 233 233 234 -* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 235 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 236 -* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 237 -* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 238 -* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 239 -* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 240 -* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 320 +* **Set TDC** 241 241 242 - [[image:1657249978444-674.png]]322 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 243 243 324 +Payload: 01 00 00 1E TDC=30S 244 244 245 - [[image:1657249990869-686.png]]326 +Payload: 01 00 00 3C TDC=60S 246 246 247 247 248 -((( 249 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 250 -))) 329 +* **Reset** 251 251 331 +If payload = 0x04FF, it will reset the LSE01 252 252 253 253 254 - ===2.2.7 Use TCP protocol to uplink data ===334 +* **CFM** 255 255 256 - Thisfeatureissupportedsincefirmwareversionv110336 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 257 257 258 258 259 -* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 260 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 261 261 262 - [[image:1657250217799-140.png]]340 +== 2.6 Show Data in DataCake IoT Server == 263 263 342 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 264 264 265 -[[image:1657250255956-604.png]] 266 266 345 +**Step 1**: Be sure that your device is programmed and properly connected to the network at this time. 267 267 347 +**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 268 268 269 -=== 2.2.8 Change Update Interval === 270 270 271 - User can use below command to changethe (% style="color:green" %)**uplink interval**.350 +[[image:1654505857935-743.png]] 272 272 273 -* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 274 274 275 -((( 276 -(% style="color:red" %)**NOTE:** 277 -))) 353 +[[image:1654505874829-548.png]] 278 278 279 -((( 280 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 281 -))) 355 +Step 3: Create an account or log in Datacake. 282 282 357 +Step 4: Search the LSE01 and add DevEUI. 283 283 284 284 285 - ==2.3Uplink Payload ==360 +[[image:1654505905236-553.png]] 286 286 287 -In this mode, uplink payload includes in total 18 bytes 288 288 289 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 290 -|=(% style="width: 50px;" %)((( 291 -**Size(bytes)** 292 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1** 293 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]] 363 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 294 294 295 - If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01uplink data.365 +[[image:1654505925508-181.png]] 296 296 297 297 298 -[[image:image-20220708111918-4.png]] 299 299 369 +== 2.7 Frequency Plans == 300 300 301 -The payloadisASCIIstring,representativesameHEX:371 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 302 302 303 -0x72403155615900640c7817075e0a8c02f900 where: 304 304 305 -* Device ID: 0x 724031556159 = 724031556159 306 -* Version: 0x0064=100=1.0.0 374 +=== 2.7.1 EU863-870 (EU868) === 307 307 308 -* BAT: 0x0c78 = 3192 mV = 3.192V 309 -* Singal: 0x17 = 23 310 -* Soil Moisture: 0x075e= 1886 = 18.86 % 311 -* Soil Temperature:0x0a8c =2700=27 °C 312 -* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 313 -* Interrupt: 0x00 = 0 376 +(% style="color:#037691" %)** Uplink:** 314 314 315 - == 2.4PayloadExplanation andSensorInterface==378 +868.1 - SF7BW125 to SF12BW125 316 316 380 +868.3 - SF7BW125 to SF12BW125 and SF7BW250 317 317 318 - === 2.4.1DeviceID===382 +868.5 - SF7BW125 to SF12BW125 319 319 320 - Bydefault,theDevice ID equaltothe last 6 bytes of IMEI.384 +867.1 - SF7BW125 to SF12BW125 321 321 322 - Usercanuse(% style="color:blue"%)**AT+DEUI**(%%) to set Device ID386 +867.3 - SF7BW125 to SF12BW125 323 323 324 - **Example:**388 +867.5 - SF7BW125 to SF12BW125 325 325 326 - AT+DEUI=A84041F15612390 +867.7 - SF7BW125 to SF12BW125 327 327 328 - TheDevice ID is stored in a none-erasearea,Upgradethe firmwareorrun AT+FDR won't erase Device ID.392 +867.9 - SF7BW125 to SF12BW125 329 329 394 +868.8 - FSK 330 330 331 331 332 - ===2.4.2 VersionInfo ===397 +(% style="color:#037691" %)** Downlink:** 333 333 334 - Specifythe software version: 0x64=100, means firmwareversion1.00.399 +Uplink channels 1-9 (RX1) 335 335 336 - For example: 0x0064:this device is NSE01withfirmware version1.0.0.401 +869.525 - SF9BW125 (RX2 downlink only) 337 337 338 338 339 339 340 -=== 2. 