Changes for page NDDS75 -- NB-IoT Distance Detect Sensor User Manual
Last modified by Bei Jinggeng on 2024/05/31 09:53
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 22 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - NSE01NB-IoTSoil Moisture & EC Sensor User Manual1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -3,7 +3,9 @@ 3 3 4 4 5 5 6 +**Contents:** 6 6 8 +{{toc/}} 7 7 8 8 9 9 ... ... @@ -10,631 +10,715 @@ 10 10 11 11 12 12 15 += 1. Introduction = 13 13 14 - **TableofContents:**17 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 15 15 19 +((( 20 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 21 +))) 16 16 23 +((( 24 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 25 +))) 17 17 27 +((( 28 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 29 +))) 18 18 19 - 20 - 21 -= 1. Introduction = 22 - 23 -== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 24 - 25 25 ((( 26 - 32 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 33 +))) 27 27 28 -Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 29 - 30 -It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 31 - 32 -The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 33 - 34 -NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years. 35 - 36 - 35 +((( 36 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 37 37 ))) 38 38 39 + 39 39 [[image:1654503236291-817.png]] 40 40 41 41 42 -[[image:165 7245163077-232.png]]43 +[[image:1654503265560-120.png]] 43 43 44 44 45 45 46 46 == 1.2 Features == 47 47 48 - 49 -* NB-IoTBands: B1/B3/B8/B5/B20/B28 @H-FDD49 +* LoRaWAN 1.0.3 Class A 50 +* Ultra low power consumption 50 50 * Monitor Soil Moisture 51 51 * Monitor Soil Temperature 52 52 * Monitor Soil Conductivity 54 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 53 53 * AT Commands to change parameters 54 54 * Uplink on periodically 55 55 * Downlink to change configure 56 56 * IP66 Waterproof Enclosure 57 -* Ultra-Low Power consumption 58 -* AT Commands to change parameters 59 -* Micro SIM card slot for NB-IoT SIM 60 -* 8500mAh Battery for long term use 59 +* 4000mAh or 8500mAh Battery for long term use 61 61 62 -== 1.3 61 +== 1.3 Specification == 63 63 63 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 64 64 65 - (% style="color:#037691" %)**CommonDC Characteristics:**65 +[[image:image-20220606162220-5.png]] 66 66 67 -* Supply Voltage: 2.1v ~~ 3.6v 68 -* Operating Temperature: -40 ~~ 85°C 69 69 70 -(% style="color:#037691" %)**NB-IoT Spec:** 71 71 72 -* - B1 @H-FDD: 2100MHz 73 -* - B3 @H-FDD: 1800MHz 74 -* - B8 @H-FDD: 900MHz 75 -* - B5 @H-FDD: 850MHz 76 -* - B20 @H-FDD: 800MHz 77 -* - B28 @H-FDD: 700MHz 69 +== 1.4 Applications == 78 78 79 - (%style="color:#037691"%)**Probe Specification:**71 +* Smart Agriculture 80 80 81 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 73 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 74 + 82 82 83 - [[image:image-20220708101224-1.png]]76 +== 1.5 Firmware Change log == 84 84 85 85 79 +**LSE01 v1.0 :** Release 86 86 87 -== 1.4 Applications == 88 88 89 -* Smart Agriculture 90 90 91 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 92 - 83 += 2. Configure LSE01 to connect to LoRaWAN network = 93 93 94 -== 1.5PinDefinitions ==85 +== 2.1 How it works == 95 95 87 +((( 88 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 89 +))) 96 96 97 -[[image:1657246476176-652.png]] 91 +((( 92 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 93 +))) 98 98 99 99 100 100 101 -= 2. UseNSE01to communicatewithIoTServer =97 +== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 102 102 103 - ==2.1How it works==99 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 104 104 105 105 102 +[[image:1654503992078-669.png]] 103 + 104 + 105 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 106 + 107 + 108 +**Step 1**: Create a device in TTN with the OTAA keys from LSE01. 