Changes for page NDDS75 -- NB-IoT Distance Detect Sensor User Manual
Last modified by Bei Jinggeng on 2024/05/31 09:53
From version 62.1
edited by Xiaoling
on 2022/07/08 14:13
on 2022/07/08 14:13
Change comment:
Uploaded new attachment "image-20220708141352-7.jpeg", version {1}
To version 40.1
edited by Edwin Chen
on 2022/06/29 19:12
on 2022/06/29 19:12
Change comment:
There is no comment for this version
Summary
-
Page properties (3 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 21 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - NSE01NB-IoTSoil Moisture & EC Sensor User Manual1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual - Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Xiaoling1 +XWiki.Edwin - Content
-
... ... @@ -13,612 +13,775 @@ 13 13 14 14 **Table of Contents:** 15 15 16 +{{toc/}} 16 16 17 17 18 18 19 19 20 20 21 -= 1. Introduction = 22 22 23 -= =1.1 Whatis LoRaWAN Soil Moisture & EC Sensor==23 += 1. Introduction = 24 24 25 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 26 + 25 25 ((( 26 26 27 27 28 -Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 30 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 31 +))) 29 29 30 -It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 33 +((( 34 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 35 +))) 31 31 32 -The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 37 +((( 38 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 39 +))) 33 33 34 -NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years. 41 +((( 42 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 43 +))) 35 35 36 - 45 +((( 46 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 37 37 ))) 38 38 49 + 39 39 [[image:1654503236291-817.png]] 40 40 41 41 42 -[[image:165 7245163077-232.png]]53 +[[image:1654503265560-120.png]] 43 43 44 44 45 45 46 46 == 1.2 Features == 47 47 48 - 49 -* NB-IoTBands: B1/B3/B8/B5/B20/B28 @H-FDD59 +* LoRaWAN 1.0.3 Class A 60 +* Ultra low power consumption 50 50 * Monitor Soil Moisture 51 51 * Monitor Soil Temperature 52 52 * Monitor Soil Conductivity 64 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 53 53 * AT Commands to change parameters 54 54 * Uplink on periodically 55 55 * Downlink to change configure 56 56 * IP66 Waterproof Enclosure 57 -* Ultra-Low Power consumption 58 -* AT Commands to change parameters 59 -* Micro SIM card slot for NB-IoT SIM 60 -* 8500mAh Battery for long term use 69 +* 4000mAh or 8500mAh Battery for long term use 61 61 62 -== 1.3 71 +== 1.3 Specification == 63 63 73 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 64 64 65 - (% style="color:#037691" %)**CommonDC Characteristics:**75 +[[image:image-20220606162220-5.png]] 66 66 67 -* Supply Voltage: 2.1v ~~ 3.6v 68 -* Operating Temperature: -40 ~~ 85°C 69 69 70 -(% style="color:#037691" %)**NB-IoT Spec:** 71 71 72 -* - B1 @H-FDD: 2100MHz 73 -* - B3 @H-FDD: 1800MHz 74 -* - B8 @H-FDD: 900MHz 75 -* - B5 @H-FDD: 850MHz 76 -* - B20 @H-FDD: 800MHz 77 -* - B28 @H-FDD: 700MHz 79 +== 1.4 Applications == 78 78 79 - (%style="color:#037691"%)**Probe Specification:**81 +* Smart Agriculture 80 80 81 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 83 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 84 + 82 82 83 - [[image:image-20220708101224-1.png]]86 +== 1.5 Firmware Change log == 84 84 85 85 89 +**LSE01 v1.0 :** Release 86 86 87 -== 1.4 Applications == 88 88 89 -* Smart Agriculture 90 90 91 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 92 - 93 += 2. Configure LSE01 to connect to LoRaWAN network = 93 93 94 -== 1.5PinDefinitions ==95 +== 2.1 How it works == 95 95 97 +((( 98 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 99 +))) 96 96 97 -[[image:1657246476176-652.png]] 101 +((( 102 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 103 +))) 98 98 99 99 100 100 101 -= 2. UseNSE01to communicatewithIoTServer =107 +== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 102 102 103 - ==2.1How it works==109 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 104 104 105 105 112 +[[image:1654503992078-669.png]] 113 + 114 + 115 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 116 + 117 + 118 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSE01. 