Last modified by Bei Jinggeng on 2024/05/31 09:53

From version 62.1
edited by Xiaoling
on 2022/07/08 14:13
Change comment: Uploaded new attachment "image-20220708141352-7.jpeg", version {1}
To version 100.2
edited by Xiaoling
on 2022/08/08 16:01
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
1 +NDDS75 NB-IoT Distance Detect Sensor User Manual
Content
... ... @@ -1,64 +1,77 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
2 +[[image:image-20220709085040-1.png||height="542" width="524"]]
3 3  
4 4  
5 5  
6 6  
7 7  
8 -
9 -
10 -
11 -
12 -
13 -
14 14  **Table of Contents:**
15 15  
10 +{{toc/}}
16 16  
17 17  
18 18  
19 19  
20 20  
16 +
21 21  = 1.  Introduction =
22 22  
23 -== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
19 +== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
24 24  
25 25  (((
26 26  
27 27  
28 -Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
24 +(((
25 +(((
26 +The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data.
27 +)))
29 29  
30 -It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
29 +(((
30 +The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network.
31 +)))
31 31  
32 -The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33 +(((
34 +NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
35 +)))
33 33  
34 -NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
37 +(((
38 +NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement.
39 +)))
35 35  
36 -
41 +(((
42 +NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
37 37  )))
38 38  
39 -[[image:1654503236291-817.png]]
45 +(((
46 +To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection.
47 +)))
48 +)))
40 40  
50 +
51 +)))
41 41  
42 -[[image:1657245163077-232.png]]
53 +[[image:1657327959271-447.png]]
43 43  
44 44  
45 45  
46 -== 1.2 ​Features ==
57 +== 1.2 ​ Features ==
47 47  
48 48  
49 49  * NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
50 -* Monitor Soil Moisture
51 -* Monitor Soil Temperature
52 -* Monitor Soil Conductivity
61 +* Ultra low power consumption
62 +* Distance Detection by Ultrasonic technology
63 +* Flat object range 280mm - 7500mm
64 +* Accuracy: ±(1cm+S*0.3%) (S: Distance)
65 +* Cable Length: 25cm
53 53  * AT Commands to change parameters
54 54  * Uplink on periodically
55 55  * Downlink to change configure
56 56  * IP66 Waterproof Enclosure
57 -* Ultra-Low Power consumption
58 -* AT Commands to change parameters
59 59  * Micro SIM card slot for NB-IoT SIM
60 60  * 8500mAh Battery for long term use
61 61  
73 +
74 +
62 62  == 1.3  Specification ==
63 63  
64 64  
... ... @@ -76,90 +76,116 @@
76 76  * - B20 @H-FDD: 800MHz
77 77  * - B28 @H-FDD: 700MHz
78 78  
79 -(% style="color:#037691" %)**Probe Specification:**
92 +(% style="color:#037691" %)**Battery:**
80 80  
81 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
94 +* Li/SOCI2 un-chargeable battery
95 +* Capacity: 8500mAh
96 +* Self Discharge: <1% / Year @ 25°C
97 +* Max continuously current: 130mA
98 +* Max boost current: 2A, 1 second
82 82  
83 -[[image:image-20220708101224-1.png]]
100 +(% style="color:#037691" %)**Power Consumption**
84 84  
102 +* STOP Mode: 10uA @ 3.3v
103 +* Max transmit power: 350mA@3.3v
85 85  
86 86  
106 +
87 87  == ​1.4  Applications ==
88 88  
109 +
110 +* Smart Buildings & Home Automation
111 +* Logistics and Supply Chain Management
112 +* Smart Metering
89 89  * Smart Agriculture
114 +* Smart Cities
115 +* Smart Factory
90 90  
91 91  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
92 92  ​
93 93  
120 +
94 94  == 1.5  Pin Definitions ==
95 95  
96 96  
97 -[[image:1657246476176-652.png]]
124 +[[image:1657328609906-564.png]]
98 98  
99 99  
100 100  
101 -= 2.  Use NSE01 to communicate with IoT Server =
128 += 2.  Use NDDS75 to communicate with IoT Server =
102 102  
103 103  == 2.1  How it works ==
104 104  
105 105  
106 106  (((
107 -The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
134 +The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware in NDDS75 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NDDS75.