109 + 110 +Each LSE01 is shipped with a sticker with the default device EUI as below: 111 + 112 +[[image:image-20220606163732-6.jpeg]] 113 + 114 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 115 + 116 +**Add APP EUI in the application** 117 + 118 + 119 +[[image:1654504596150-405.png]] 120 + 121 + 122 + 123 +**Add APP KEY and DEV EUI** 124 + 125 +[[image:1654504683289-357.png]] 126 + 127 + 128 + 129 +**Step 2**: Power on LSE01 130 + 131 + 132 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 133 + 134 +[[image:image-20220606163915-7.png]] 135 + 136 + 137 +**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 138 + 139 +[[image:1654504778294-788.png]] 140 + 141 + 142 + 143 +== 2.3 Uplink Payload == 144 + 145 +(% class="wikigeneratedid" %) 146 +=== === 147 + 148 +=== 2.3.1 MOD~=0(Default Mode) === 149 + 150 +LSE01 will uplink payload via LoRaWAN with below payload format: 151 + 152 + 153 +Uplink payload includes in total 11 bytes. 154 + 155 + 156 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 157 +|((( 158 +**Size** 159 + 160 +**(bytes)** 161 +)))|**2**|**2**|**2**|**2**|**2**|**1** 162 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 163 +Temperature 164 + 165 +(Reserve, Ignore now) 166 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 167 +MOD & Digital Interrupt 168 + 169 +(Optional) 170 +))) 171 + 172 + 173 + 174 +=== 2.3.2 MOD~=1(Original value) === 175 + 176 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 177 + 178 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 179 +|((( 180 +**Size** 181 + 182 +**(bytes)** 183 +)))|**2**|**2**|**2**|**2**|**2**|**1** 184 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 185 +Temperature 186 + 187 +(Reserve, Ignore now) 188 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 189 +MOD & Digital Interrupt 190 + 191 +(Optional) 192 +))) 193 + 194 + 195 + 196 +=== 2.3.3 Battery Info === 197 + 198 +Check the battery voltage for LSE01. 199 + 200 +Ex1: 0x0B45 = 2885mV 201 + 202 +Ex2: 0x0B49 = 2889mV 203 + 204 + 205 + 206 +=== 2.3.4 Soil Moisture === 207 + 208 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 209 + 210 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 211 + 212 + 213 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 214 + 215 + 216 + 217 +=== 2.3.5 Soil Temperature === 218 + 219 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 220 + 221 +**Example**: 222 + 223 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 224 + 225 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 226 + 227 + 228 + 229 +=== 2.3.6 Soil Conductivity (EC) === 230 + 106 106 ((( 107 - The NSE01 is equipped withaNB-IoTmodule, the pre-loaded firmware in NSE01willgetenvironmentdata fromsensorsandsendthe valuetolocal NB-IoTnetworkviatheNB-IoT module.NB-IoTnetworkwillforwardthisvaluetoIoT server viaheprotocoldefinedby NSE01.232 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 108 108 ))) 109 109 235 +((( 236 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 237 +))) 110 110 111 111 ((( 112 - Thediagram belowshowstheworkingflowin defaultfirmwareofNSE01:240 +Generally, the EC value of irrigation water is less than 800uS / cm. 113 113 ))) 114 114 115 -[[image:image-20220708101605-2.png]] 243 +((( 244 + 245 +))) 116 116 117 117 ((( 118 118 119 119 ))) 120 120 251 +=== 2.3.7 MOD === 121 121 253 +Firmware version at least v2.1 supports changing mode. 122 122 123 - == 2.2 Configure theNSE01=255 +For example, bytes[10]=90 124 124 257 +mod=(bytes[10]>>7)&0x01=1. 125 125 126 -=== 2.2.1 Test Requirement === 127 127 260 +**Downlink Command:** 128 128 129 - TouseNSE01inyourcity, make suremeet below requirements:262 +If payload = 0x0A00, workmode=0 130 130 131 -* Your local operator has already distributed a NB-IoT Network there. 132 -* The local NB-IoT network used the band that NSE01 supports. 