119 + 120 +Each LSE01 is shipped with a sticker with the default device EUI as below: 121 + 122 +[[image:image-20220606163732-6.jpeg]] 123 + 124 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 125 + 126 +**Add APP EUI in the application** 127 + 128 + 129 +[[image:1654504596150-405.png]] 130 + 131 + 132 + 133 +**Add APP KEY and DEV EUI** 134 + 135 +[[image:1654504683289-357.png]] 136 + 137 + 138 + 139 +(% style="color:blue" %)**Step 2**(%%): Power on LSE01 140 + 141 + 142 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 143 + 144 +[[image:image-20220606163915-7.png]] 145 + 146 + 147 +(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 148 + 149 +[[image:1654504778294-788.png]] 150 + 151 + 152 + 153 +== 2.3 Uplink Payload == 154 + 155 + 156 +=== 2.3.1 MOD~=0(Default Mode) === 157 + 158 +LSE01 will uplink payload via LoRaWAN with below payload format: 159 + 106 106 ((( 107 - The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware inNSE01 will get environment data from sensors and send the value to local NB-IoT networkviathe NB-IoT module. The NB-IoT network will forwardthis valueto IoTserverviathe protocoldefinedbyNSE01.161 +Uplink payload includes in total 11 bytes. 108 108 ))) 109 109 164 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 165 +|((( 166 +**Size** 110 110 168 +**(bytes)** 169 +)))|**2**|**2**|**2**|**2**|**2**|**1** 170 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 171 +Temperature 172 + 173 +(Reserve, Ignore now) 174 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 175 +MOD & Digital Interrupt 176 + 177 +(Optional) 178 +))) 179 + 180 +=== 2.3.2 MOD~=1(Original value) === 181 + 182 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 183 + 184 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 185 +|((( 186 +**Size** 187 + 188 +**(bytes)** 189 +)))|**2**|**2**|**2**|**2**|**2**|**1** 190 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 191 +Temperature 192 + 193 +(Reserve, Ignore now) 194 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 195 +MOD & Digital Interrupt 196 + 197 +(Optional) 198 +))) 199 + 200 +=== 2.3.3 Battery Info === 201 + 111 111 ((( 112 - Thediagram below showstheworkingflow in defaultfirmwareofNSE01:203 +Check the battery voltage for LSE01. 113 113 ))) 114 114 115 -[[image:image-20220708101605-2.png]] 206 +((( 207 +Ex1: 0x0B45 = 2885mV 208 +))) 116 116 117 117 ((( 211 +Ex2: 0x0B49 = 2889mV 212 +))) 213 + 214 + 215 + 216 +=== 2.3.4 Soil Moisture === 217 + 218 +((( 219 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 220 +))) 221 + 222 +((( 223 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 224 +))) 225 + 226 +((( 118 118 119 119 ))) 120 120 230 +((( 231 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 232 +))) 121 121 122 122 123 -== 2.2 Configure the NSE01 == 124 124 236 +=== 2.3.5 Soil Temperature === 125 125 126 -=== 2.2.1 Test Requirement === 238 +((( 239 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 240 +))) 127 127 242 +((( 243 +**Example**: 244 +))) 128 128 129 -To use NSE01 in your city, make sure meet below requirements: 246 +((( 247 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 248 +))) 130 130 131 - * Your local operator has already distributed a NB-IoT Network there.132 - *ThelocalNB-IoTnetworkusedthebandthatNSE01supports.133 - * Your operator is able to distribute the data received in their NB-IoT