108 108  )))
109 109  
110 110  
111 111  (((
112 -The diagram below shows the working flow in default firmware of NSE01:
139 +The diagram below shows the working flow in default firmware of NDDS75:
113 113  )))
114 114  
115 -[[image:image-20220708101605-2.png]]
116 -
117 117  (((
118 118  
119 119  )))
120 120  
146 +[[image:1657328659945-416.png]]
121 121  
148 +(((
149 +
150 +)))
122 122  
123 -== 2.2 ​ Configure the NSE01 ==
124 124  
153 +== 2.2 ​ Configure the NDDS75 ==
125 125  
155 +
126 126  === 2.2.1 Test Requirement ===
127 127  
128 128  
129 -To use NSE01 in your city, make sure meet below requirements:
159 +(((
160 +To use NDDS75 in your city, make sure meet below requirements:
161 +)))
130 130  
131 131  * Your local operator has already distributed a NB-IoT Network there.
132 -* The local NB-IoT network used the band that NSE01 supports.
164 +* The local NB-IoT network used the band that NDDS75 supports.
133 133  * Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
134 134  
135 135  (((
136 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
168 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NDDS75 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server.
137 137  )))
138 138  
139 139  
140 -[[image:1657249419225-449.png]]
172 +[[image:1657328756309-230.png]]
141 141  
142 142  
143 143  
144 144  === 2.2.2 Insert SIM card ===
145 145  
178 +
179 +(((
146 146  Insert the NB-IoT Card get from your provider.
181 +)))
147 147  
183 +(((
148 148  User need to take out the NB-IoT module and insert the SIM card like below:
185 +)))
149 149  
150 150  
151 -[[image:1657249468462-536.png]]
188 +[[image:1657328884227-504.png]]
152 152  
153 153  
154 154  
155 -=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
192 +=== 2.2.3 Connect USB – TTL to NDDS75 to configure it ===
156 156  
194 +
157 157  (((
158 158  (((
159 -User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
197 +User need to configure NDDS75 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NDDS75 support AT Commands, user can use a USB to TTL adapter to connect to NDDS75 and use AT Commands to configure it, as below.
160 160  )))
161 161  )))
162 162  
201 +[[image:image-20220709092052-2.png]]
163 163  
164 164  **Connection:**
165 165  
... ... @@ -179,70 +179,81 @@
179 179  * Flow Control: (% style="color:green" %)**None**
180 180  
181 181  (((
182 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
221 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NDDS75. NDDS75 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
183 183  )))
184 184  
185 -[[image:image-20220708110657-3.png]]
224 +[[image:1657329814315-101.png]]
186 186  
187 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
226 +(((
227 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/>>url:https://www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/]]
228 +)))
188 188  
189 189  
190 190  
191 191  === 2.2.4 Use CoAP protocol to uplink data ===
192 192  
193 -(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
194 194  
235 +(% style="color:red" %)**Note: if you don't have CoAP server, you can refer this link to set up one: **(%%)**[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]**
195 195  
237 +
238 +(((
196 196  **Use below commands:**
240 +)))
197 197  
198 -* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
199 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
200 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
242 +* (((
243 +(% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
244 +)))
245 +* (((
246 +(% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
247 +)))
248 +* (((
249 +(% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
250 +)))
201 201  
252 +(((
202 202  For parameter description, please refer to AT command set
254 +)))
203 203  
204 -[[image:1657249793983-486.png]]
256 +[[image:1657330452568-615.png]]
205 205  
206 206  
207 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
259 +(((
260 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NDDS75 will start to uplink sensor values to CoAP server.
