<
From version < 57.8 >
edited by Xiaoling
on 2022/07/08 11:55
To version < 45.1 >
edited by Xiaoling
on 2022/07/08 10:16
>
Change comment: Uploaded new attachment "image-20220708101605-2.png", version {1}

Summary

Details

Page properties
Content
... ... @@ -59,6 +59,8 @@
59 59  * Micro SIM card slot for NB-IoT SIM
60 60  * 8500mAh Battery for long term use
61 61  
62 +
63 +
62 62  == 1.3  Specification ==
63 63  
64 64  
... ... @@ -67,6 +67,7 @@
67 67  * Supply Voltage: 2.1v ~~ 3.6v
68 68  * Operating Temperature: -40 ~~ 85°C
69 69  
72 +
70 70  (% style="color:#037691" %)**NB-IoT Spec:**
71 71  
72 72  * - B1 @H-FDD: 2100MHz
... ... @@ -76,6 +76,7 @@
76 76  * - B20 @H-FDD: 800MHz
77 77  * - B28 @H-FDD: 700MHz
78 78  
82 +
79 79  (% style="color:#037691" %)**Probe Specification:**
80 80  
81 81  Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
... ... @@ -98,248 +98,115 @@
98 98  
99 99  
100 100  
101 -= 2.  Use NSE01 to communicate with IoT Server =
105 += 2. Configure LSE01 to connect to LoRaWAN network =
102 102  
103 -== 2.1  How it works ==
107 +== 2.1 How it works ==
104 104  
105 -
106 106  (((
107 -The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
110 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
108 108  )))
109 109  
110 -
111 111  (((
112 -The diagram below shows the working flow in default firmware of NSE01:
114 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
113 113  )))
114 114  
115 -[[image:image-20220708101605-2.png]]
116 116  
117 -(((
118 -
119 -)))
120 120  
119 +== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
121 121  
121 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
122 122  
123 -== 2.2 ​ Configure the NSE01 ==
124 124  
124 +[[image:1654503992078-669.png]]
125 125  
126 -=== 2.2.1 Test Requirement ===
127 127  
127 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
128 128  
129 -To use NSE01 in your city, make sure meet below requirements:
130 130  
131 -* Your local operator has already distributed a NB-IoT Network there.
132 -* The local NB-IoT network used the band that NSE01 supports.
133 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
130 +(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
134 134  
135 -(((
136 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
137 -)))
132 +Each LSE01 is shipped with a sticker with the default device EUI as below:
138 138  
134 +[[image:image-20220606163732-6.jpeg]]
139 139  
140 -[[image:1657249419225-449.png]]
136 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
141 141  
138 +**Add APP EUI in the application**
142 142  
143 143  
144 -=== 2.2.2 Insert SIM card ===
141 +[[image:1654504596150-405.png]]
145 145  
146 -Insert the NB-IoT Card get from your provider.