network to your IoT server.250 +((( 251 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 252 +))) 134 134 254 + 255 + 256 +=== 2.3.6 Soil Conductivity (EC) === 257 + 135 135 ((( 136 - Below figureshows our testingstructure.Here we have NB-IoTnetwork coverage by ChinaMobile, the bandthey useis B8. The NSE01 willuse CoAP((% style="color:red" %)120.24.4.116:5683)(%%)orrawUDP((%style="color:red" %)120.24.4.116:5601)(%%) orMQTT((% style="color:red" %)120.24.4.116:1883)(%%)orTCP((%style="color:red"%)120.24.4.116:5600)(%%)protocoltosenddatato thetest server259 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 137 137 ))) 138 138 262 +((( 263 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 264 +))) 139 139 140 -[[image:1657249419225-449.png]] 266 +((( 267 +Generally, the EC value of irrigation water is less than 800uS / cm. 268 +))) 141 141 270 +((( 271 + 272 +))) 142 142 274 +((( 275 + 276 +))) 143 143 144 -=== 2. 2.2Insert SIMcard===278 +=== 2.3.7 MOD === 145 145 146 - Insert theNB-IoTCardgetfromyourprovider.280 +Firmware version at least v2.1 supports changing mode. 147 147 148 - Userneed to take out the NB-IoTmoduleand inserttheSIM card like below:282 +For example, bytes[10]=90 149 149 284 +mod=(bytes[10]>>7)&0x01=1. 150 150 151 -[[image:1657249468462-536.png]] 152 152 287 +**Downlink Command:** 153 153 289 +If payload = 0x0A00, workmode=0 154 154 155 - ===2.2.3 ConnectUSB– TTL to NSE01toconfigureit===291 +If** **payload =** **0x0A01, workmode=1 156 156 293 + 294 + 295 +=== 2.3.8 Decode payload in The Things Network === 296 + 297 +While using TTN network, you can add the payload format to decode the payload. 298 + 299 + 300 +[[image:1654505570700-128.png]] 301 + 157 157 ((( 303 +The payload decoder function for TTN is here: 304 +))) 305 + 158 158 ((( 159 - User need to configure NSE01viaserial port to set the (% style="color:blue" %)**Server Address** /**Uplink Topic** (%%)tofine whereandhow-to uplink packets.NSE01 support AT Commands, usercan use a USBtoTTLadaptertoconnect toNSE01anduseATCommandsto configure it,as below.307 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]] 160 160 ))) 309 + 310 + 311 +== 2.4 Uplink Interval == 312 + 313 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 314 + 315 + 316 + 317 +== 2.5 Downlink Payload == 318 + 319 +By default, LSE50 prints the downlink payload to console port. 320 + 321 +[[image:image-20220606165544-8.png]] 322 + 323 + 324 +((( 325 +**Examples:** 161 161 ))) 162 162 328 +((( 329 + 330 +))) 163 163 164 -**Connection:** 332 +* ((( 333 +**Set TDC** 334 +))) 165 165 166 - (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 336 +((( 337 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 338 +))) 167 167 168 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 340 +((( 341 +Payload: 01 00 00 1E TDC=30S 342 +))) 169 169 170 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 344 +((( 345 +Payload: 01 00 00 3C TDC=60S 346 +))) 171 171 348 +((( 349 + 350 +))) 172 172 173 -In the PC, use below serial tool settings: 352 +* ((( 353 +**Reset** 354 +))) 174 174 175 -* Baud: (% style="color:green" %)**9600** 176 -* Data bits:** (% style="color:green" %)8(%%)** 177 -* Stop bits: (% style="color:green" %)**1** 178 -* Parity: (% style="color:green" %)**None** 179 -* Flow Control: (% style="color:green" %)**None** 356 +((( 357 +If payload = 0x04FF, it will reset the LSE01 358 +))) 180 180 360 + 361 +* **CFM** 362 + 363 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 364 + 365 + 366 + 367 +== 2.6 Show Data in DataCake IoT Server == 368 + 181 181 ((( 182 - Make sure the switch is in FLASHposition,thenpowern devicebyconnectingthejumper onNSE01. NSE01willoutputsystem info oncepoweronasbelow, we can enterthe (%style="color:green"%)**password:12345678**(%%)toaccessATmmandinput.370 