261 +)))
208 208  
209 -[[image:1657249831934-534.png]]
263 +[[image:1657330472797-498.png]]
210 210  
211 211  
212 212  
213 213  === 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
214 214  
215 -This feature is supported since firmware version v1.0.1
216 216  
217 -
218 -* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
270 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
219 219  * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
220 -* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
272 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/ If the server does not respond, this command is unnecessary
221 221  
222 -[[image:1657249864775-321.png]]
274 +[[image:1657330501006-241.png]]
223 223  
224 224  
225 -[[image:1657249930215-289.png]]
277 +[[image:1657330533775-472.png]]
226 226  
227 227  
228 228  
229 229  === 2.2.6 Use MQTT protocol to uplink data ===
230 230  
231 -This feature is supported since firmware version v110
232 232  
284 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
285 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
286 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
287 +* (% style="color:blue" %)**AT+UNAME=UNAME                                **(%%)~/~/Set the username of MQTT
288 +* (% style="color:blue" %)**AT+PWD=PWD                                         **(%%)~/~/Set the password of MQTT
289 +* (% style="color:blue" %)**AT+PUBTOPIC=NDDS75_PUB                 **(%%)~/~/Set the sending topic of MQTT
290 +* (% style="color:blue" %)**AT+SUBTOPIC=NDDS75_SUB          **(%%) ~/~/Set the subscription topic of MQTT
233 233  
234 -* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
235 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
236 -* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
237 -* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
238 -* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
239 -* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
240 -* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
241 -
242 242  [[image:1657249978444-674.png]]
243 243  
244 244  
245 -[[image:1657249990869-686.png]]
295 +[[image:1657330723006-866.png]]
246 246  
247 247  
248 248  (((
... ... @@ -253,21 +253,20 @@
253 253  
254 254  === 2.2.7 Use TCP protocol to uplink data ===
255 255  
256 -This feature is supported since firmware version v110
257 257  
258 -
259 259  * (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
260 260  * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
261 261  
262 -[[image:1657250217799-140.png]]
310 +[[image:image-20220709093918-1.png]]
263 263  
264 264  
265 -[[image:1657250255956-604.png]]
313 +[[image:image-20220709093918-2.png]]
266 266  
267 267  
268 268  
269 269  === 2.2.8 Change Update Interval ===
270 270  
319 +
271 271  User can use below command to change the (% style="color:green" %)**uplink interval**.
272 272  
273 273  * (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
... ... @@ -277,7 +277,7 @@
277 277  )))
278 278  
279 279  (((
280 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
329 +(% style="color:red" %)**1. By default, the device will send an uplink message every 1 hour.**
281 281  )))
282 282  
283 283  
... ... @@ -284,64 +284,98 @@
284 284  
285 285  == 2.3  Uplink Payload ==
286 286  
287 -In this mode, uplink payload includes in total 18 bytes
288 288  
289 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
290 -|=(% style="width: 50px;" %)(((
291 -**Size(bytes)**
292 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
293 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]]
337 +In this mode, uplink payload includes in total 14 bytes
294 294  
295 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
296 296  
340 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:440px" %)
341 +|=(% style="width: 60px;" %)(((
342 +**Size(bytes)**
343 +)))|=(% style="width: 60px;" %)**6**|=(% style="width: 35px;" %)2|=(% style="width: 35px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 100px;" %)**2**|=(% style="width: 60px;" %)**1**
344 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:120px" %)[[Distance (unit: mm)>>||anchor="H2.4.5A0Distance"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.6A0DigitalInterrupt"]]
297 297  
298 -[[image:image-20220708111918-4.png]]
346 +(((
347 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NDDS751 uplink data.
348 +)))
299 299  
300 300  
351 +[[image:1657331036973-987.png]]
352 +
353 +(((
301 301  The payload is ASCII string, representative same HEX:
355 +)))
302 302  
303 -0x72403155615900640c7817075e0a8c02f900 where:
357 +(((
358 +0x72403155615900640c6c19029200 where:
359 +)))
304 304  
305 -* Device ID: 0x 724031556159 = 724031556159
306 -* Version: 0x0064=100=1.0.0
361 +* (((
362 +Device ID: 0x724031556159 = 724031556159
363 +)))
364 +* (((
365 +Version: 0x0064=100=1.0.0
366 +)))
307 307  
308 -* BAT: 0x0c78 = 3192 mV = 3.192V
309 -* Singal: 0x17 = 23
310 -* Soil Moisture: 0x075e= 1886 = 18.86  %
311 -* Soil Temperature:0x0a8c =2700=27 °C
312 -* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
313 -* Interrupt: 0x00 = 0
368 +* (((
369 +BAT: 0x0c6c = 3180 mV = 3.180V
370 +)))
371 +* (((
372 +Signal: 0x19 = 25
373 +)))
374 +* (((
375 +Distance: 0x0292= 658 mm
376 +)))
377 +* (((
378 +Interrupt: 0x00 = 0
314 314  
380 +
381 +
382 +
383 +)))
384 +
315 315  == 2.4  Payload Explanation and Sensor Interface ==
316 316  
317 317  
318 318  === 2.4.1  Device ID ===
319 319  
390 +
391 +(((
320 320  By default, the Device ID equal to the last 6 bytes of IMEI.
