<
From version < 60.2 >
edited by Xiaoling
on 2022/07/08 14:12
To version < 45.2 >
edited by Xiaoling
on 2022/07/08 10:16
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -59,6 +59,8 @@
59 59  * Micro SIM card slot for NB-IoT SIM
60 60  * 8500mAh Battery for long term use
61 61  
62 +
63 +
62 62  == 1.3  Specification ==
63 63  
64 64  
... ... @@ -67,6 +67,7 @@
67 67  * Supply Voltage: 2.1v ~~ 3.6v
68 68  * Operating Temperature: -40 ~~ 85°C
69 69  
72 +
70 70  (% style="color:#037691" %)**NB-IoT Spec:**
71 71  
72 72  * - B1 @H-FDD: 2100MHz
... ... @@ -76,6 +76,7 @@
76 76  * - B20 @H-FDD: 800MHz
77 77  * - B28 @H-FDD: 700MHz
78 78  
82 +
79 79  (% style="color:#037691" %)**Probe Specification:**
80 80  
81 81  Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
... ... @@ -120,518 +120,704 @@
120 120  
121 121  
122 122  
123 -== 2.2 ​ Configure the NSE01 ==
127 +== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
124 124  
129 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
125 125  
126 -=== 2.2.1 Test Requirement ===
127 127  
132 +[[image:1654503992078-669.png]]
128 128  
129 -To use NSE01 in your city, make sure meet below requirements:
130 130  
131 -* Your local operator has already distributed a NB-IoT Network there.
132 -* The local NB-IoT network used the band that NSE01 supports.
133 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
135 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
134 134  
137 +
138 +(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
139 +
140 +Each LSE01 is shipped with a sticker with the default device EUI as below:
141 +
142 +[[image:image-20220606163732-6.jpeg]]
143 +
144 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
145 +
146 +**Add APP EUI in the application**
147 +
148 +
149 +[[image:1654504596150-405.png]]
150 +
151 +
152 +
153 +**Add APP KEY and DEV EUI**
154 +
155 +[[image:1654504683289-357.png]]
156 +
157 +
158 +
159 +(% style="color:blue" %)**Step 2**(%%): Power on LSE01
160 +
161 +
162 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
163 +
164 +[[image:image-20220606163915-7.png]]
165 +
166 +
167 +(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
168 +
169 +[[image:1654504778294-788.png]]
170 +
171 +
172 +
173 +== 2.3 Uplink Payload ==
174 +
175 +
176 +=== 2.3.1 MOD~=0(Default Mode) ===
177 +
178 +LSE01 will uplink payload via LoRaWAN with below payload format: 
179 +
135 135  (((
136 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
181 +Uplink payload includes in total 11 bytes.
137 137  )))
138 138  
184 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
185 +|(((
186 +**Size**
139 139  
140 -[[image:1657249419225-449.png]]
188 +**(bytes)**
189 +)))|**2**|**2**|**2**|**2**|**2**|**1**
190 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
191 +Temperature
141 141  
193 +(Reserve, Ignore now)
194 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
195 +MOD & Digital Interrupt
142 142  
197 +(Optional)
198 +)))
143 143  
144 -=== 2.2.2 Insert SIM card ===
200 +=== 2.3.2 MOD~=1(Original value) ===
145 145  
146 -Insert the NB-IoT Card get from your provider.
202 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
147 147  
148 -User need to take out the NB-IoT module and insert the SIM card like below:
204 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
205 +|(((
206 +**Size**
149 149  
208 +**(bytes)**
209 +)))|**2**|**2**|**2**|**2**|**2**|**1**
210 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
211 +Temperature
150 150  
151 -[[image:1657249468462-536.png]]
213 +(Reserve, Ignore now)
214 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
215 +MOD & Digital Interrupt
152 152  
217 +(Optional)
218 +)))
153 153  
220 +=== 2.3.3 Battery Info ===
154 154  
155 -=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
222 +(((
223 +Check the battery voltage for LSE01.