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 183 183 ))) 184 184 185 -[[image:image-20220708110657-3.png]] 373 +((( 374 + 375 +))) 186 186 187 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 377 +((( 378 +(% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time. 379 +))) 188 188 381 +((( 382 +(% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 383 +))) 189 189 190 190 191 - === 2.2.4 UseCoAPprotocol to uplink data ===386 +[[image:1654505857935-743.png]] 192 192 193 -(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 194 194 389 +[[image:1654505874829-548.png]] 195 195 196 -**Use below commands:** 197 197 198 -* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 199 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 200 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 392 +(% style="color:blue" %)**Step 3**(%%)**:** Create an account or log in Datacake. 201 201 202 - Forparameterdescription,pleaserefertoATcommandset394 +(% style="color:blue" %)**Step 4**(%%)**:** Search the LSE01 and add DevEUI. 203 203 204 -[[image:1657249793983-486.png]] 205 205 397 +[[image:1654505905236-553.png]] 206 206 207 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 208 208 209 - [[image:1657249831934-534.png]]400 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 210 210 402 +[[image:1654505925508-181.png]] 211 211 212 212 213 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 214 214 215 - Thisfeatureis supported sincefirmware versionv1.0.1406 +== 2.7 Frequency Plans == 216 216 408 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 217 217 218 -* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 219 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 220 -* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 221 221 222 - [[image:1657249864775-321.png]]411 +=== 2.7.1 EU863-870 (EU868) === 223 223 413 +(% style="color:#037691" %)** Uplink:** 224 224 225 - [[image:1657249930215-289.png]]415 +868.1 - SF7BW125 to SF12BW125 226 226 417 +868.3 - SF7BW125 to SF12BW125 and SF7BW250 227 227 419 +868.5 - SF7BW125 to SF12BW125 228 228 229 - === 2.2.6UseMQTT protocolto uplink data ===421 +867.1 - SF7BW125 to SF12BW125 230 230 231 - Thisfeatureissupported since firmware versionv110423 +867.3 - SF7BW125 to SF12BW125 232 232 425 +867.5 - SF7BW125 to SF12BW125 233 233 234 -* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 235 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 236 -* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 237 -* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 238 -* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 239 -* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 240 -* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 427 +867.7 - SF7BW125 to SF12BW125 241 241 242 - [[image:1657249978444-674.png]]429 +867.9 - SF7BW125 to SF12BW125 243 243 431 +868.8 - FSK 244 244 245 -[[image:1657249990869-686.png]] 246 246 434 +(% style="color:#037691" %)** Downlink:** 247 247 248 -((( 249 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 250 -))) 436 +Uplink channels 1-9 (RX1) 251 251 438 +869.525 - SF9BW125 (RX2 downlink only) 252 252 253 253 254 -=== 2.2.7 Use TCP protocol to uplink data === 255 255 256 - Thisfeatureis supported since firmware version v110442 +=== 2.7.2 US902-928(US915) === 257 257 444 +Used in USA, Canada and South America. Default use CHE=2 258 258 259 -* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 260 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 446 +(% style="color:#037691" %)**Uplink:** 261 261 262 - [[image:1657250217799-140.png]]448 +903.9 - SF7BW125 to SF10BW125 263 263 450 +904.1 - SF7BW125 to SF10BW125 264 264 265 - [[image:1657250255956-604.png]]452 +904.3 - SF7BW125 to SF10BW125 266 266 454 +904.5 - SF7BW125 to SF10BW125 