133 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 264 +If** **payload =** **0x0A01, workmode=1 134 134 135 -((( 136 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 137 -))) 138 138 139 139 140 - [[image:1657249419225-449.png]]268 +=== 2.3.8 Decode payload in The Things Network === 141 141 270 +While using TTN network, you can add the payload format to decode the payload. 142 142 143 143 144 - ===2.2.2 Insert SIM card ===273 +[[image:1654505570700-128.png]] 145 145 146 - Insert theNB-IoT Cardgetfromyourprovider.275 +The payload decoder function for TTN is here: 147 147 148 - Userneedtotakeout theNB-IoT moduleandsert theIM cardkebelow:277 +LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 149 149 150 150 151 -[[image:1657249468462-536.png]] 152 152 281 +== 2.4 Uplink Interval == 153 153 283 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 154 154 155 -=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 156 156 157 -((( 158 -((( 159 -User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 160 -))) 161 -))) 162 162 287 +== 2.5 Downlink Payload == 163 163 164 - **Connection:**289 +By default, LSE50 prints the downlink payload to console port. 165 165 166 - (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND291 +[[image:image-20220606165544-8.png]] 167 167 168 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 169 169 170 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD294 +**Examples:** 171 171 172 172 173 - InthePC, use below serialtoolsettings:297 +* **Set TDC** 174 174 175 -* Baud: (% style="color:green" %)**9600** 176 -* Data bits:** (% style="color:green" %)8(%%)** 177 -* Stop bits: (% style="color:green" %)**1** 178 -* Parity: (% style="color:green" %)**None** 179 -* Flow Control: (% style="color:green" %)**None** 299 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 180 180 181 -((( 182 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 183 -))) 301 +Payload: 01 00 00 1E TDC=30S 184 184 185 - [[image:image-20220708110657-3.png]]303 +Payload: 01 00 00 3C TDC=60S 186 186 187 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 188 188 306 +* **Reset** 189 189 308 +If payload = 0x04FF, it will reset the LSE01 190 190 191 -=== 2.2.4 Use CoAP protocol to uplink data === 192 192 193 - (%style="color:red" %)Note: if you don't haveCoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]311 +* **CFM** 194 194 313 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 195 195 196 -**Use below commands:** 197 197 198 -* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 199 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 200 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 201 201 202 - Forparameterdescription,pleaserefer toATcommand set317 +== 2.6 Show Data in DataCake IoT Server == 203 203 204 -[[ima ge:1657249793983-486.png]]319 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 205 205 206 206 207 - Afterconfigure theserveraddressand(% style="color:green" %)**reset thedevice**(%%) (via AT+ATZ ), NSE01willstart to uplinksensorvaluesto CoAP server.322 +**Step 1**: Be sure that your device is programmed and properly connected to the network at this time. 208 208 209 - [[image:1657249831934-534.png]]324 +**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 210 210 211 211 327 +[[image:1654505857935-743.png]] 212 212 213 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 214 214 215 - This feature is supported since firmwareversion v1.0.1330 +[[image:1654505874829-548.png]] 216 216 332 +Step 3: Create an account or log in Datacake. 217 217 218 -* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 219 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 220 -* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 334 +Step 4: Search the LSE01 and add DevEUI. 