393 +)))
321 321  
395 +(((
322 322  User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
397 +)))
323 323  
399 +(((
324 324  **Example:**
401 +)))
325 325  
403 +(((
326 326  AT+DEUI=A84041F15612
405 +)))
327 327  
328 -The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
407 +(((
408 +The Device ID is stored in a none-erase area, Upgrade the firmware or run **AT+FDR** won't erase Device ID.
409 +)))
329 329  
330 330  
331 331  
332 332  === 2.4.2  Version Info ===
333 333  
415 +
416 +(((
334 334  Specify the software version: 0x64=100, means firmware version 1.00.
418 +)))
335 335  
336 -For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
420 +(((
421 +For example: 0x00 64 : this device is NDDS75 with firmware version 1.0.0.
422 +)))
337 337  
338 338  
339 339  
340 340  === 2.4.3  Battery Info ===
341 341  
342 -(((
343 -Check the battery voltage for LSE01.
344 -)))
345 345  
346 346  (((
347 347  Ex1: 0x0B45 = 2885mV
... ... @@ -355,75 +355,51 @@
355 355  
356 356  === 2.4.4  Signal Strength ===
357 357  
358 -NB-IoT Network signal Strength.
359 359  
360 -**Ex1: 0x1d = 29**
361 -
362 -(% style="color:blue" %)**0**(%%)  -113dBm or less
363 -
364 -(% style="color:blue" %)**1**(%%)  -111dBm
365 -
366 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
367 -
368 -(% style="color:blue" %)**31**  (%%) -51dBm or greater
369 -
370 -(% style="color:blue" %)**99**   (%%) Not known or not detectable
371 -
372 -
373 -
374 -=== 2.4.5  Soil Moisture ===
375 -
376 376  (((
377 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
443 +NB-IoT Network signal Strength.
378 378  )))
379 379  
380 380  (((
381 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
447 +**Ex1: 0x1d = 29**
382 382  )))
383 383  
384 384  (((
385 -
451 +(% style="color:blue" %)**0**(%%)  -113dBm or less
386 386  )))
387 387  
388 388  (((
389 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
455 +(% style="color:blue" %)**1**(%%)  -111dBm
390 390  )))
391 391  
392 -
393 -
394 -=== 2.4.6  Soil Temperature ===
395 -
396 396  (((
397 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
459 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
398 398  )))
399 399  
400 400  (((
401 -**Example**:
463 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
402 402  )))
403 403  
404 404  (((
405 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
467 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
406 406  )))
407 407  
408 -(((
409 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
410 -)))
411 411  
412 412  
472 +=== 2.4.5  Distance ===
413 413  
414 -=== 2.4.7  Soil Conductivity (EC) ===
415 415  
416 -(((
417 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
418 -)))
475 +Get the distance. Flat object range 280mm - 7500mm.
419 419  
420 420  (((
421 -For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
478 +For example, if the data you get from the register is **__0x0B 0x05__**, the distance between the sensor and the measured object is
422 422  )))
423 423  
424 424  (((
425 -Generally, the EC value of irrigation water is less than 800uS / cm.
482 +(((
483 +(% style="color:blue" %)** 0B05(H) = 2821(D) = 2821mm.**
426 426  )))
485 +)))
427 427  
428 428  (((
429 429  
... ... @@ -433,45 +433,69 @@
433 433  
434 434  )))
435 435  
436 -=== 2.4.8  Digital Interrupt ===
495 +=== 2.4.6  Digital Interrupt ===
437 437  
438 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
439 439  
498 +(((
499 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NDDS75 will send a packet to the server.