224 +)))
156 156  
157 157  (((
227 +Ex1: 0x0B45 = 2885mV
228 +)))
229 +
158 158  (((
159 -User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
231 +Ex2: 0x0B49 = 2889mV
160 160  )))
233 +
234 +
235 +
236 +=== 2.3.4 Soil Moisture ===
237 +
238 +(((
239 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
161 161  )))
162 162  
242 +(((
243 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
244 +)))
163 163  
164 -**Connection:**
246 +(((
247 +
248 +)))
165 165  
166 - (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
250 +(((
251 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
252 +)))
167 167  
168 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
169 169  
170 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
171 171  
256 +=== 2.3.5 Soil Temperature ===
172 172  
173 -In the PC, use below serial tool settings:
258 +(((
259 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
260 +)))
174 174  
175 -* Baud:  (% style="color:green" %)**9600**
176 -* Data bits:** (% style="color:green" %)8(%%)**
177 -* Stop bits: (% style="color:green" %)**1**
178 -* Parity:  (% style="color:green" %)**None**
179 -* Flow Control: (% style="color:green" %)**None**
262 +(((
263 +**Example**:
264 +)))
180 180  
181 181  (((
182 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
267 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
183 183  )))
184 184  
185 -[[image:image-20220708110657-3.png]]
270 +(((
271 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
272 +)))
186 186  
187 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
188 188  
189 189  
276 +=== 2.3.6 Soil Conductivity (EC) ===
190 190  
191 -=== 2.2.4 Use CoAP protocol to uplink data ===
278 +(((
279 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
280 +)))
192 192  
193 -(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
282 +(((
283 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
284 +)))
194 194  
286 +(((
287 +Generally, the EC value of irrigation water is less than 800uS / cm.
288 +)))
195 195  
196 -**Use below commands:**
290 +(((
291 +
292 +)))
197 197  
198 -* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
199 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
200 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
294 +(((
295 +
296 +)))
201 201  
202 -For parameter description, please refer to AT command set
298 +=== 2.3.7 MOD ===
203 203  
204 -[[image:1657249793983-486.png]]
300 +Firmware version at least v2.1 supports changing mode.
205 205  
302 +For example, bytes[10]=90
206 206  
207 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
304 +mod=(bytes[10]>>7)&0x01=1.
208 208  
209 -[[image:1657249831934-534.png]]
210 210  
307 +**Downlink Command:**
211 211  
309 +If payload = 0x0A00, workmode=0
212 212  
213 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
311 +If** **payload =** **0x0A01, workmode=1
214 214  
215 -This feature is supported since firmware version v1.0.1
216 216  
217 217  
218 -* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
219 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
220 -* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
315 +=== 2.3.8 ​Decode payload in The Things Network ===
221 221  
222 -[[image:1657249864775-321.png]]
317 +While using TTN network, you can add the payload format to decode the payload.
223 223  
224 224  
225 -[[image:1657249930215-289.png]]
320 +[[image:1654505570700-128.png]]
226 226  
322 +(((
323 +The payload decoder function for TTN is here:
324 +)))
227 227  
326 +(((
327 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
328 +)))
228 228  
229 -=== 2.2.6 Use MQTT protocol to uplink data ===
230 230  
231 -This feature is supported since firmware version v110
331 +== 2.4 Uplink Interval ==
232 232  
333 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
233 233  
234 -* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
235 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
236 -* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
237 -* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
238 -* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
239 -* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
240 -* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
241 241  
242 -[[image:1657249978444-674.png]]
243 243  
337 +== 2.5 Downlink Payload ==
244 244  
245 -[[image:1657249990869-686.png]]
339 +By default, LSE50 prints the downlink payload to console port.
246 246  
341 +[[image:image-20220606165544-8.png]]
247 247  
343 +
248 248  (((
249 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
345 +(% style="color:blue" %)**Examples:**
250 250  )))
251 251  
348 +(((
349 +
350 +)))
252 252  
352 +* (((
353 +(% style="color:blue" %)**Set TDC**
354 +)))
253 253  
254 -=== 2.2.7 Use TCP protocol to uplink data ===
356 +(((
357 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
358 +)))
255 255  
256 -This feature is supported since firmware version v110
360 +(((
361 +Payload:    01 00 00 1E    TDC=30S
362 +)))
257 257  
364 +(((
365 +Payload:    01 00 00 3C    TDC=60S
366 +)))
258 258  
259 -* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
260 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
368 +(((
369 +
370 +)))
261 261  
262 -[[image:1657250217799-140.png]]
372 +* (((
373 +(% style="color:blue" %)**Reset**
374 +)))
263 263  
376 +(((
377 +If payload = 0x04FF, it will reset the LSE01
378 +)))
264 264  
265 -[[image:1657250255956-604.png]]
266 266  
381 +* (% style="color:blue" %)**CFM**
267 267  
383 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
268 268  
269 -=== 2.2.8 Change Update Interval ===
270 270  
271 -User can use below command to change the (% style="color:green" %)**uplink interval**.