147 147  
148 -User need to take out the NB-IoT module and insert the SIM card like below:
149 149  
145 +**Add APP KEY and DEV EUI**
150 150  
151 -[[image:1657249468462-536.png]]
147 +[[image:1654504683289-357.png]]
152 152  
153 153  
154 154  
155 -=== 2.2.3 Connect USB TTL to NSE01 to configure it ===
151 +(% style="color:blue" %)**Step 2**(%%): Power on LSE01
156 156  
157 -(((
158 -(((
159 -User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
160 -)))
161 -)))
162 162  
154 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
163 163  
164 -**Connection:**
156 +[[image:image-20220606163915-7.png]]
165 165  
166 - (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
167 167  
168 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
159 +(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
169 169  
170 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
161 +[[image:1654504778294-788.png]]
171 171  
172 172  
173 -In the PC, use below serial tool settings:
174 174  
175 -* Baud:  (% style="color:green" %)**9600**
176 -* Data bits:** (% style="color:green" %)8(%%)**
177 -* Stop bits: (% style="color:green" %)**1**
178 -* Parity:  (% style="color:green" %)**None**
179 -* Flow Control: (% style="color:green" %)**None**
165 +== 2.3 Uplink Payload ==
180 180  
181 -(((
182 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
183 -)))
184 184  
185 -[[image:image-20220708110657-3.png]]
168 +=== 2.3.1 MOD~=0(Default Mode) ===
186 186  
187 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
170 +LSE01 will uplink payload via LoRaWAN with below payload format: 
188 188  
189 -
190 -
191 -=== 2.2.4 Use CoAP protocol to uplink data ===
192 -
193 -(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
194 -
195 -
196 -**Use below commands:**
197 -
198 -* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
199 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
200 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
201 -
202 -For parameter description, please refer to AT command set
203 -
204 -[[image:1657249793983-486.png]]
205 -
206 -
207 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
208 -
209 -[[image:1657249831934-534.png]]
210 -
211 -
212 -
213 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
214 -
215 -This feature is supported since firmware version v1.0.1
216 -
217 -
218 -* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
219 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
220 -* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
221 -
222 -[[image:1657249864775-321.png]]
223 -
224 -
225 -[[image:1657249930215-289.png]]
226 -
227 -
228 -
229 -=== 2.2.6 Use MQTT protocol to uplink data ===
230 -
231 -This feature is supported since firmware version v110
232 -
233 -
234 -* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
235 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
236 -* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
237 -* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
238 -* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
239 -* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
240 -* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
241 -
242 -[[image:1657249978444-674.png]]
243 -
244 -
245 -[[image:1657249990869-686.png]]
246 -
247 -
248 248  (((
249 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
173 +Uplink payload includes in total 11 bytes.
250 250  )))
251 251  
176 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
177 +|(((
178 +**Size**
252 252  
180 +**(bytes)**
181 +)))|**2**|**2**|**2**|**2**|**2**|**1**
182 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
183 +Temperature
253 253  
254 -=== 2.2.7 Use TCP protocol to uplink data ===
185 +(Reserve, Ignore now)
186 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
187 +MOD & Digital Interrupt
255 255  
256 -This feature is supported since firmware version v110
189 +(Optional)
190 +)))
257 257  
192 +=== 2.3.2 MOD~=1(Original value) ===
258 258  
259 -* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
260 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
194 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
261 261  
262 -[[image:1657250217799-140.png]]
196 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
197 +|(((
198 +**Size**
263 263  
200 +**(bytes)**
201 +)))|**2**|**2**|**2**|**2**|**2**|**1**
202 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
203 +Temperature
264 264  
265 -[[image:1657250255956-604.png]]
205 +(Reserve, Ignore now)
206 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
207 +MOD & Digital Interrupt
266 266  
267 -
268 -
269 -=== 2.2.8 Change Update Interval ===
270 -
271 -User can use below command to change the (% style="color:green" %)**uplink interval**.
272 -
273 -* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
274 -
275 -(((
276 -(% style="color:red" %)**NOTE:**
209 +(Optional)
277 277  )))
278 278  
279 -(((
280 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
281 -)))
212 +=== 2.3.3 Battery Info ===
282 282  
283 -
284 -
285 -== 2.3  Uplink Payload ==
286 -
287 -In this mode, uplink payload includes in total 18 bytes
288 -
289 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
290 -|=(% style="width: 50px;" %)(((
291 -**Size(bytes)**
292 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
293 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]]
294 -
295 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
296 -
297 -
298 -[[image:image-20220708111918-4.png]]
299 -
300 -
301 -The payload is ASCII string, representative same HEX:
302 -
303 -0x72403155615900640c7817075e0a8c02f900 where:
304 -
305 -* Device ID: 0x 724031556159 = 724031556159
306 -* Version: 0x0064=100=1.0.0
307 -
308 -* BAT: 0x0c78 = 3192 mV = 3.192V
309 -* Singal: 0x17 = 23
310 -* Soil Moisture: 0x075e= 1886 = 18.86  %
311 -* Soil Temperature:0x0a8c =2700=27 °C
312 -* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
313 -* Interrupt: 0x00 = 0
314 -
315 -
316 -== 2.4  Payload Explanation and Sensor Interface ==
317 -
318 -
319 -=== 2.4.1  Device ID ===
320 -
321 -By default, the Device ID equal to the last 6 bytes of IMEI.