500 +)))
501 +
502 +(((
440 440  The command is:
504 +)))
441 441  
506 +(((
442 442  (% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
508 +)))
443 443  
444 444  
445 -The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up.
511 +(((
512 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
513 +)))
446 446  
447 447  
516 +(((
448 448  Example:
518 +)))
449 449  
520 +(((
450 450  0x(00): Normal uplink packet.
522 +)))
451 451  
524 +(((
452 452  0x(01): Interrupt Uplink Packet.
526 +)))
453 453  
454 454  
455 455  
456 -=== 2.4.9  ​+5V Output ===
530 +=== 2.4.7  ​+5V Output ===
457 457  
458 -NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
459 459  
533 +(((
534 +NDDS75 will enable +5V output before all sampling and disable the +5v after all sampling. 
535 +)))
460 460  
537 +
538 +(((
461 461  The 5V output time can be controlled by AT Command.
540 +)))
462 462  
542 +(((
463 463  (% style="color:blue" %)**AT+5VT=1000**
544 +)))
464 464  
546 +(((
465 465  Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
548 +)))
466 466  
467 467  
468 468  
469 469  == 2.5  Downlink Payload ==
470 470  
471 -By default, NSE01 prints the downlink payload to console port.
472 472  
473 -[[image:image-20220708133731-5.png]]
555 +By default, NDDS75 prints the downlink payload to console port.
474 474  
557 +[[image:image-20220709100028-1.png]]
475 475  
476 476  
477 477  (((
... ... @@ -507,118 +507,121 @@
507 507  )))
508 508  
509 509  (((
510 -If payload = 0x04FF, it will reset the NSE01
593 +If payload = 0x04FF, it will reset the NDDS75
511 511  )))
512 512  
513 513  
514 514  * (% style="color:blue" %)**INTMOD**
515 515  
599 +(((
516 516  Downlink Payload: 06000003, Set AT+INTMOD=3
601 +)))
517 517  
518 518  
519 519  
520 520  == 2.6  ​LED Indicator ==
521 521  
522 -(((
523 -The NSE01 has an internal LED which is to show the status of different state.
524 524  
608 +The NDDS75 has an internal LED which is to show the status of different state.
525 525  
526 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
610 +
611 +* When power on, NDDS75 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
527 527  * Then the LED will be on for 1 second means device is boot normally.
528 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
613 +* After NDDS75 join NB-IoT network. The LED will be ON for 3 seconds.
529 529  * For each uplink probe, LED will be on for 500ms.
615 +
616 +(((
617 +
530 530  )))
531 531  
532 532  
533 533  
622 +== 2.7  ​Firmware Change Log ==
534 534  
535 -== 2.7  Installation in Soil ==
536 536  
537 -__**Measurement the soil surface**__
538 -
539 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
540 -
541 -[[image:1657259653666-883.png]] ​
542 -
543 -
544 544  (((
545 -
546 -
547 -(((
548 -Dig a hole with diameter > 20CM.
626 +Download URL & Firmware Change log
549 549  )))
550 550  
551 551  (((
552 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
630 +[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/Firmware/>>url:https://www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/Firmware/]]
553 553  )))
554 -)))
555 555  
556 -[[image:1654506665940-119.png]]
557 557  
558 558  (((
559 -
635 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
560 560  )))
561 561  
562 562  
563 -== 2.8  ​Firmware Change Log ==
564 564  
640 +== 2.8  ​Battery Analysis ==
565 565  
566 -Download URL & Firmware Change log
642 +=== 2.8.1  ​Battery Type ===
567 567  
568 -[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
569 569  
645 +(((
646 +The NDDS75 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
647 +)))
570 570  
571 -Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]]
649 +(((
650 +The battery is designed to last for several years depends on the actually use environment and update interval. 
651 +)))
572 572  
573 -
574 -
575 -== 2.9  ​Battery Analysis ==
576 -
577 -=== 2.9.1  ​Battery Type ===
578 -
579 -
580 -The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
581 -
582 -
583 -The battery is designed to last for several years depends on the actually use environment and update interval.