272 272  
273 -* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
387 +== 2.6 Show Data in DataCake IoT Server ==
274 274  
275 275  (((
276 -(% style="color:red" %)**NOTE:**
390 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
277 277  )))
278 278  
279 279  (((
280 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
394 +
281 281  )))
282 282  
397 +(((
398 +(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
399 +)))
283 283  
401 +(((
402 +(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
403 +)))
284 284  
285 -== 2.3  Uplink Payload ==
286 286  
287 -In this mode, uplink payload includes in total 18 bytes
406 +[[image:1654505857935-743.png]]
288 288  
289 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
290 -|=(% style="width: 50px;" %)(((
291 -**Size(bytes)**
292 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
293 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]]
294 294  
295 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
409 +[[image:1654505874829-548.png]]
296 296  
297 297  
298 -[[image:image-20220708111918-4.png]]
412 +(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
299 299  
414 +(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
300 300  
301 -The payload is ASCII string, representative same HEX:
302 302  
303 -0x72403155615900640c7817075e0a8c02f900 where:
417 +[[image:1654505905236-553.png]]
304 304  
305 -* Device ID: 0x 724031556159 = 724031556159
306 -* Version: 0x0064=100=1.0.0
307 307  
308 -* BAT: 0x0c78 = 3192 mV = 3.192V
309 -* Singal: 0x17 = 23
310 -* Soil Moisture: 0x075e= 1886 = 18.86  %
311 -* Soil Temperature:0x0a8c =2700=27 °C
312 -* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
313 -* Interrupt: 0x00 = 0
420 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
314 314  
315 -== 2.4  Payload Explanation and Sensor Interface ==
422 +[[image:1654505925508-181.png]]
316 316  
317 317  
318 -=== 2.4.1  Device ID ===
319 319  
320 -By default, the Device ID equal to the last 6 bytes of IMEI.
426 +== 2.7 Frequency Plans ==
321 321  
322 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
428 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
323 323  
324 -**Example:**
325 325  
326 -AT+DEUI=A84041F15612
431 +=== 2.7.1 EU863-870 (EU868) ===
327 327  
328 -The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
433 +(% style="color:#037691" %)** Uplink:**
329 329  
435 +868.1 - SF7BW125 to SF12BW125
330 330  
437 +868.3 - SF7BW125 to SF12BW125 and SF7BW250
331 331  
332 -=== 2.4.2  Version Info ===
439 +868.5 - SF7BW125 to SF12BW125
333 333  
334 -Specify the software version: 0x64=100, means firmware version 1.00.
441 +867.1 - SF7BW125 to SF12BW125
335 335  
336 -For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
443 +867.3 - SF7BW125 to SF12BW125
337 337  
445 +867.5 - SF7BW125 to SF12BW125
338 338  
447 +867.7 - SF7BW125 to SF12BW125
339 339  
340 -=== 2.4.3  Battery Info ===
449 +867.9 - SF7BW125 to SF12BW125
341 341  
342 -(((
343 -Check the battery voltage for LSE01.
344 -)))
451 +868.8 - FSK
345 345  
346 -(((
347 -Ex1: 0x0B45 = 2885mV
348 -)))
349 349  
350 -(((
351 -Ex2: 0x0B49 = 2889mV
352 -)))
454 +(% style="color:#037691" %)** Downlink:**
353 353  
456 +Uplink channels 1-9 (RX1)
354 354  
458 +869.525 - SF9BW125 (RX2 downlink only)
355 355  
356 -=== 2.4.4  Signal Strength ===
357 357  
358 -NB-IoT Network signal Strength.