4.3BatteryInfo===405 +=== 2.7.2 US902-928(US915) === 341 341 342 -((( 343 -Check the battery voltage for LSE01. 344 -))) 407 +Used in USA, Canada and South America. Default use CHE=2 345 345 346 -((( 347 -Ex1: 0x0B45 = 2885mV 348 -))) 409 +(% style="color:#037691" %)**Uplink:** 349 349 350 -((( 351 -Ex2: 0x0B49 = 2889mV 352 -))) 411 +903.9 - SF7BW125 to SF10BW125 353 353 413 +904.1 - SF7BW125 to SF10BW125 354 354 415 +904.3 - SF7BW125 to SF10BW125 355 355 356 - === 2.4.4SignalStrength===417 +904.5 - SF7BW125 to SF10BW125 357 357 358 - NB-IoTNetworksignalStrength.419 +904.7 - SF7BW125 to SF10BW125 359 359 360 - **Ex1:0x1d=29**421 +904.9 - SF7BW125 to SF10BW125 361 361 362 - (% style="color:blue" %)**0**(%%)113dBmorless423 +905.1 - SF7BW125 to SF10BW125 363 363 364 - (%style="color:blue"%)**1**(%%)-111dBm425 +905.3 - SF7BW125 to SF10BW125 365 365 366 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 367 367 368 -(% style="color: blue" %)**31**(%%) -51dBm or greater428 +(% style="color:#037691" %)**Downlink:** 369 369 370 - (% style="color:blue" %)**99**(%%)Notknownor not detectable430 +923.3 - SF7BW500 to SF12BW500 371 371 432 +923.9 - SF7BW500 to SF12BW500 372 372 434 +924.5 - SF7BW500 to SF12BW500 373 373 374 - ===2.4.5oilMoisture===436 +925.1 - SF7BW500 to SF12BW500 375 375 376 -((( 377 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 378 -))) 438 +925.7 - SF7BW500 to SF12BW500 379 379 380 -((( 381 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 382 -))) 440 +926.3 - SF7BW500 to SF12BW500 383 383 384 -((( 385 - 386 -))) 442 +926.9 - SF7BW500 to SF12BW500 387 387 388 -((( 389 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 390 -))) 444 +927.5 - SF7BW500 to SF12BW500 391 391 446 +923.3 - SF12BW500(RX2 downlink only) 392 392 393 393 394 -=== 2.4.6 Soil Temperature === 395 395 396 -((( 397 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 398 -))) 450 +=== 2.7.3 CN470-510 (CN470) === 399 399 400 -((( 401 -**Example**: 402 -))) 452 +Used in China, Default use CHE=1 403 403 404 -((( 405 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 406 -))) 454 +(% style="color:#037691" %)**Uplink:** 407 407 408 -((( 409 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 410 -))) 456 +486.3 - SF7BW125 to SF12BW125 411 411 458 +486.5 - SF7BW125 to SF12BW125 412 412 460 +486.7 - SF7BW125 to SF12BW125 413 413 414 - === 2.4.7SoilConductivity(EC) ===462 +486.9 - SF7BW125 to SF12BW125 415 415 416 -((( 417 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 418 -))) 464 +487.1 - SF7BW125 to SF12BW125 419 419 420 -((( 421 -For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 422 -))) 466 +487.3 - SF7BW125 to SF12BW125 423 423 424 -((( 425 -Generally, the EC value of irrigation water is less than 800uS / cm. 426 -))) 468 +487.5 - SF7BW125 to SF12BW125 427 427 428 -((( 429 - 430 -))) 470 +487.7 - SF7BW125 to SF12BW125 431 431 432 -((( 433 - 434 -))) 435 435 436 - ===2.4.8 DigitalInterrupt===473 +(% style="color:#037691" %)**Downlink:** 437 437 438 - Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods.Whenthere is a trigger, the NSE01will send a packettothe server.475 +506.7 - SF7BW125 to SF12BW125 439 439 440 - Thecommandis:477 +506.9 - SF7BW125 to SF12BW125 441 441 442 - (%style="color:blue"%)**AT+INTMOD=3**(%%) ~/~/(more info aboutINMOD please refer [[**AT CommandManual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**479 +507.1 - SF7BW125 to SF12BW125 443 443 481 +507.3 - SF7BW125 to SF12BW125 444 444 445 - The lower four bits of this data field shows if this packet is generated by interrupt or not.