221 221 222 -[[image:1657249864775-321.png]] 223 223 337 +[[image:1654505905236-553.png]] 224 224 225 -[[image:1657249930215-289.png]] 226 226 340 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 227 227 342 +[[image:1654505925508-181.png]] 228 228 229 -=== 2.2.6 Use MQTT protocol to uplink data === 230 230 231 -This feature is supported since firmware version v110 232 232 346 +== 2.7 Frequency Plans == 233 233 234 -* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 235 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 236 -* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 237 -* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 238 -* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 239 -* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 240 -* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 348 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 241 241 242 -[[image:1657249978444-674.png]] 243 243 351 +=== 2.7.1 EU863-870 (EU868) === 244 244 245 - [[image:1657249990869-686.png]]353 +(% style="color:#037691" %)** Uplink:** 246 246 355 +868.1 - SF7BW125 to SF12BW125 247 247 248 -((( 249 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 250 -))) 357 +868.3 - SF7BW125 to SF12BW125 and SF7BW250 251 251 359 +868.5 - SF7BW125 to SF12BW125 252 252 361 +867.1 - SF7BW125 to SF12BW125 253 253 254 - === 2.2.7UseTCP protocolto uplink data ===363 +867.3 - SF7BW125 to SF12BW125 255 255 256 - Thisfeatureissupported since firmware versionv110365 +867.5 - SF7BW125 to SF12BW125 257 257 367 +867.7 - SF7BW125 to SF12BW125 258 258 259 -* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 260 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 369 +867.9 - SF7BW125 to SF12BW125 261 261 262 - [[image:1657250217799-140.png]]371 +868.8 - FSK 263 263 264 264 265 - [[image:1657250255956-604.png]]374 +(% style="color:#037691" %)** Downlink:** 266 266 376 +Uplink channels 1-9 (RX1) 267 267 378 +869.525 - SF9BW125 (RX2 downlink only) 268 268 269 -=== 2.2.8 Change Update Interval === 270 270 271 -User can use below command to change the (% style="color:green" %)**uplink interval**. 272 272 273 - * (% style="color:blue" %)**AT+TDC=600**%%)~/~/Set Update Interval to 600s382 +=== 2.7.2 US902-928(US915) === 274 274 275 -((( 276 -(% style="color:red" %)**NOTE:** 277 -))) 384 +Used in USA, Canada and South America. Default use CHE=2 278 278 279 -((( 280 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 281 -))) 386 +(% style="color:#037691" %)**Uplink:** 282 282 388 +903.9 - SF7BW125 to SF10BW125 283 283 390 +904.1 - SF7BW125 to SF10BW125 284 284 285 - == 2.3UplinkPayload==392 +904.3 - SF7BW125 to SF10BW125 286 286 287 - Inthismode,uplink payload includes intotal18 bytes394 +904.5 - SF7BW125 to SF10BW125 288 288 289 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 290 -|=(% style="width: 50px;" %)((( 291 -**Size(bytes)** 292 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1** 293 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]] 396 +904.7 - SF7BW125 to SF10BW125 294 294 295 - Ifweusethe MQTT client tosubscribe to this MQTT topic, we can see the following information when the NSE01uplink data.398 +904.9 - SF7BW125 to SF10BW125 296 296 400 +905.1 - SF7BW125 to SF10BW125 297 297 298 - [[image:image-20220708111918-4.png]]402 +905.3 - SF7BW125 to SF10BW125 299 299 300 300 301 - Thepayload is ASCII string,representative same HEX:405 +(% style="color:#037691" %)**Downlink:** 302 302 303 - 0x72403155615900640c7817075e0a8c02f900 where:407 +923.3 - SF7BW500 to SF12BW500 304 304 305 -* Device ID: 0x 724031556159 = 724031556159 306 -* Version: 0x0064=100=1.0.0 409 +923.9 - SF7BW500 to SF12BW500 307 307 308 -* BAT: 0x0c78 = 3192 mV = 3.192V 309 -* Singal: 0x17 = 23 310 -* Soil Moisture: 0x075e= 1886 = 18.86 % 311 -* Soil Temperature:0x0a8c =2700=27 °C 312 -* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 