359 359  
360 -**Ex1: 0x1d = 29**
462 +=== 2.7.2 US902-928(US915) ===
361 361  
362 -(% style="color:blue" %)**0**(%%)  -113dBm or less
464 +Used in USA, Canada and South America. Default use CHE=2
363 363  
364 -(% style="color:blue" %)**1**(%%)  -111dBm
466 +(% style="color:#037691" %)**Uplink:**
365 365  
366 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
468 +903.9 - SF7BW125 to SF10BW125
367 367  
368 -(% style="color:blue" %)**31**  (%%) -51dBm or greater
470 +904.1 - SF7BW125 to SF10BW125
369 369  
370 -(% style="color:blue" %)**99**   (%%) Not known or not detectable
472 +904.3 - SF7BW125 to SF10BW125
371 371  
474 +904.5 - SF7BW125 to SF10BW125
372 372  
476 +904.7 - SF7BW125 to SF10BW125
373 373  
374 -=== 2.4. Soil Moisture ===
478 +904.9 - SF7BW125 to SF10BW125
375 375  
376 -(((
377 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
378 -)))
480 +905.1 - SF7BW125 to SF10BW125
379 379  
380 -(((
381 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
382 -)))
482 +905.3 - SF7BW125 to SF10BW125
383 383  
384 -(((
385 -
386 -)))
387 387  
388 -(((
389 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
390 -)))
485 +(% style="color:#037691" %)**Downlink:**
391 391  
487 +923.3 - SF7BW500 to SF12BW500
392 392  
489 +923.9 - SF7BW500 to SF12BW500
393 393  
394 -=== 2.4. Soil Temperature ===
491 +924.5 - SF7BW500 to SF12BW500
395 395  
396 -(((
397 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
398 -)))
493 +925.1 - SF7BW500 to SF12BW500
399 399  
400 -(((
401 -**Example**:
402 -)))
495 +925.7 - SF7BW500 to SF12BW500
403 403  
404 -(((
405 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
406 -)))
497 +926.3 - SF7BW500 to SF12BW500
407 407  
408 -(((
409 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
410 -)))
499 +926.9 - SF7BW500 to SF12BW500
411 411  
501 +927.5 - SF7BW500 to SF12BW500
412 412  
503 +923.3 - SF12BW500(RX2 downlink only)
413 413  
414 -=== 2.4.7  Soil Conductivity (EC) ===
415 415  
416 -(((
417 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
418 -)))
419 419  
420 -(((
421 -For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
422 -)))
507 +=== 2.7.3 CN470-510 (CN470) ===
423 423  
424 -(((
425 -Generally, the EC value of irrigation water is less than 800uS / cm.
426 -)))
509 +Used in China, Default use CHE=1
427 427  
428 -(((
429 -
430 -)))
511 +(% style="color:#037691" %)**Uplink:**
431 431  
432 -(((
433 -
434 -)))
513 +486.3 - SF7BW125 to SF12BW125
435 435  
436 -=== 2.4.8  Digital Interrupt ===
515 +486.5 - SF7BW125 to SF12BW125
437 437  
438 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
517 +486.7 - SF7BW125 to SF12BW125
439 439  
440 -The command is:
519 +486.9 - SF7BW125 to SF12BW125
441 441  
442 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
521 +487.1 - SF7BW125 to SF12BW125
443 443  
523 +487.3 - SF7BW125 to SF12BW125
444 444  
445 -The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up.
525 +487.5 - SF7BW125 to SF12BW125
446 446  
527 +487.7 - SF7BW125 to SF12BW125
447 447  
448 -Example:
449 449  
450 -0x(00): Normal uplink packet.
530 +(% style="color:#037691" %)**Downlink:**
451 451  
452 -0x(01): Interrupt Uplink Packet.
532 +506.7 - SF7BW125 to SF12BW125
453 453  
534 +506.9 - SF7BW125 to SF12BW125
454 454  
536 +507.1 - SF7BW125 to SF12BW125
455 455  
456 -=== 2.4.9  ​+5V Output ===
538 +507.3 - SF7BW125 to SF12BW125
457 457  
458 -NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
540 +507.5 - SF7BW125 to SF12BW125
459 459  
542 +507.7 - SF7BW125 to SF12BW125
460 460  
461 -The 5V output time can be controlled by AT Command.
544 +507.9 - SF7BW125 to SF12BW125
462 462  
463 -(% style="color:blue" %)**AT+5VT=1000**
546 +508.1 - SF7BW125 to SF12BW125
464 464  
465 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
548 +505.3 - SF12BW125 (RX2 downlink only)
466 466  
467 467  
468 468  
469 -== 2.5  Downlink Payload ==
552 +=== 2.7.4 AU915-928(AU915) ===
470 470  
471 -By default, NSE01 prints the downlink payload to console port.