[[Clickhere>>||anchor="H"]]forthe hardware and softwareset up.483 +507.5 - SF7BW125 to SF12BW125 446 446 485 +507.7 - SF7BW125 to SF12BW125 447 447 448 - Example:487 +507.9 - SF7BW125 to SF12BW125 449 449 450 -0 x(00):Normaluplinkpacket.489 +508.1 - SF7BW125 to SF12BW125 451 451 452 -0 x(01):InterruptUplinkPacket.491 +505.3 - SF12BW125 (RX2 downlink only) 453 453 454 454 455 455 456 -=== 2. 4.9+5VOutput===495 +=== 2.7.4 AU915-928(AU915) === 457 457 458 - NSE01 willenable +5V outputbefore allsampling and disablethe +5v after all sampling.497 +Default use CHE=2 459 459 499 +(% style="color:#037691" %)**Uplink:** 460 460 461 - The5Voutput time can be controlledby AT Command.501 +916.8 - SF7BW125 to SF12BW125 462 462 463 - (%style="color:blue"%)**AT+5VT=1000**503 +917.0 - SF7BW125 to SF12BW125 464 464 465 - Means set 5V valid time to have1000ms.Sothe real5Voutput will actually have 1000ms + sampling time forother sensors.505 +917.2 - SF7BW125 to SF12BW125 466 466 507 +917.4 - SF7BW125 to SF12BW125 467 467 509 +917.6 - SF7BW125 to SF12BW125 468 468 469 - ==2.5DownlinkPayload ==511 +917.8 - SF7BW125 to SF12BW125 470 470 471 - Bydefault,NSE01prints the downlinkpayload to console port.513 +918.0 - SF7BW125 to SF12BW125 472 472 473 - [[image:image-20220708133731-5.png]]515 +918.2 - SF7BW125 to SF12BW125 474 474 475 475 518 +(% style="color:#037691" %)**Downlink:** 476 476 477 -((( 478 -(% style="color:blue" %)**Examples:** 479 -))) 520 +923.3 - SF7BW500 to SF12BW500 480 480 481 -((( 482 - 483 -))) 522 +923.9 - SF7BW500 to SF12BW500 484 484 485 -* ((( 486 -(% style="color:blue" %)**Set TDC** 487 -))) 524 +924.5 - SF7BW500 to SF12BW500 488 488 489 -((( 490 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 491 -))) 526 +925.1 - SF7BW500 to SF12BW500 492 492 493 -((( 494 -Payload: 01 00 00 1E TDC=30S 495 -))) 528 +925.7 - SF7BW500 to SF12BW500 496 496 497 -((( 498 -Payload: 01 00 00 3C TDC=60S 499 -))) 530 +926.3 - SF7BW500 to SF12BW500 500 500 501 -((( 502 - 503 -))) 532 +926.9 - SF7BW500 to SF12BW500 504 504 505 -* ((( 506 -(% style="color:blue" %)**Reset** 507 -))) 534 +927.5 - SF7BW500 to SF12BW500 508 508 509 -((( 510 -If payload = 0x04FF, it will reset the NSE01 511 -))) 536 +923.3 - SF12BW500(RX2 downlink only) 512 512 513 513 514 -* (% style="color:blue" %)**INTMOD** 515 515 516 - DownlinkPayload:06000003,SetAT+INTMOD=3540 +=== 2.7.5 AS920-923 & AS923-925 (AS923) === 517 517 542 +(% style="color:#037691" %)**Default Uplink channel:** 518 518 544 +923.2 - SF7BW125 to SF10BW125 519 519 520 - ==2.6LEDIndicator==546 +923.4 - SF7BW125 to SF10BW125 521 521 522 -((( 523 -The NSE01 has an internal LED which is to show the status of different state. 524 524 549 +(% style="color:#037691" %)**Additional Uplink Channel**: 525 525 526 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 527 -* Then the LED will be on for 1 second means device is boot normally. 528 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 529 -* For each uplink probe, LED will be on for 500ms. 530 -))) 551 +(OTAA mode, channel added by JoinAccept message) 531 531 553 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 532 532 555 +922.2 - SF7BW125 to SF10BW125 533 533 557 +922.4 - SF7BW125 to SF10BW125 534 534 535 - ==2.7InstallationinSoil ==559 +922.6 - SF7BW125 to SF10BW125 536 536 537 - __**Measurementthesoilsurface**__561 +922.8 - SF7BW125 to SF10BW125 538 538 539 - Choose the proper measuring position.Avoidthe probe to touch rocks or hard things.Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]563 +923.0 - SF7BW125 to SF10BW125 540 540 541 - [[image:1657259653666-883.png]]565 +922.0 - SF7BW125 to SF10BW125 542 542 543 543 544 -((( 545 - 568 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 546 546 547 -((( 548 -Dig a hole with diameter > 20CM. 549 -))) 570 +923.6 - SF7BW125 to SF10BW125 550 550 551 -((( 552 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 553 -))) 554 -))) 572 +923.8 - SF7BW125 to SF10BW125 555 555 556 - [[image:1654506665940-119.png]]574 +924.0 - SF7BW125 to SF10BW125 557 557 558 -((( 559 - 560 -))) 576 +924.2 - SF7BW125 to SF10BW125 561 561 578 +924.4 - SF7BW125 to SF10BW125 562 562 563 - ==2.8FirmwareChange Log==580 +924.6 - SF7BW125 to SF10BW125 564 564 565 565 566 - DownloadURL& Firmware Changelog583 +(% style="color:#037691" %)** Downlink:** 567 567 568 - [[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]585 +Uplink channels 1-8 (RX1) 569 569 587 +923.2 - SF10BW125 (RX2) 570 570 571 -Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]] 572 572 573 573 591 +=== 2.7.6 KR920-923 (KR920) === 574 574 575 - == 2.9 BatteryAnalysis ==593 +Default channel: 576 576 577 - ===2.9.1BatteryType ===595 +922.1 - SF7BW125 to SF12BW125 578 578 597 +922.3 - SF7BW125 to SF12BW125 579 579 580 - TheNSE01battery is a combinationof an 8500mAh Li/SOCI2attery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.599 +922.5 - SF7BW125 to SF12BW125 581 581 582 582 583 - Thebatteryis designed toast forseveralyearsdependson theactually use environmentandupdate interval.602 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 584 584 604 +922.1 - SF7BW125 to SF12BW125 585 585 586 - Thebatteryrelateddocuments as below:606 +922.3 - SF7BW125 to SF12BW125 587 587 588 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 589 -* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 590 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 608 +922.5 - SF7BW125 to SF12BW125 591 591 610 +922.7 - SF7BW125 to SF12BW125 611 + 612 +922.9 - SF7BW125 to SF12BW125 613 + 614 +923.1 - SF7BW125 to SF12BW125 615 + 616 +923.3 - SF7BW125 to SF12BW125 617 + 618 + 619 +(% style="color:#037691" %)**Downlink:** 620 + 621 +Uplink channels 1-7(RX1) 622 + 623 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 624 + 625 + 626 + 627 +=== 2.7.7 IN865-867 (IN865) === 628 + 629 +(% style="color:#037691" %)** Uplink:** 630 + 631 +865.0625 - SF7BW125 to SF12BW125 632 + 633 +865.4025 - SF7BW125 to SF12BW125 634 + 635 +865.9850 - SF7BW125 to SF12BW125 636 + 637 + 638 +(% style="color:#037691" %) **Downlink:** 639 + 640 +Uplink channels 1-3 (RX1) 641 + 642 +866.550 - SF10BW125 (RX2) 643 + 644 + 645 + 646 + 647 +== 2.8 LED Indicator == 648 + 649 +The LSE01 has an internal LED which is to show the status of different state. 650 + 651 +* Blink once when device power on. 652 +* Solid ON for 5 seconds once device successful Join the network. 653 +* Blink once when device transmit a packet. 654 + 655 + 656 + 657 +== 2.9 Installation in Soil == 658 + 659 +**Measurement the soil surface** 660 + 661 + 662 +[[image:1654506634463-199.png]] 663 + 592 592 ((( 593 -[[image:image-20220708140453-6.png]] 665 +((( 666 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 594 594 ))) 668 +))) 595 595 596 596 671 +[[image:1654506665940-119.png]] 597 597 598 -=== 2.9.2 Power consumption Analyze === 673 +((( 674 +Dig a hole with diameter > 20CM. 675 +))) 599 599 600 600 ((( 601 - Draginobattery powered productare allrunsinLow Powermode. Wehavean update battery calculator whichbase onthemeasurementof the realdevice. User canuse this calculatorto checkthebatterylife andcalculatethe batterylifeif want to use different transmit interval.678 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 602 602 ))) 603 603 604 604 682 +== 2.10 Firmware Change Log == 683 + 605 605 ((( 606 - Instructiontouseasbelow:685 +**Firmware download link:** 607 607 ))) 608 608 609 609 ((( 610 - (% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:[[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]689 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 611 611 ))) 612 612 692 +((( 693 + 694 +))) 613 613 614 614 ((( 615 - (% style="color:blue" %)**Step2: **(%%)Openithoose697 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 616 616 ))) 617 617 618 - *(((619 - ProductModel700 +((( 701 + 620 620 ))) 621 -* ((( 622 -Uplink Interval 703 + 704 +((( 705 +**V1.0.** 623 623 ))) 624 -* ((( 625 -Working Mode 626 -))) 627 627 628 628 ((( 629 - And theLifeexpectation in difference casewill be shown on the right.709 +Release 630 630 ))) 631 631 632 -[[image:image-20220708141352-7.jpeg]] 633 633 713 +== 2.11 Battery Analysis == 634 634 715 +=== 2.11.1 Battery Type === 635 635 636 -=== 2.9.3 Battery Note === 717 +((( 718 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 719 +))) 637 637 638 638 ((( 639 -The Li-SICObattery is designedfor small current/ longperiod application. It isnotgood to use a high current,short period transmit method. Therecommendedminimum period for use ofthis batteryis5minutes. Ifyou useshorterperiod time to transmitLoRa,thenthe battery life may be decreased.722 +The battery is designed to last for more than 5 years for the LSN50. 