313 -* Interrupt: 0x00 = 0 411 +924.5 - SF7BW500 to SF12BW500 314 314 315 - ==2.4PayloadExplanation andSensorInterface==413 +925.1 - SF7BW500 to SF12BW500 316 316 415 +925.7 - SF7BW500 to SF12BW500 317 317 318 - ===2.4.1 DeviceID===417 +926.3 - SF7BW500 to SF12BW500 319 319 320 - Bydefault,theDevice ID equaltothe last 6 bytes of IMEI.419 +926.9 - SF7BW500 to SF12BW500 321 321 322 - Usercanuse(% style="color:blue"%)**AT+DEUI**(%%) to set Device ID421 +927.5 - SF7BW500 to SF12BW500 323 323 324 - **Example:**423 +923.3 - SF12BW500(RX2 downlink only) 325 325 326 -AT+DEUI=A84041F15612 327 327 328 -The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 329 329 427 +=== 2.7.3 CN470-510 (CN470) === 330 330 429 +Used in China, Default use CHE=1 331 331 332 - ===2.4.2 Version Info===431 +(% style="color:#037691" %)**Uplink:** 333 333 334 - Specifythesoftware version: 0x64=100,means firmware version1.00.433 +486.3 - SF7BW125 to SF12BW125 335 335 336 - For example: 0x00 64:this device is NSE01with firmware version1.0.0.435 +486.5 - SF7BW125 to SF12BW125 337 337 437 +486.7 - SF7BW125 to SF12BW125 338 338 439 +486.9 - SF7BW125 to SF12BW125 339 339 340 - === 2.4.3BatteryInfo===441 +487.1 - SF7BW125 to SF12BW125 341 341 342 -((( 343 -Check the battery voltage for LSE01. 344 -))) 443 +487.3 - SF7BW125 to SF12BW125 345 345 346 -((( 347 -Ex1: 0x0B45 = 2885mV 348 -))) 445 +487.5 - SF7BW125 to SF12BW125 349 349 350 -((( 351 -Ex2: 0x0B49 = 2889mV 352 -))) 447 +487.7 - SF7BW125 to SF12BW125 353 353 354 354 450 +(% style="color:#037691" %)**Downlink:** 355 355 356 - === 2.4.4SignalStrength===452 +506.7 - SF7BW125 to SF12BW125 357 357 358 - NB-IoTNetworksignalStrength.454 +506.9 - SF7BW125 to SF12BW125 359 359 360 - **Ex1:0x1d=29**456 +507.1 - SF7BW125 to SF12BW125 361 361 362 - (% style="color:blue" %)**0**(%%)113dBmorless458 +507.3 - SF7BW125 to SF12BW125 363 363 364 - (%style="color:blue"%)**1**(%%)-111dBm460 +507.5 - SF7BW125 to SF12BW125 365 365 366 - (%style="color:blue"%)**2...30**(%%)-109dBm... -53dBm462 +507.7 - SF7BW125 to SF12BW125 367 367 368 - (%style="color:blue"%)**31** (%%) -51dBmorgreater464 +507.9 - SF7BW125 to SF12BW125 369 369 370 - (%style="color:blue"%)**99**(%%) Notknownor not detectable466 +508.1 - SF7BW125 to SF12BW125 371 371 468 +505.3 - SF12BW125 (RX2 downlink only) 372 372 373 373 374 -=== 2.4.5 Soil Moisture === 375 375 376 -((( 377 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 378 -))) 472 +=== 2.7.4 AU915-928(AU915) === 379 379 380 -((( 381 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 382 -))) 474 +Default use CHE=2 383 383 384 -((( 385 - 386 -))) 476 +(% style="color:#037691" %)**Uplink:** 387 387 388 -((( 389 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 390 -))) 478 +916.8 - SF7BW125 to SF12BW125 391 391 480 +917.0 - SF7BW125 to SF12BW125 392 392 482 +917.2 - SF7BW125 to SF12BW125 393 393 394 - === 2.4.6SoilTemperature===484 +917.4 - SF7BW125 to SF12BW125 395 395 396 -((( 397 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 398 -))) 486 +917.6 - SF7BW125 to SF12BW125 399 399 400 -((( 401 -**Example**: 402 -))) 488 +917.8 - SF7BW125 to SF12BW125 403 403 404 -((( 405 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 406 -))) 490 +918.0 - SF7BW125 to SF12BW125 407 407 408 -((( 409 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 410 -))) 492 +918.2 - SF7BW125 to SF12BW125 411 411 412 412 495 +(% style="color:#037691" %)**Downlink:** 413 413 414 - ===2.4.7SoilConductivity(EC) ===497 +923.3 - SF7BW500 to SF12BW500 415 415 416 -((( 417 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 418 -))) 499 +923.9 - SF7BW500 to SF12BW500 419 419 420 -((( 421 -For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 422 -))) 501 +924.5 - SF7BW500 to SF12BW500 423 423 424 -((( 425 -Generally, the EC value of irrigation water is less