267 267 456 +904.7 - SF7BW125 to SF10BW125 268 268 269 - === 2.2.8ChangeUpdateInterval ===458 +904.9 - SF7BW125 to SF10BW125 270 270 271 - Usercanusebelow commandtochange the (% style="color:green" %)**uplink interval**.460 +905.1 - SF7BW125 to SF10BW125 272 272 273 - * (% style="color:blue" %)**AT+TDC=600**(%%)~/~/SetUpdate Interval to600s462 +905.3 - SF7BW125 to SF10BW125 274 274 275 -((( 276 -(% style="color:red" %)**NOTE:** 277 -))) 278 278 279 -((( 280 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 281 -))) 465 +(% style="color:#037691" %)**Downlink:** 282 282 467 +923.3 - SF7BW500 to SF12BW500 283 283 469 +923.9 - SF7BW500 to SF12BW500 284 284 285 - ==2.3UplinkPayload==471 +924.5 - SF7BW500 to SF12BW500 286 286 287 - Inthismode,uplink payload includes intotal18 bytes473 +925.1 - SF7BW500 to SF12BW500 288 288 289 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 290 -|=(% style="width: 50px;" %)((( 291 -**Size(bytes)** 292 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1** 293 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]] 475 +925.7 - SF7BW500 to SF12BW500 294 294 295 - Ifweusethe MQTT client tosubscribe to this MQTT topic, we can see the following information when the NSE01uplink data.477 +926.3 - SF7BW500 to SF12BW500 296 296 479 +926.9 - SF7BW500 to SF12BW500 297 297 298 - [[image:image-20220708111918-4.png]]481 +927.5 - SF7BW500 to SF12BW500 299 299 483 +923.3 - SF12BW500(RX2 downlink only) 300 300 301 -The payload is ASCII string, representative same HEX: 302 302 303 -0x72403155615900640c7817075e0a8c02f900 where: 304 304 305 -* Device ID: 0x 724031556159 = 724031556159 306 -* Version: 0x0064=100=1.0.0 487 +=== 2.7.3 CN470-510 (CN470) === 307 307 308 -* BAT: 0x0c78 = 3192 mV = 3.192V 309 -* Singal: 0x17 = 23 310 -* Soil Moisture: 0x075e= 1886 = 18.86 % 311 -* Soil Temperature:0x0a8c =2700=27 °C 312 -* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 313 -* Interrupt: 0x00 = 0 489 +Used in China, Default use CHE=1 314 314 315 - ==2.4 PayloadExplanationand Sensor Interface ==491 +(% style="color:#037691" %)**Uplink:** 316 316 493 +486.3 - SF7BW125 to SF12BW125 317 317 318 - === 2.4.1DeviceID===495 +486.5 - SF7BW125 to SF12BW125 319 319 320 - Bydefault,theDevice ID equaltothe last 6 bytes of IMEI.497 +486.7 - SF7BW125 to SF12BW125 321 321 322 - Usercanuse(% style="color:blue"%)**AT+DEUI**(%%) to set Device ID499 +486.9 - SF7BW125 to SF12BW125 323 323 324 - **Example:**501 +487.1 - SF7BW125 to SF12BW125 325 325 326 - AT+DEUI=A84041F15612503 +487.3 - SF7BW125 to SF12BW125 327 327 328 - TheDevice ID is stored in a none-erasearea,Upgradethe firmwareorrun AT+FDR won't erase Device ID.505 +487.5 - SF7BW125 to SF12BW125 329 329 507 +487.7 - SF7BW125 to SF12BW125 330 330 331 331 332 - ===2.4.2 VersionInfo ===510 +(% style="color:#037691" %)**Downlink:** 333 333 334 - Specify the software version:0x64=100,meansfirmwareversion1.00.512 +506.7 - SF7BW125 to SF12BW125 335 335 336 - For example:0x0064:this device is NSE01with firmware version1.0.0.514 +506.9 - SF7BW125 to SF12BW125 337 337 516 +507.1 - SF7BW125 to SF12BW125 338 338 518 +507.3 - SF7BW125 to SF12BW125 339 339 340 - === 2.4.3BatteryInfo===520 +507.5 - SF7BW125 to SF12BW125 341 341 342 -((( 343 -Check the battery voltage for LSE01. 344 -))) 522 +507.7 - SF7BW125 to SF12BW125 345 345 346 -((( 347 -Ex1: 0x0B45 = 2885mV 348 -))) 524 +507.9 - SF7BW125 to SF12BW125 349 349 350 -((( 351 -Ex2: 0x0B49 = 2889mV 352 -))) 526 +508.1 - SF7BW125 to SF12BW125 353 353 528 +505.3 - SF12BW125 (RX2 downlink only) 354 354 355 355 356 -=== 2.4.4 Signal Strength === 357 357 358 - NB-IoTNetworksignalStrength.532 +=== 2.7.4 AU915-928(AU915) === 359 359 360 - **Ex1:0x1d=9**534 +Default use CHE=2 361 361 362 -(% style="color: blue" %)**0**(%%) -113dBm or less536 +(% style="color:#037691" %)**Uplink:** 363 363 364 - (%style="color:blue"%)**1**(%%)-111dBm538 +916.8 - SF7BW125 to SF12BW125 365 365 366 - (% style="color:blue" %)**2...30**(%%)-109dBm...