584 -
585 -
653 +(((
586 586  The battery related documents as below:
655 +)))
587 587  
588 588  * [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
589 -* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
658 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
590 590  * [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
591 591  
592 592  (((
593 -[[image:image-20220708140453-6.png]]
662 +[[image:image-20220709101450-2.png]]
594 594  )))
595 595  
596 596  
597 597  
598 -2.9.2 
667 +=== 2.8.2  Power consumption Analyze ===
599 599  
669 +
670 +(((
600 600  Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
672 +)))
601 601  
602 602  
675 +(((
603 603  Instruction to use as below:
677 +)))
604 604  
679 +(((
680 +(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
681 +)))
605 605  
606 -Step 1: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
607 607  
608 -[[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
684 +(((
685 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
686 +)))
609 609  
688 +* (((
689 +Product Model
690 +)))
691 +* (((
692 +Uplink Interval
693 +)))
694 +* (((
695 +Working Mode
696 +)))
610 610  
611 -Step 2: Open it and choose
698 +(((
699 +And the Life expectation in difference case will be shown on the right.
700 +)))
612 612  
613 -* Product Model
614 -* Uplink Interval
615 -* Working Mode
702 +[[image:image-20220709110451-3.png]]
616 616  
617 -And the Life expectation in difference case will be shown on the right.
618 618  
619 619  
706 +=== 2.8.3  ​Battery Note ===
620 620  
621 -=== 2.9.3  ​Battery Note ===
622 622  
623 623  (((
624 624  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
... ... @@ -626,292 +626,173 @@
626 626  
627 627  
628 628  
629 -=== 2.9.4  Replace the battery ===
715 +=== 2.8.4  Replace the battery ===
630 630  
631 -The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
632 632  
718 +(((
719 +The default battery pack of NDDS75 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
720 +)))
633 633  
634 634  
635 -= 3. ​Using the AT Commands =
636 636  
637 -== 3.1 Access AT Commands ==
724 += 3. Access NB-IoT Module =
638 638  
639 639  
640 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
727 +(((
728 +Users can directly access the AT command set of the NB-IoT module.
729 +)))
641 641  
642 -[[image:1654501986557-872.png||height="391" width="800"]]
731 +(((
732 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
733 +)))
643 643  
735 +[[image:1657333200519-600.png]]
644 644  
645 -Or if you have below board, use below connection:
646 646  
647 647  
648 -[[image:1654502005655-729.png||height="503" width="801"]]
739 += 4.  Using the AT Commands =
649 649  
741 +== 4.1  Access AT Commands ==
650 650  
651 651  
652 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
744 +See this link for detail: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
653 653  
654 654  
655 - [[image:1654502050864-459.png||height="564" width="806"]]
747 +AT+<CMD>?  : Help on <CMD>
656 656  
749 +AT+<CMD>         : Run <CMD>
657 657  
658 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
751 +AT+<CMD>=<value> : Set the value
659 659  
753 +AT+<CMD>=?  : Get the value
660 660  
661 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
662 662  
663 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
664 -
665 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
666 -
667 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
668 -
669 -
670 670  (% style="color:#037691" %)**General Commands**(%%)      
671 671  
672 -(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
758 +AT  : Attention       
673 673  
674 -(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
760 +AT?  : Short Help     
675 675  
676 -(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
762 +ATZ  : MCU Reset    
677 677  
678 -(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
764 +AT+TDC  : Application Data Transmission Interval
679 679  
766 +AT+CFG  : Print all configurations
680 680  
681 -(% style="color:#037691" %)**Keys, IDs and EUIs management**
768 +AT+CFGMOD           : Working mode selection
682 682  
683 -(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
770 +AT+INTMOD            : Set the trigger interrupt mode
684 684  
685 -(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
772 +AT+5VT  : Set extend the time of 5V power  
686 686  
687 -(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
774 +AT+PRO  : Choose agreement
688 688  
689 -(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
776 +AT+WEIGRE  : Get weight or set weight to 0
690 690  
691 -(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
778 +AT+WEIGAP  : Get or Set the GapValue of weight
692 692  
693 -(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection
780 +AT+RXDL  : Extend the sending and receiving time
694 694  
695 -(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
782 +AT+CNTFAC  : Get or set counting parameters