than 800uS / cm. 426 -))) 503 +925.1 - SF7BW500 to SF12BW500 427 427 428 -((( 429 - 430 -))) 505 +925.7 - SF7BW500 to SF12BW500 431 431 432 -((( 433 - 434 -))) 507 +926.3 - SF7BW500 to SF12BW500 435 435 436 - ===2.4.8DigitalInterrupt===509 +926.9 - SF7BW500 to SF12BW500 437 437 438 - Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods.Whenthere is a trigger, the NSE01will send a packettothe server.511 +927.5 - SF7BW500 to SF12BW500 439 439 440 - Thecommandis:513 +923.3 - SF12BW500(RX2 downlink only) 441 441 442 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 443 443 444 444 445 - Thelower four bits of this data field shows if this packet is generated by interrupt or not.[[Clickhere>>||anchor="H"]]forthehardware and software set up.517 +=== 2.7.5 AS920-923 & AS923-925 (AS923) === 446 446 519 +(% style="color:#037691" %)**Default Uplink channel:** 447 447 448 - Example:521 +923.2 - SF7BW125 to SF10BW125 449 449 450 - 0x(00):Normaluplinkpacket.523 +923.4 - SF7BW125 to SF10BW125 451 451 452 -0x(01): Interrupt Uplink Packet. 453 453 526 +(% style="color:#037691" %)**Additional Uplink Channel**: 454 454 528 +(OTAA mode, channel added by JoinAccept message) 455 455 456 -= ==2.4.9+5VOutput===530 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 457 457 458 - NSE01willenable +5Voutput beforeall sampling and disable the +5v after all sampling.532 +922.2 - SF7BW125 to SF10BW125 459 459 534 +922.4 - SF7BW125 to SF10BW125 460 460 461 - The5Voutput time can be controlledby AT Command.536 +922.6 - SF7BW125 to SF10BW125 462 462 463 - (%style="color:blue"%)**AT+5VT=1000**538 +922.8 - SF7BW125 to SF10BW125 464 464 465 - Meansset5Vvalidtime tohave 1000ms.So the real 5V output will actually have1000ms + sampling time for other sensors.540 +923.0 - SF7BW125 to SF10BW125 466 466 542 +922.0 - SF7BW125 to SF10BW125 467 467 468 468 469 -= =2.5DownlinkPayload==545 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 470 470 471 - Bydefault,NSE01prints the downlinkpayload to console port.547 +923.6 - SF7BW125 to SF10BW125 472 472 473 - [[image:image-20220708133731-5.png]]549 +923.8 - SF7BW125 to SF10BW125 474 474 551 +924.0 - SF7BW125 to SF10BW125 475 475 553 +924.2 - SF7BW125 to SF10BW125 476 476 477 -((( 478 -(% style="color:blue" %)**Examples:** 479 -))) 555 +924.4 - SF7BW125 to SF10BW125 480 480 481 -((( 482 - 483 -))) 557 +924.6 - SF7BW125 to SF10BW125 484 484 485 -* ((( 486 -(% style="color:blue" %)**Set TDC** 487 -))) 488 488 489 -((( 490 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 491 -))) 560 +(% style="color:#037691" %)** Downlink:** 492 492 493 -((( 494 -Payload: 01 00 00 1E TDC=30S 495 -))) 562 +Uplink channels 1-8 (RX1) 496 496 497 -((( 498 -Payload: 01 00 00 3C TDC=60S 499 -))) 564 +923.2 - SF10BW125 (RX2) 500 500 501 -((( 502 - 503 -))) 504 504 505 -* ((( 506 -(% style="color:blue" %)**Reset** 507 -))) 508 508 509 -((( 510 -If payload = 0x04FF, it will reset the NSE01 511 -))) 568 +=== 2.7.6 KR920-923 (KR920) === 512 512 570 +Default channel: 513 513 514 - *(%style="color:blue"%)**INTMOD**572 +922.1 - SF7BW125 to SF12BW125 515 515 516 - Downlink Payload: 06000003,SetAT+INTMOD=3574 +922.3 - SF7BW125 to SF12BW125 517 517 576 +922.5 - SF7BW125 to SF12BW125 518 518 519 519 520 - ==2.6LEDIndicator==579 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 521 521 522 -((( 523 -The NSE01 has an internal LED which is to show the status of different state. 581 +922.1 - SF7BW125 to SF12BW125 524 524 583 +922.3 - SF7BW125 to SF12BW125 525 525 526 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 527 -* Then the LED will be on for 1 second means device is boot normally. 