-53dBm540 +917.0 - SF7BW125 to SF12BW125 367 367 368 - (% style="color:blue" %)**31**(%%)-51dBmorgreater542 +917.2 - SF7BW125 to SF12BW125 369 369 370 - (% style="color:blue" %)**99**(%%)Notknownor not detectable544 +917.4 - SF7BW125 to SF12BW125 371 371 546 +917.6 - SF7BW125 to SF12BW125 372 372 548 +917.8 - SF7BW125 to SF12BW125 373 373 374 - ===2.4.5SoilMoisture ===550 +918.0 - SF7BW125 to SF12BW125 375 375 376 -((( 377 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 378 -))) 552 +918.2 - SF7BW125 to SF12BW125 379 379 380 -((( 381 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 382 -))) 383 383 384 -((( 385 - 386 -))) 555 +(% style="color:#037691" %)**Downlink:** 387 387 388 -((( 389 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 390 -))) 557 +923.3 - SF7BW500 to SF12BW500 391 391 559 +923.9 - SF7BW500 to SF12BW500 392 392 561 +924.5 - SF7BW500 to SF12BW500 393 393 394 - ===2.4.6SoilTemperature===563 +925.1 - SF7BW500 to SF12BW500 395 395 396 -((( 397 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 398 -))) 565 +925.7 - SF7BW500 to SF12BW500 399 399 400 -((( 401 -**Example**: 402 -))) 567 +926.3 - SF7BW500 to SF12BW500 403 403 404 -((( 405 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 406 -))) 569 +926.9 - SF7BW500 to SF12BW500 407 407 408 -((( 409 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 410 -))) 571 +927.5 - SF7BW500 to SF12BW500 411 411 573 +923.3 - SF12BW500(RX2 downlink only) 412 412 413 413 414 -=== 2.4.7 Soil Conductivity (EC) === 415 415 416 -((( 417 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 418 -))) 577 +=== 2.7.5 AS920-923 & AS923-925 (AS923) === 419 419 420 -((( 421 -For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 422 -))) 579 +(% style="color:#037691" %)**Default Uplink channel:** 423 423 424 -((( 425 -Generally, the EC value of irrigation water is less than 800uS / cm. 426 -))) 581 +923.2 - SF7BW125 to SF10BW125 427 427 428 -((( 429 - 430 -))) 583 +923.4 - SF7BW125 to SF10BW125 431 431 432 -((( 433 - 434 -))) 435 435 436 -= ==2.4.8 DigitalInterrupt===586 +(% style="color:#037691" %)**Additional Uplink Channel**: 437 437 438 - Digital Interrupt refers to pin(% style="color:blue" %)**GPIO_EXTI**(%%),and there are different triggermethods. Whenthere isatrigger, the NSE01 willsendapacketto therver.588 +(OTAA mode, channel added by JoinAccept message) 439 439 440 - Thecommandis:590 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 441 441 442 - (%style="color:blue"%)**AT+INTMOD=3**(%%) ~/~/(more info aboutINMOD please refer [[**AT CommandManual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**592 +922.2 - SF7BW125 to SF10BW125 443 443 594 +922.4 - SF7BW125 to SF10BW125 444 444 445 - The lower four bits of this data field shows if this packet is generated by interrupt or not.[[Clickhere>>||anchor="H"]]forthe hardware and softwareset up.596 +922.6 - SF7BW125 to SF10BW125 446 446 598 +922.8 - SF7BW125 to SF10BW125 447 447 448 - Example:600 +923.0 - SF7BW125 to SF10BW125 449 449 450 -0 x(00):Normaluplinkpacket.602 +922.0 - SF7BW125 to SF10BW125 451 451 452 -0x(01): Interrupt Uplink Packet. 