696 696  
697 -(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
784 +AT+SERVADDR  : Server Address
698 698  
699 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
700 700  
701 -(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
787 +(% style="color:#037691" %)**COAP Management**      
702 702  
703 -(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
789 +AT+URI            : Resource parameters
704 704  
705 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
706 706  
707 -(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
792 +(% style="color:#037691" %)**UDP Management**
708 708  
709 -(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
794 +AT+CFM          : Upload confirmation mode (only valid for UDP)
710 710  
711 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
712 712  
713 -(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
797 +(% style="color:#037691" %)**MQTT Management**
714 714  
799 +AT+CLIENT               : Get or Set MQTT client
715 715  
716 -(% style="color:#037691" %)**LoRa Network Management**
801 +AT+UNAME  : Get or Set MQTT Username
717 717  
718 -(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
803 +AT+PWD                  : Get or Set MQTT password
719 719  
720 -(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
805 +AT+PUBTOPI : Get or Set MQTT publish topic
721 721  
722 -(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
807 +AT+SUBTOPIC  : Get or Set MQTT subscription topic
723 723  
724 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
725 725  
726 -(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
810 +(% style="color:#037691" %)**Information**          
727 727  
728 -(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
812 +AT+FDR  : Factory Data Reset
729 729  
730 -(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
814 +AT+PWOR : Serial Access Password
731 731  
732 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
733 733  
734 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
735 735  
736 -(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
818 += ​5.  FAQ =
737 737  
738 -(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
820 +== 5.1 How to Upgrade Firmware ==
739 739  
740 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
741 741  
742 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
743 -
744 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
745 -
746 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
747 -
748 -
749 -(% style="color:#037691" %)**Information** 
750 -
751 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
752 -
753 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
754 -
755 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
756 -
757 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
758 -
759 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
760 -
761 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
762 -
763 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
764 -
765 -
766 -= ​4. FAQ =
767 -
768 -== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
769 -
770 770  (((
771 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
772 -When downloading the images, choose the required image file for download. ​
824 +User can upgrade the firmware for 1) bug fix, 2) new feature release.
773 773  )))
774 774  
775 775  (((
776 -
828 +Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
777 777  )))
778 778  
779 779  (((
780 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
832 +(% style="color:red" %)**Notice, NDDS75 and LDDS75 share the same mother board. They use the same connection and method to update.**
781 781  )))
782 782  
783 -(((
784 -
785 -)))
786 786  
787 -(((
788 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
789 -)))
790 790  
791 -(((
792 -
793 -)))
837 += 6.  Trouble Shooting =
794 794  
795 -(((
796 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
797 -)))
839 +== 6.1  ​Connection problem when uploading firmware ==
798 798  
799 -[[image:image-20220606154726-3.png]]
800 800  
801 -
802 -When you use the TTN network, the US915 frequency bands use are:
803 -
804 -* 903.9 - SF7BW125 to SF10BW125
805 -* 904.1 - SF7BW125 to SF10BW125
806 -* 904.3 - SF7BW125 to SF10BW125
807 -* 904.5 - SF7BW125 to SF10BW125
808 -* 904.7 - SF7BW125 to SF10BW125
809 -* 904.9 - SF7BW125 to SF10BW125
810 -* 905.1 - SF7BW125 to SF10BW125
811 -* 905.3 - SF7BW125 to SF10BW125
812 -* 904.6 - SF8BW500
813 -
814 814  (((
815 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
816 -
817 -* (% style="color:#037691" %)**AT+CHE=2**
818 -* (% style="color:#037691" %)**ATZ**
843 +**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
819 819  )))
820 820  
846 +(% class="wikigeneratedid" %)
821 821  (((
822 822  
823 -
824 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
825 825  )))
826 826  
827 -(((
828 -
829 -)))
830 830  
831 -(((
832 -The **AU915** band is similar. Below are the AU915 Uplink Channels.