528 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 529 -* For each uplink probe, LED will be on for 500ms. 530 -))) 585 +922.5 - SF7BW125 to SF12BW125 531 531 587 +922.7 - SF7BW125 to SF12BW125 532 532 589 +922.9 - SF7BW125 to SF12BW125 533 533 591 +923.1 - SF7BW125 to SF12BW125 534 534 535 - ==2.7InstallationinSoil ==593 +923.3 - SF7BW125 to SF12BW125 536 536 537 -__**Measurement the soil surface**__ 538 538 539 - Choosethe proper measuring position. Avoid the probe to touch rocks or hard things. Split thesurface soilaccording to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]596 +(% style="color:#037691" %)**Downlink:** 540 540 541 - [[image:1657259653666-883.png]] 598 +Uplink channels 1-7(RX1) 542 542 600 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 543 543 544 -((( 545 - 546 546 547 -((( 548 -Dig a hole with diameter > 20CM. 549 -))) 550 550 551 -((( 552 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 553 -))) 554 -))) 604 +=== 2.7.7 IN865-867 (IN865) === 555 555 556 - [[image:1654506665940-119.png]]606 +(% style="color:#037691" %)** Uplink:** 557 557 558 -((( 559 - 560 -))) 608 +865.0625 - SF7BW125 to SF12BW125 561 561 610 +865.4025 - SF7BW125 to SF12BW125 562 562 563 - == 2.8FirmwareChange Log==612 +865.9850 - SF7BW125 to SF12BW125 564 564 565 565 566 - DownloadURL& Firmware Changelog615 +(% style="color:#037691" %) **Downlink:** 567 567 568 - [[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]617 +Uplink channels 1-3 (RX1) 569 569 619 +866.550 - SF10BW125 (RX2) 570 570 571 -Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]] 572 572 573 573 574 574 575 -== 2. 9BatteryAnalysis==624 +== 2.8 LED Indicator == 576 576 577 - ===2.9.1BatteryType===626 +The LSE01 has an internal LED which is to show the status of different state. 578 578 628 +* Blink once when device power on. 629 +* Solid ON for 5 seconds once device successful Join the network. 630 +* Blink once when device transmit a packet. 579 579 580 -The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 581 581 582 582 583 - Thebatteryis designed to lastfor severalyears depends onthe actually use environmentandupdateinterval.634 +== 2.9 Installation in Soil == 584 584 636 +**Measurement the soil surface** 585 585 586 -The battery related documents as below: 587 587 588 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 589 -* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 590 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 639 +[[image:1654506634463-199.png]] 591 591 592 592 ((( 593 -[[image:image-20220708140453-6.png]] 642 +((( 643 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 594 594 ))) 645 +))) 595 595 596 596 648 +[[image:1654506665940-119.png]] 597 597 598 -=== 2.9.2 Power consumption Analyze === 650 +((( 651 +Dig a hole with diameter > 20CM. 652 +))) 599 599 600 600 ((( 601 - Draginobattery powered productare allrunsinLow Powermode. Wehavean update battery calculator whichbase onthemeasurementof the realdevice. User canuse this calculatorto checkthebatterylife andcalculatethe batterylifeif want to use different transmit interval.655 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 602 602 ))) 603 603 604 604 659 +== 2.10 Firmware Change Log == 660 + 605 605 ((( 606 - Instructiontouseasbelow:662 +**Firmware download link:** 607 607 ))) 608 608 609 609 ((( 610 - (% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:[[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]666 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 611 611 ))) 612 612 669 +((( 670 + 671 +))) 613 613 614 614 ((( 615 - (% style="color:blue" %)**Step2: **(%%)Openithoose674 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 616 616 ))) 617 617 618 - *(((619 - ProductModel677 +((( 678 + 620 620 ))) 621 -* ((( 622 -Uplink Interval 680 + 681 +((( 682 +**V1.0.