453 453 605 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 454 454 607 +923.6 - SF7BW125 to SF10BW125 455 455 456 - ===2.4.9+5VOutput===609 +923.8 - SF7BW125 to SF10BW125 457 457 458 - NSE01willenable +5Voutput beforeall sampling and disable the +5v after all sampling.611 +924.0 - SF7BW125 to SF10BW125 459 459 613 +924.2 - SF7BW125 to SF10BW125 460 460 461 - The5Voutput time can be controlledby AT Command.615 +924.4 - SF7BW125 to SF10BW125 462 462 463 - (%style="color:blue"%)**AT+5VT=1000**617 +924.6 - SF7BW125 to SF10BW125 464 464 465 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 466 466 620 +(% style="color:#037691" %)** Downlink:** 467 467 622 +Uplink channels 1-8 (RX1) 468 468 469 - ==2.5DownlinkPayload==624 +923.2 - SF10BW125 (RX2) 470 470 471 -By default, NSE01 prints the downlink payload to console port. 472 472 473 -[[image:image-20220708133731-5.png]] 474 474 628 +=== 2.7.6 KR920-923 (KR920) === 475 475 630 +Default channel: 476 476 477 -((( 478 -(% style="color:blue" %)**Examples:** 479 -))) 632 +922.1 - SF7BW125 to SF12BW125 480 480 481 -((( 482 - 483 -))) 634 +922.3 - SF7BW125 to SF12BW125 484 484 485 -* ((( 486 -(% style="color:blue" %)**Set TDC** 487 -))) 636 +922.5 - SF7BW125 to SF12BW125 488 488 489 -((( 490 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 491 -))) 492 492 493 -((( 494 -Payload: 01 00 00 1E TDC=30S 495 -))) 639 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 496 496 497 -((( 498 -Payload: 01 00 00 3C TDC=60S 499 -))) 641 +922.1 - SF7BW125 to SF12BW125 500 500 501 -((( 502 - 503 -))) 643 +922.3 - SF7BW125 to SF12BW125 504 504 505 -* ((( 506 -(% style="color:blue" %)**Reset** 507 -))) 645 +922.5 - SF7BW125 to SF12BW125 508 508 509 -((( 510 -If payload = 0x04FF, it will reset the NSE01 511 -))) 647 +922.7 - SF7BW125 to SF12BW125 512 512 649 +922.9 - SF7BW125 to SF12BW125 513 513 514 - *(%style="color:blue"%)**INTMOD**651 +923.1 - SF7BW125 to SF12BW125 515 515 516 - Downlink Payload: 06000003,SetAT+INTMOD=3653 +923.3 - SF7BW125 to SF12BW125 517 517 518 518 656 +(% style="color:#037691" %)**Downlink:** 519 519 520 - == 2.6 LED Indicator==658 +Uplink channels 1-7(RX1) 521 521 522 -((( 523 -The NSE01 has an internal LED which is to show the status of different state. 660 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 524 524 525 525 526 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 527 -* Then the LED will be on for 1 second means device is boot normally. 528 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 529 -* For each uplink probe, LED will be on for 500ms. 530 -))) 531 531 664 +=== 2.7.7 IN865-867 (IN865) === 532 532 666 +(% style="color:#037691" %)** Uplink:** 533 533 668 +865.0625 - SF7BW125 to SF12BW125 534 534 535 - == 2.7InstallationinSoil ==670 +865.4025 - SF7BW125 to SF12BW125 536 536 537 - __**Measurementthesoilsurface**__672 +865.9850 - SF7BW125 to SF12BW125 538 538 539 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 540 540 541 - [[image:1657259653666-883.png]]675 +(% style="color:#037691" %) **Downlink:** 542 542 677 +Uplink channels 1-3 (RX1) 543 543 544 -((( 545 - 679 +866.550 - SF10BW125 (RX2) 546 546 547 -((( 548 -Dig a hole with diameter > 20CM. 549 -))) 550 550 551 -((( 552 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 553 -))) 554 -))) 555 555 556 -[[image:1654506665940-119.png]] 557 557 558 -((( 559 - 560 -))) 684 +== 2.8 LED Indicator == 561 561 686 +The LSE01 has an internal LED which is to show the status of different state. 562 562 563 -== 2.8 Firmware Change Log == 688 +* Blink once when device power on. 689 +* Solid ON for 5 seconds once device successful Join the network. 690 +* Blink once when device transmit a packet. 564 564 565 565 566 -Download URL & Firmware Change log 567 567 568 -[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 569 569 695 +== 2.9 Installation in Soil == 570 570 571 - UpgradeInstruction: [[Upgrade_Firmware>>||anchor="H"]]697 +**Measurement the soil surface** 572 572 573 573 700 +[[image:1654506634463-199.png]] 574 574 575 -== 2.9 Battery Analysis == 702 +((( 703 +((( 704 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 705 +))) 706 +))) 576 576 577 -=== 2.9.1 Battery Type === 578 578 579 579 580 - The NSE01 batteryis a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year).This type of battery is commonly used in IoT devices such as water meter.710 +[[image:1654506665940-119.png]] 581 581 712 +((( 713 +Dig a hole with diameter > 20CM. 714 +))) 582 582 583 -The battery is designed to last for several years depends on the actually use environment and update interval. 