554 +Default use CHE=2
472 472  
473 -[[image:image-20220708133731-5.png]]
556 +(% style="color:#037691" %)**Uplink:**
474 474  
558 +916.8 - SF7BW125 to SF12BW125
475 475  
560 +917.0 - SF7BW125 to SF12BW125
476 476  
477 -(((
478 -(% style="color:blue" %)**Examples:**
479 -)))
562 +917.2 - SF7BW125 to SF12BW125
480 480  
481 -(((
482 -
483 -)))
564 +917.4 - SF7BW125 to SF12BW125
484 484  
485 -* (((
486 -(% style="color:blue" %)**Set TDC**
487 -)))
566 +917.6 - SF7BW125 to SF12BW125
488 488  
489 -(((
490 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
491 -)))
568 +917.8 - SF7BW125 to SF12BW125
492 492  
493 -(((
494 -Payload:    01 00 00 1E    TDC=30S
495 -)))
570 +918.0 - SF7BW125 to SF12BW125
496 496  
497 -(((
498 -Payload:    01 00 00 3C    TDC=60S
499 -)))
572 +918.2 - SF7BW125 to SF12BW125
500 500  
501 -(((
502 -
503 -)))
504 504  
505 -* (((
506 -(% style="color:blue" %)**Reset**
507 -)))
575 +(% style="color:#037691" %)**Downlink:**
508 508  
509 -(((
510 -If payload = 0x04FF, it will reset the NSE01
511 -)))
577 +923.3 - SF7BW500 to SF12BW500
512 512  
579 +923.9 - SF7BW500 to SF12BW500
513 513  
514 -* (% style="color:blue" %)**INTMOD**
581 +924.5 - SF7BW500 to SF12BW500
515 515  
516 -Downlink Payload: 06000003, Set AT+INTMOD=3
583 +925.1 - SF7BW500 to SF12BW500
517 517  
585 +925.7 - SF7BW500 to SF12BW500
518 518  
587 +926.3 - SF7BW500 to SF12BW500
519 519  
520 -== 2.6  ​LED Indicator ==
589 +926.9 - SF7BW500 to SF12BW500
521 521  
522 -(((
523 -The NSE01 has an internal LED which is to show the status of different state.
591 +927.5 - SF7BW500 to SF12BW500
524 524  
593 +923.3 - SF12BW500(RX2 downlink only)
525 525  
526 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
527 -* Then the LED will be on for 1 second means device is boot normally.
528 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
529 -* For each uplink probe, LED will be on for 500ms.
530 -)))
531 531  
532 532  
597 +=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
533 533  
599 +(% style="color:#037691" %)**Default Uplink channel:**
534 534  
535 -== 2.7  Installation in Soil ==
601 +923.2 - SF7BW125 to SF10BW125
536 536  
537 -__**Measurement the soil surface**__
603 +923.4 - SF7BW125 to SF10BW125
538 538  
539 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
540 540  
541 -[[image:1657259653666-883.png]]
606 +(% style="color:#037691" %)**Additional Uplink Channel**:
542 542  
608 +(OTAA mode, channel added by JoinAccept message)
543 543  
544 -(((
545 -
610 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
546 546  
547 -(((
548 -Dig a hole with diameter > 20CM.
549 -)))
612 +922.2 - SF7BW125 to SF10BW125
550 550  
551 -(((
552 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
553 -)))
554 -)))
614 +922.4 - SF7BW125 to SF10BW125
555 555  
556 -[[image:1654506665940-119.png]]
616 +922.6 - SF7BW125 to SF10BW125
557 557  
558 -(((
559 -
560 -)))
618 +922.8 - SF7BW125 to SF10BW125
561 561  
620 +923.0 - SF7BW125 to SF10BW125
562 562  
563 -== 2. Firmware Change Log ==
622 +922.0 - SF7BW125 to SF10BW125
564 564  
565 565  
566 -Download URL & Firmware Change log
625 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
567 567  
568 -[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
627 +923.6 - SF7BW125 to SF10BW125
569 569  
629 +923.8 - SF7BW125 to SF10BW125
570 570  
571 -Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]]
631 +924.0 - SF7BW125 to SF10BW125
572 572  
633 +924.2 - SF7BW125 to SF10BW125
573 573  
635 +924.4 - SF7BW125 to SF10BW125
574 574  
575 -== 2. Battery Analysis ==
637 +924.6 - SF7BW125 to SF10BW125
576 576  
577 -=== 2.9.1  ​Battery Type ===
578 578  
640 +(% style="color:#037691" %)** Downlink:**
579 579  
580 -The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
642 +Uplink channels 1-8 (RX1)
581 581  
644 +923.2 - SF10BW125 (RX2)
582 582  
583 -The battery is designed to last for several years depends on the actually use environment and update interval.