322 -
323 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
324 -
325 -**Example:**
326 -
327 -AT+DEUI=A84041F15612
328 -
329 -The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
330 -
331 -
332 -
333 -=== 2.4.2  Version Info ===
334 -
335 -Specify the software version: 0x64=100, means firmware version 1.00.
336 -
337 -For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
338 -
339 -
340 -
341 -=== 2.4.3  Battery Info ===
342 -
343 343  (((
344 344  Check the battery voltage for LSE01.
345 345  )))
... ... @@ -354,32 +354,14 @@
354 354  
355 355  
356 356  
357 -=== 2.4.4  Signal Strength ===
228 +=== 2.3.4 Soil Moisture ===
358 358  
359 -NB-IoT Network signal Strength.
360 -
361 -**Ex1: 0x1d = 29**
362 -
363 -(% style="color:blue" %)**0**(%%)  -113dBm or less
364 -
365 -(% style="color:blue" %)**1**(%%)  -111dBm
366 -
367 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
368 -
369 -(% style="color:blue" %)**31**  (%%) -51dBm or greater
370 -
371 -(% style="color:blue" %)**99**   (%%) Not known or not detectable
372 -
373 -
374 -
375 -=== 2.4.5  Soil Moisture ===
376 -
377 377  (((
378 378  Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
379 379  )))
380 380  
381 381  (((
382 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
235 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
383 383  )))
384 384  
385 385  (((
... ... @@ -392,10 +392,10 @@
392 392  
393 393  
394 394  
395 -=== 2.4. Soil Temperature ===
248 +=== 2.3.5 Soil Temperature ===
396 396  
397 397  (((
398 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
251 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
399 399  )))
400 400  
401 401  (((
... ... @@ -412,7 +412,7 @@
412 412  
413 413  
414 414  
415 -=== 2.4. Soil Conductivity (EC) ===
268 +=== 2.3.6 Soil Conductivity (EC) ===
416 416  
417 417  (((
418 418  Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
... ... @@ -419,7 +419,7 @@
419 419  )))
420 420  
421 421  (((
422 -For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
275 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
423 423  )))
424 424  
425 425  (((
... ... @@ -434,41 +434,39 @@
434 434  
435 435  )))
436 436  
437 -=== 2.4. Digital Interrupt ===
290 +=== 2.3.7 MOD ===
438 438  
439 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
292 +Firmware version at least v2.1 supports changing mode.
440 440  
441 -The command is:
294 +For example, bytes[10]=90
442 442  
443 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
296 +mod=(bytes[10]>>7)&0x01=1.
444 444  
445 445  
446 -The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up.
299 +**Downlink Command:**
447 447  
301 +If payload = 0x0A00, workmode=0
448 448  
449 -Example:
303 +If** **payload =** **0x0A01, workmode=1
450 450  
451 -0x(00): Normal uplink packet.
452 452  
453 -0x(01): Interrupt Uplink Packet.
454 454  
307 +=== 2.3.8 ​Decode payload in The Things Network ===
455 455  
309 +While using TTN network, you can add the payload format to decode the payload.
456 456  
457 457  
458 -=== 2.4.9  ​+5V Output ===
312 +[[image:1654505570700-128.png]]
459 459  
314 +(((
315 +The payload decoder function for TTN is here:
316 +)))
460 460  
461 -NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
318 +(((
319 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
320 +)))
462 462  
463 463  
464 -The 5V output time can be controlled by AT Command.
465 -
466 -(% style="color:blue" %)**AT+5VT=1000**
467 -
468 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
469 -
470 -
471 -
472 472  == 2.4 Uplink Interval ==
473 473  
474 474  The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
1657249419225-449.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -99.0 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -38.8 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0