640 640 ))) 641 641 725 +((( 726 +((( 727 +The battery-related documents are as below: 728 +))) 729 +))) 642 642 731 +* ((( 732 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 733 +))) 734 +* ((( 735 +[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 736 +))) 737 +* ((( 738 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 739 +))) 643 643 644 - ===2.9.4 Replacethe battery ===741 + [[image:image-20220606171726-9.png]] 645 645 743 + 744 + 745 +=== 2.11.2 Battery Note === 746 + 646 646 ((( 647 -The defaultbatterypackofNSE01includesaER26500 plussupercapacitor. Ifusercan'tfind this pack locally,theycanfindER26500 orquivalence withoutthe SPC1520 capacitor, which will alsowork inmostcase. TheSPCcanlarge thebatterylifeforhigh frequency use(update periodbelow5minutes).748 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 648 648 ))) 649 649 650 650 651 651 652 -= 3. AccessNB-IoTModule =753 +=== 2.11.3 Replace the battery === 653 653 654 654 ((( 655 - Userscan directlyaccesstheAT command setoftheNB-IoTmodule.756 +If Battery is lower than 2.7v, user should replace the battery of LSE01. 656 656 ))) 657 657 658 658 ((( 659 - The AT Commandsetcanrefer theBC35-G NB-IoTModuleATCommand: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]]760 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 660 660 ))) 661 661 662 -[[image:1657261119050-993.png]] 763 +((( 764 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 765 +))) 663 663 664 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image002.jpg]] 665 665 666 666 769 += 3. Using the AT Commands = 667 667 668 668 == 3.1 Access AT Commands == 669 669 ... ... @@ -686,7 +686,7 @@ 686 686 [[image:1654502050864-459.png||height="564" width="806"]] 687 687 688 688 689 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>http s://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]792 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]] 690 690 691 691 692 692 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> ... ... @@ -844,14 +844,19 @@ 844 844 845 845 ((( 846 846 Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 950 +))) 847 847 848 -* (% style="color:#037691" %)**AT+CHE=2** 849 -* (% style="color:#037691" %)**ATZ** 952 +(% class="box infomessage" %) 953 +((( 954 +**AT+CHE=2** 850 850 ))) 851 851 957 +(% class="box infomessage" %) 852 852 ((( 853 - 959 +**ATZ** 960 +))) 854 854 962 +((( 855 855 to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 856 856 ))) 857 857 ... ... @@ -866,22 +866,18 @@ 866 866 [[image:image-20220606154825-4.png]] 867 867 868 868 869 -== 4.2 Can I calibrate LSE01 to different soil types? == 870 870 871 -LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]]. 872 - 873 - 874 874 = 5. Trouble Shooting = 875 875 876 -== 5.1 Why I can 't join TTN in US915 / AU915 bands? ==980 +== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 877 877 878 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main. End DeviceATCommandsand Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.982 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 879 879 880 880 881 -== 5.2 AT Command input doesn 't work ==985 +== 5.2 AT Command input doesn’t work == 882 882 883 883 ((( 884 -In the case if user can see the console output but can 't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.988 +In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 885 885 ))) 886 886 887 887 ... ... @@ -963,6 +963,7 @@ 963 963 * ((( 964 964 Weight / pcs : g 965 965 1070 + 966 966 967 967 ))) 968 968 ... ... @@ -970,3 +970,8 @@ 970 970 971 971 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 972 972 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1078 + 1079 + 1080 +~)~)~) 1081 +~)~)~) 1082 +~)~)~)
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -102.7 KB - Content