584 584  
585 585  
586 -The battery related documents as below:
648 +=== 2.7.6 KR920-923 (KR920) ===
587 587  
588 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
589 -* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
590 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
650 +Default channel:
591 591  
652 +922.1 - SF7BW125 to SF12BW125
653 +
654 +922.3 - SF7BW125 to SF12BW125
655 +
656 +922.5 - SF7BW125 to SF12BW125
657 +
658 +
659 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
660 +
661 +922.1 - SF7BW125 to SF12BW125
662 +
663 +922.3 - SF7BW125 to SF12BW125
664 +
665 +922.5 - SF7BW125 to SF12BW125
666 +
667 +922.7 - SF7BW125 to SF12BW125
668 +
669 +922.9 - SF7BW125 to SF12BW125
670 +
671 +923.1 - SF7BW125 to SF12BW125
672 +
673 +923.3 - SF7BW125 to SF12BW125
674 +
675 +
676 +(% style="color:#037691" %)**Downlink:**
677 +
678 +Uplink channels 1-7(RX1)
679 +
680 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
681 +
682 +
683 +
684 +=== 2.7.7 IN865-867 (IN865) ===
685 +
686 +(% style="color:#037691" %)** Uplink:**
687 +
688 +865.0625 - SF7BW125 to SF12BW125
689 +
690 +865.4025 - SF7BW125 to SF12BW125
691 +
692 +865.9850 - SF7BW125 to SF12BW125
693 +
694 +
695 +(% style="color:#037691" %) **Downlink:**
696 +
697 +Uplink channels 1-3 (RX1)
698 +
699 +866.550 - SF10BW125 (RX2)
700 +
701 +
702 +
703 +
704 +== 2.8 LED Indicator ==
705 +
706 +The LSE01 has an internal LED which is to show the status of different state.
707 +
708 +* Blink once when device power on.
709 +* Solid ON for 5 seconds once device successful Join the network.
710 +* Blink once when device transmit a packet.
711 +
712 +== 2.9 Installation in Soil ==
713 +
714 +**Measurement the soil surface**
715 +
716 +
717 +[[image:1654506634463-199.png]] ​
718 +
592 592  (((
593 -[[image:image-20220708140453-6.png]]
720 +(((
721 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
594 594  )))
723 +)))
595 595  
596 596  
597 597  
598 -2.9.
727 +[[image:1654506665940-119.png]]
599 599  
600 -Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
729 +(((
730 +Dig a hole with diameter > 20CM.
731 +)))
601 601  
733 +(((
734 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
735 +)))
602 602  
603 -Instruction to use as below:
604 604  
738 +== 2.10 ​Firmware Change Log ==
605 605  
606 -Step 1: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
740 +(((
741 +**Firmware download link:**
742 +)))
607 607  
608 -[[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
744 +(((
745 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
746 +)))
609 609  
748 +(((
749 +
750 +)))
610 610  
611 -Step 2: Open it and choose
752 +(((
753 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
754 +)))
612 612  
613 -* Product Model
614 -* Uplink Interval
615 -* Working Mode
756 +(((
757 +
758 +)))
616 616  
617 -And the Life expectation in difference case will be shown on the right.
760 +(((
761 +**V1.0.**
762 +)))
618 618  
764 +(((
765 +Release
766 +)))
619 619  
620 620  
621 -=== 2.9.3  ​Battery Note ===
769 +== 2.11 ​Battery Analysis ==
622 622  
771 +=== 2.11.1 ​Battery Type ===
772 +
623 623  (((
774 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
775 +)))
776 +
777 +(((
778 +The battery is designed to last for more than 5 years for the LSN50.
779 +)))
780 +
781 +(((
782 +(((
783 +The battery-related documents are as below:
784 +)))
785 +)))
786 +
787 +* (((
788 +[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
789 +)))
790 +* (((
791 +[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
792 +)))
793 +* (((
794 +[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
795 +)))
796 +
797 + [[image:image-20220610172436-1.png]]
798 +
799 +
800 +
801 +=== 2.11.2 ​Battery Note ===
802 +
803 +(((
624 624  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
625 625  )))
626 626  
627 627  
628 628  
629 -=== 2.9. Replace the battery ===
809 +=== 2.11.3 Replace the battery ===
630 630  
631 -The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
811 +(((
812 +If Battery is lower than 2.7v, user should replace the battery of LSE01.
813 +)))
632 632  
815 +(((
816 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
817 +)))
633 633  
819 +(((
820 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
821 +)))
634 634  
823 +
824 +
635 635  = 3. ​Using the AT Commands =
636 636  
637 637  == 3.1 Access AT Commands ==
1657249419225-449.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -344.4 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -132.7 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0