716 +((( 717 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 718 +))) 584 584 585 585 586 - Thebatteryrelateddocumentsas below:721 +== 2.10 Firmware Change Log == 587 587 588 - * [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]589 -* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]590 - * [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]723 +((( 724 +**Firmware download link:** 725 +))) 591 591 592 592 ((( 593 -[[ima ge:image-20220708140453-6.png]]728 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 594 594 ))) 595 595 731 +((( 732 + 733 +))) 596 596 735 +((( 736 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 737 +))) 597 597 598 -2.9.2 739 +((( 740 + 741 +))) 599 599 600 -Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 743 +((( 744 +**V1.0.** 745 +))) 601 601 747 +((( 748 +Release 749 +))) 602 602 603 -Instruction to use as below: 604 604 752 +== 2.11 Battery Analysis == 605 605 606 - Step1:Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsxfrom:754 +=== 2.11.1 Battery Type === 607 607 608 -[[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 756 +((( 757 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 758 +))) 609 609 760 +((( 761 +The battery is designed to last for more than 5 years for the LSN50. 762 +))) 610 610 611 -Step 2: Open it and choose 764 +((( 765 +((( 766 +The battery-related documents are as below: 767 +))) 768 +))) 612 612 613 -* Product Model 614 -* Uplink Interval 615 -* Working Mode 770 +* ((( 771 +[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], 772 +))) 773 +* ((( 774 +[[Lithium-Thionyl Chloride Battery datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], 775 +))) 776 +* ((( 777 +[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]] 778 +))) 616 616 617 - Andthe Life expectation in difference casewill be shownon the right.780 + [[image:image-20220610172436-1.png]] 618 618 619 619 620 620 621 -=== 2. 9.3Battery Note ===784 +=== 2.11.2 Battery Note === 622 622 623 623 ((( 624 624 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. ... ... @@ -626,12 +626,22 @@ 626 626 627 627 628 628 629 -=== 2. 9.4Replace the battery ===792 +=== 2.11.3 Replace the battery === 630 630 631 -The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 794 +((( 795 +If Battery is lower than 2.7v, user should replace the battery of LSE01. 796 +))) 632 632 798 +((( 799 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 800 +))) 633 633 802 +((( 803 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 804 +))) 634 634 806 + 807 + 635 635 = 3. Using the AT Commands = 636 636 637 637 == 3.1 Access AT Commands == ... ... @@ -842,15 +842,15 @@ 842 842 843 843 = 5. Trouble Shooting = 844 844 845 -== 5.1 Why I can 't join TTN in US915 / AU915 bands? ==1018 +== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 846 846 847 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main. End DeviceATCommandsand Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.1020 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 848 848 849 849 850 -== 5.2 AT Command input doesn 't work ==1023 +== 5.2 AT Command input doesn’t work == 851 851 852 852 ((( 853 -In the case if user can see the console output but can 't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.1026 +In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 854 854 ))) 855 855 856 856
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -138.2 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -102.7 KB - Content