** 623 623 ))) 624 -* ((( 625 -Working Mode 684 + 685 +((( 686 +Release 626 626 ))) 627 627 689 + 690 +== 2.11 Battery Analysis == 691 + 692 +=== 2.11.1 Battery Type === 693 + 628 628 ((( 629 - And the Lifeexpectation indifferencecasewillbe shownontheright.695 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 630 630 ))) 631 631 632 -[[image:image-20220708141352-7.jpeg]] 698 +((( 699 +The battery is designed to last for more than 5 years for the LSN50. 700 +))) 633 633 702 +((( 703 +((( 704 +The battery-related documents are as below: 705 +))) 706 +))) 634 634 708 +* ((( 709 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 710 +))) 711 +* ((( 712 +[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 713 +))) 714 +* ((( 715 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 716 +))) 635 635 636 - ===2.9.3 Battery Note===718 + [[image:image-20220606171726-9.png]] 637 637 720 + 721 + 722 +=== 2.11.2 Battery Note === 723 + 638 638 ((( 639 639 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 640 640 ))) ... ... @@ -641,14 +641,22 @@ 641 641 642 642 643 643 644 -=== 2. 9.4Replace the battery ===730 +=== 2.11.3 Replace the battery === 645 645 646 646 ((( 647 - The defaultbatterypack of NSE01includesa ER26500 plus super capacitor. If usercan'tfind this pack locally, they canfind ER26500or equivalencewithouttheSPC1520 capacitor, which willalso work in mostcase.The SPC can enlargethe batterylife for highfrequencyuse (update period below 5 minutes).733 +If Battery is lower than 2.7v, user should replace the battery of LSE01. 648 648 ))) 649 649 736 +((( 737 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 738 +))) 650 650 740 +((( 741 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 742 +))) 651 651 744 + 745 + 652 652 = 3. Using the AT Commands = 653 653 654 654 == 3.1 Access AT Commands == ... ... @@ -672,7 +672,7 @@ 672 672 [[image:1654502050864-459.png||height="564" width="806"]] 673 673 674 674 675 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>http s://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]769 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]] 676 676 677 677 678 678 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> ... ... @@ -830,14 +830,19 @@ 830 830 831 831 ((( 832 832 Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 927 +))) 833 833 834 -* (% style="color:#037691" %)**AT+CHE=2** 835 -* (% style="color:#037691" %)**ATZ** 929 +(% class="box infomessage" %) 930 +((( 931 +**AT+CHE=2** 836 836 ))) 837 837 934 +(% class="box infomessage" %) 838 838 ((( 839 - 936 +**ATZ** 937 +))) 840 840 939 +((( 841 841 to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 842 842 ))) 843 843 ... ... @@ -852,22 +852,18 @@ 852 852 [[image:image-20220606154825-4.png]] 853 853 854 854 855 -== 4.2 Can I calibrate LSE01 to different soil types? == 856 856 857 -LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]]. 858 - 859 - 860 860 = 5. Trouble Shooting = 861 861 862 -== 5.1 Why I can 't join TTN in US915 / AU915 bands? ==957 +== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 863 863 864 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main. End DeviceATCommandsand Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.959 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 865 865 866 866 867 -== 5.2 AT Command input doesn 't work ==962 +== 5.2 AT Command input doesn’t work == 868 868 869 869 ((( 870 -In the case if user can see the console output but can 't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.965 +In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 871 871 ))) 872 872 873 873 ... ... @@ -949,6 +949,7 @@ 949 949 * ((( 950 950 Weight / pcs : g 951 951 1047 + 952 952 953 953 ))) 954 954 ... ... @@ -956,3 +956,8 @@ 956 956 957 957 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 958 958 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1055 + 1056 + 1057 +~)~)~) 1058 +~)~)~) 1059 +~)~)~)
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -138.2 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -102.7 KB - Content