833 -)))
852 +== 6.2  AT Command input doesn't work ==
834 834  
835 -[[image:image-20220606154825-4.png]]
836 836  
837 -
838 -== 4.2 ​Can I calibrate LSE01 to different soil types? ==
839 -
840 -LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
841 -
842 -
843 -= 5. Trouble Shooting =
844 -
845 -== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
846 -
847 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
848 -
849 -
850 -== 5.2 AT Command input doesn't work ==
851 -
852 852  (((
853 853  In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
854 -)))
855 855  
856 -
857 -== 5.3 Device rejoin in at the second uplink packet ==
858 -
859 -(% style="color:#4f81bd" %)**Issue describe as below:**
860 -
861 -[[image:1654500909990-784.png]]
862 -
863 -
864 -(% style="color:#4f81bd" %)**Cause for this issue:**
865 -
866 -(((
867 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
858 +
868 868  )))
869 869  
870 870  
871 -(% style="color:#4f81bd" %)**Solution: **
862 += 7. ​ Order Info =
872 872  
873 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
874 874  
875 -[[image:1654500929571-736.png||height="458" width="832"]]
865 +Part Number**:** (% style="color:#4f81bd" %)**NSDDS75**
876 876  
877 877  
878 -= 6. ​Order Info =
879 -
880 -
881 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
882 -
883 -
884 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
885 -
886 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
887 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
888 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
889 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
890 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
891 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
892 -* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
893 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
894 -
895 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
896 -
897 -* (% style="color:red" %)**4**(%%): 4000mAh battery
898 -* (% style="color:red" %)**8**(%%): 8500mAh battery
899 -
900 900  (% class="wikigeneratedid" %)
901 901  (((
902 902  
903 903  )))
904 904  
905 -= 7. Packing Info =
873 += 8.  Packing Info =
906 906  
907 907  (((
908 908  
909 909  
910 910  (% style="color:#037691" %)**Package Includes**:
911 -)))
912 912  
913 -* (((
914 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
880 +* NDDS75 NB-IoT Distance Detect Sensor Node x 1
881 +* External antenna x 1
915 915  )))
916 916  
917 917  (((
... ... @@ -918,24 +918,22 @@
918 918  
919 919  
920 920  (% style="color:#037691" %)**Dimension and weight**:
921 -)))
922 922  
923 -* (((
924 -Device Size: cm
889 +* Device Size: 13.0 x 5 x 4.5 cm
890 +* Device Weight: 150g
891 +* Package Size / pcs : 15 x 12x 5.5 cm
892 +* Weight / pcs : 220g
925 925  )))
926 -* (((
927 -Device Weight: g
928 -)))
929 -* (((
930 -Package Size / pcs : cm
931 -)))
932 -* (((
933 -Weight / pcs : g
934 934  
895 +(((
935 935  
897 +
898 +
899 +
936 936  )))
937 937  
938 -= 8. Support =
902 += 9.  Support =
939 939  
904 +
940 940  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
941 941  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657261119050-993.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +71.5 KB
Content
1657327959271-447.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +78.3 KB
Content
1657328609906-564.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657328659945-416.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +78.8 KB
Content
1657328756309-230.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +78.5 KB
Content
1657328884227-504.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657329814315-101.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.3 KB
Content
1657330452568-615.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +71.3 KB
Content
1657330472797-498.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +68.9 KB
Content
1657330501006-241.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +119.2 KB
Content
1657330533775-472.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +74.9 KB
Content
1657330723006-866.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +74.1 KB
Content
1657331036973-987.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +83.8 KB
Content
1657332990863-496.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
1657333200519-600.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
image-20220709084038-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.0 KB
Content
image-20220709084137-2.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.0 KB
Content
image-20220709084207-3.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.0 KB
Content
image-20220709084458-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +199.5 KB
Content
image-20220709085040-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +200.4 KB
Content
image-20220709092052-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +247.3 KB
Content
image-20220709093918-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +42.2 KB
Content
image-20220709093918-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +61.9 KB
Content
image-20220709100028-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.8 KB
Content
image-20220709101450-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.5 KB
Content
image-20220709110451-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +611.5 KB
Content